Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Compounds in Cocoa Beans by HPLC-DAD-ESI-IT-MS
2.2. Solvent Selection
2.3. Optimization of the MAE Method
2.4. Effect of Drying on the Polyphenol Content in Cocoa Beans
3. Materials and Methods
3.1. Solvents and Standards
3.2. Vegetal Material
3.3. Sample Preparation
3.4. Solvent Selection and Extraction Optimization
3.5. Effect of Drying Temperature on the Concentration of Procyanidins
3.6. Identification and Quantification of Polyphenols and Theobromine
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Samaniego, I. Los polifenoles en el cacao. Sabor Arriba. Anecacao 2016, 30–33. [Google Scholar]
- De Bertorelli, L.O.; de Fariñas, L.G.; Rovedas, G. Influencia de varios factores sobre características del grano de cacao fermentado y secado al sol. Agron. Trop. 2009, 59, 119–127. [Google Scholar]
- Santhanam Menon, A.; Hii, C.; Law, C.; Shariff, S.; Djaeni, M. Effects of drying on the production of polyphenol-rich cocoa beans. Dry. Technol. 2017, 35, 1799–1806. [Google Scholar] [CrossRef]
- Sotelo, L.; Alvis, A.; Arrázola, G. Evaluación de epicatequina, teobromina y cafeína en cáscaras de cacao (Theobroma cacao L.), determinación de su capacidad antioxidante. Rev. Colomb. Cienc. Horti. 2015, 9, 124–134. [Google Scholar] [CrossRef]
- Vázquez-Ovando, A.; Ovando-Medina, I.; Adriano-Anaya, L.; Betancur-Ancona, D.; Salvador-Figueroa, M. Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Arch. Latinoam. Nutr. 2016, 66, 239–254. [Google Scholar]
- Luna, F.; Crouzillat, D.; Cirou, L.; Bucheli, P. Chemical composition and flavor of Ecuadorian cocoa liquor. J. Agric. Food Chem. 2002, 50, 3527–3532. [Google Scholar] [CrossRef]
- Abbasa, M.; Saeeda, F.; Anjuma, F.M.; Afzaala, M.; Tufaila, T.; Bashirb, M.S.; Ishtiaqb, A.; Hussainc, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food. Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Brito, E.S.; García, N.H.P.; Gallão, M.I.; Cortelazzo, A.L.; Fevereiro, P.S.; Braga, M.R. Structural and chemical changes in cocoa (Theobroma cacao L.) during fermentation, drying and roasting. J. Sci. Food Agric. 2001, 81, 281–288. [Google Scholar] [CrossRef]
- Albertini, B.; Schoubben, A.L.; Guarnaccia, D.; Pinelli, F.; Della Vecchia, M.; Ricci, M.; Blasi, P. Effect of fermentation and drying on cocoa polyphenols. J. Agric. Food Chem. 2015, 63, 9948–9953. [Google Scholar] [CrossRef]
- Andrade Almeida, J.; Rivera García, J.; Chire Fajardo, G.; Ureña Peralta, M. Propiedades físicas y químicas de cultivares de cacao Theobroma cacao L. de Ecuador y Perú. Enfoque. UTE 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Rohan, T. Beneficio del Cacao Bruto Destinado al Mercado; Estudios Agropecuarios de la FAO: Rome, Italy, 1964; Volume 60. [Google Scholar]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor formation and character in cocoa and chocolate: A critical review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Toro-Uribe, S.; Ibañez, E.; Decker, E.A.; Villamizar-Jaimes, A.R.; López-Giraldo, L.J. Food-safe process for high recovery of flavonoids from cocoa beans: Antioxidant and HPLC-DAD-ESI-MS/MS analysis. Antioxidants 2020, 9, 364. [Google Scholar] [CrossRef]
- Santos, S.C.; Guiné, R.P.; Barros, A. Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). J. Food Meas. Charact. 2014, 8, 105–112. [Google Scholar] [CrossRef]
- Alean, J.; Chejne, F.; Rojano, B. Degradation of polyphenols during the cocoa drying process. J. Food Eng. 2016, 189, 99–105. [Google Scholar] [CrossRef]
- Hii, C.; Law, C.; Cloke, M.; Suzannah, S. Thin layer drying kinetics of cocoa and dried product quality. Biosyst. Eng. 2009, 102, 153–161. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Gilbert-López, B.; Mendiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibáñez, E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J. Agric. Food Chem. 2010, 58, 6706–6714. [Google Scholar] [CrossRef]
- Radojčić Redovniković, I.; Delonga, K.; Mazor, S.; Dragović-Uzelac, V.; Carić, M.; Vorkapić-Furač, J. Polyphenolic content and composition and antioxidative activity of different cocoa liquors. Czech J. Food Sci. 2009, 27, 330–337. [Google Scholar] [CrossRef]
- Pires, J.L.; Marita, J.M.; Yamada, M.M.; Atiken, W.M.; Melo, G.P.; Monteiro, W.R.; Ahnert, D. Diversity for Phenotypic Traits and Molecular Markers in CEPEC’s Germplasm Collection in Bahia, Brazil. In Proceedings of the International Workshop on New Technologies and Cocoa Breeding; Ingenic: Kota Kinabalu, Malaysia, 2000; pp. 16–17. [Google Scholar]
- Rockenbach, I.I.; Jungfer, E.; Ritter, C.; Santiago-Schübel, B.; Thiele, B.; Fett, R.; Galensa, R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res. Int. 2012, 48, 848–855. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Machado, K.N.; Freitas, A.A.; Cunha, L.H.; Faraco, A.A.G.; de Padua, R.M.; Braga, F.C.; Castilho, R.O. A rapid simultaneous determination of methylxanthines and proanthocyanidins in Brazilian guaraná (Paullinia cupana kunth). Food Chem. 2018, 239, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, A.; Madani, K. Effect of solvent, time, and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green extraction methods for extraction of polyphenolic compounds from blueberry pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef]
- Kallithraka, S.; Garcia-Viguera, C.; Bridle, P.; Bakker, J. Survey of solvents for the extraction of grape seed phenolics. Phytochem. Anal. 1995, 6, 265–267. [Google Scholar] [CrossRef]
- Naima, R.; Oumam, M.; Hannache, H.; Sesbou, A.; Charrier, B.; Pizzi, A.; Charrier–El Bouhtoury, F. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima. Barks. Ind. Crops Prod. 2015, 70, 245–252. [Google Scholar] [CrossRef]
- Borges, C.; Vieira, F.; Copetti, C.; Gonzaga, L.V.; Fett, R. Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Res. Int. 2011, 44, 708–715. [Google Scholar] [CrossRef]
- Wissam, Z.; Ghada, B.; Wassim, A.; Warid, K. Effective extraction of polyphenols and proanthocyanidins from pomegranate’s peel. Int. J. Pharm. Pharm. Sci. 2012, 4, 675–682. [Google Scholar]
- Xu, Z.; Wei, L.-H.; Ge, Z.-Z.; Zhu, W.; Li, C.-M. Comparison of the degradation kinetics of A-type and B-type proanthocyanidins dimers as a function of pH and temperature. Eur. Food Res. Technol. 2015, 240, 707–717. [Google Scholar] [CrossRef]
- Porter, L.J. Flavans and proanthocyanidins. In The Flavonoids, 1st ed.; Routledge: New York, NY, USA, 2017; ISBN 9780203736692. [Google Scholar]
- Vajić, U.-J.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; De Faveri, D. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef]
- Dailey, A.; Vuong, Q.V. Optimisation of ultrasonic conditions as an advanced extraction technique for recovery of phenolic compounds and antioxidant activity from Macadamia (Macadamia tetraphylla) skin waste. Technologies 2015, 3, 302–320. [Google Scholar] [CrossRef]
- Wiyono, T.; Nurhayati, R.; Herawati, E.; Laila, U. The effect of time, pH and solvent composition on cocoa shell polyphenol extraction and its antioxidant activity: Response surface method approach. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012029. [Google Scholar] [CrossRef]
- Dewi, S.R.; Stevens, L.A.; Pearson, A.E.; Ferrari, R.; Irvine, D.J.; Binner, E.R. Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk. Food Bioprod. Process. 2022, 134, 210–222. [Google Scholar] [CrossRef]
- Izawa, K.; Amino, Y.; Kohmura, M.; Ueda, Y.; Kuroda, M. Human–Environment Interactions–Taste. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 631–671. [Google Scholar]
- Guehi, T.S.; Zahouli, I.B.; Ban-Koffi, L.; Fae, M.A.; Nemlin, J.G. Performance of different drying methods and their effects on the chemical quality attributes of raw cocoa material. Int. J. Food Sci. 2010, 45, 1564–1571. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- Faborode, M.O.; Favier, J.F.; Ajayi, O.A. On the effects of forced air drying on cocoa quality. J. Food Eng. 1995, 25, 455–472. [Google Scholar] [CrossRef]
- Kyi, T.M.; Daud, W.R.W.; Mohammad, A.B.; Wahid Samsudin, M.; Kadhum, A.A.H.; Talib, M.Z.M. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int. J. Food Sci. Technol. 2005, 40, 323–331. [Google Scholar] [CrossRef]
- Carrillo, L.C.; Londoño-Londoño, J.; Gil, A. Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef] [PubMed]
- Khanal, R.C.; Howard, L.R.; Prior, R.L. Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res. Int. 2010, 43, 1464–1469. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Enríquez, G.A. Curso Sobre el Cultivo del Cacao; Bib, Orton IICA/CATIE: Turrialba, Costa Rica, 1985; ISBN 9977-951-52-7. [Google Scholar]
- Afoakwa, E.O. Cocoa Production and Processing Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
Run | Temperature (°C) | Time (min) | MeOH (%) |
---|---|---|---|
1 | 100 (0) | 40 (0) | 50 (0) |
2 | 100 (0) | 20 (−1) | 0 (−1) |
3 | 150 (1) | 60 (1) | 50 (0) |
4 | 50 (−1) | 60 (1) | 50 (0) |
5 | 150 (1) | 40 (0) | 0 (−1) |
6 | 50 (−1) | 40 (0) | 0 (−1) |
7 | 50 (−1) | 40 (0) | 100 (1) |
8 | 100 (0) | 40 (0) | 50 (0) |
9 | 100 (0) | 60 (1) | 0 (−1) |
10 | 150 (1) | 20 (−1) | 50 (0) |
11 | 50 (−1) | 20 (−1) | 50 (0) |
12 | 100 (0) | 40 (0) | 50 (0) |
13 | 150 (1) | 40 (0) | 100 (1) |
14 | 100 (0) | 60 (1) | 100 (1) |
15 | 100 (0) | 20 (−1) | 100 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, Y.E.; Figueroa, J.G. Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans. Molecules 2023, 28, 3755. https://doi.org/10.3390/molecules28093755
Maldonado YE, Figueroa JG. Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans. Molecules. 2023; 28(9):3755. https://doi.org/10.3390/molecules28093755
Chicago/Turabian StyleMaldonado, Yessenia E., and Jorge G. Figueroa. 2023. "Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans" Molecules 28, no. 9: 3755. https://doi.org/10.3390/molecules28093755
APA StyleMaldonado, Y. E., & Figueroa, J. G. (2023). Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans. Molecules, 28(9), 3755. https://doi.org/10.3390/molecules28093755