Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = ether-based electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6784 KB  
Article
Thermal Decomposition Mechanism of PF5 and POF3 with Carbonate-Based Electrolytes During Lithium-Ion Batteries’ Thermal Runaway
by Yao Tian, Xiaotiao Zhan, Yuxin Zhang, Zhen Qiao, Yuxiang Lu, Qing Xia, Jian Lu, Xia Zhang and Zhaoyang Chen
Fire 2025, 8(9), 370; https://doi.org/10.3390/fire8090370 - 19 Sep 2025
Viewed by 958
Abstract
Against the background of the accelerating global transition towards a low-carbon energy system, the lithium-ion battery (LIB) industry has witnessed a rapid development. Concurrently, fire accidents in LIB application scenarios have occurred frequently, with safety issues becoming increasingly prominent. Thermal runaway of LIBs [...] Read more.
Against the background of the accelerating global transition towards a low-carbon energy system, the lithium-ion battery (LIB) industry has witnessed a rapid development. Concurrently, fire accidents in LIB application scenarios have occurred frequently, with safety issues becoming increasingly prominent. Thermal runaway of LIBs is the direct cause of such fires. During the thermal runaway process of LIBs, lithium salts in the electrolyte undergo thermal decomposition reactions with carbonate-based electrolytes, releasing a large amount of heat and fire gases. Among them, the thermal decomposition reactions of LiPF6 with electrolytes are coupled and superimposed, exhibiting a significant synergistic effect. This paper employs quantum chemical calculation methods to investigate the thermal decomposition reaction mechanisms between PF5 and POF3, which generated from the thermal decomposition of LiPF6 and carbonate-based electrolytes (EC, DMC, and DEC) during the thermal runaway process of LIBs; and presents detailed chemical reaction mechanism models. The P atoms in PF5 or POF3 combine with the O atoms of the ether oxygen groups in carbonates, while the F atoms combine with the C atoms adjacent to the ether oxygen groups. This promotes the ring-opening or chain scission of carbonate molecules, reduces the energy required for the reaction, and accelerates the thermal decomposition reaction and the generation of fire gases. Modification of EC, DMC, and DEC through fluorination can effectively inhibit the catalytic effect of PF5 and POF3 and improve the oxidation resistance and thermal stability of the electrolytes. Full article
(This article belongs to the Special Issue Advances in New Energy Materials and Fire Safety)
Show Figures

Figure 1

12 pages, 4279 KB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 614
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

11 pages, 4096 KB  
Article
Non-Redox-Based Electrochemical Detection of Adrenaline: A Simple and Reliable Approach Using Glass Nanopipets
by Ralph J. Page, Gene Koifman, Noel Manring, Jessica L. Smeltz and Pavithra Pathirathna
Appl. Sci. 2025, 15(2), 869; https://doi.org/10.3390/app15020869 - 17 Jan 2025
Cited by 1 | Viewed by 1415
Abstract
The detection of adrenaline (Adr) is essential for monitoring physiological and clinical conditions, including stress response, cardiovascular health, and neurological disorders. We present a novel glass-nanopipet electrode sensor based on a non-redox ion-transfer approach using ion transfer across two immiscible electrolyte solutions (ITIES). [...] Read more.
The detection of adrenaline (Adr) is essential for monitoring physiological and clinical conditions, including stress response, cardiovascular health, and neurological disorders. We present a novel glass-nanopipet electrode sensor based on a non-redox ion-transfer approach using ion transfer across two immiscible electrolyte solutions (ITIES). Two ionophores, dibenzo-24-crown-8 ether (DB24C8) and dibenzo-18-crown-6 ether (DB18C6), were evaluated for their ability to facilitate Adr transfer across aqueous/dichloroethane interfaces. Among these, DB24C8 demonstrated superior stability, attributed to its larger ring size and stronger complexation with Adr. We systematically studied Adr transfer in various media, including KCl, DI water, Millipore DI water, and Tris buffer, and constructed calibration curves based on peak potential shifts that follow a power-law relationship with Adr concentration. The sensor achieved a detection limit of 5 pM in Tris buffer using DB24C8 and 50 pM with DB18C6, both significantly lower than the physiological concentration of Adr. Furthermore, the effects of pH and ionic strength on the peak shifts were analyzed, revealing that pH changes had a more substantial impact compared to ionic strength variations. Importantly, while DB24C8 and DB18C6 are known to facilitate the transfer of other cations, such as potassium and calcium, our findings confirm that these cation transfers do not interfere with Adr detection. This innovative ITIES-based sensing platform offers ease of fabrication, robustness, and excellent potential for real-time, in vivo applications. It represents a significant advancement in electrochemical detection technologies, paving the way for practical applications in clinical and physiological settings. Full article
Show Figures

Figure 1

10 pages, 2269 KB  
Article
Concentrated, Gradient Electrolyte Design for Superior Low-Temperature Li-Metal Batteries
by Jason S. Packard, Ethan A. Adams and Vilas G. Pol
Batteries 2024, 10(12), 448; https://doi.org/10.3390/batteries10120448 - 18 Dec 2024
Cited by 4 | Viewed by 1723
Abstract
Improving the low-temperature performance of lithium-ion batteries is critical for their widespread adoption in cold environments. In this study, we designed a novel LHCE featuring a solvent polarity gradient, designed to maximize both room- and low-temperature ion mobility. Extremely polar fluoroethylene carbonate (FEC) [...] Read more.
Improving the low-temperature performance of lithium-ion batteries is critical for their widespread adoption in cold environments. In this study, we designed a novel LHCE featuring a solvent polarity gradient, designed to maximize both room- and low-temperature ion mobility. Extremely polar fluoroethylene carbonate (FEC) and low-freezing-point, −135 °C, non-polar nonaflurobutyl methyl ether (NONA) were supplemented by two intermediate solvents with incremental step-downs in polarity. The intermediate solvents consist of methyl (2,2,2-triflooethyl) carbonate (FEMC) and either diethylene carbonate (DEC), ethyl methyl carbonate (EMC), or dibutyl carbonate (DBC). The four solvents were combined with 1 M lithium bis(fluorosulfonyl)amide (LiFSI) salt and were able to accommodate 37.5% diluent volume, resulting in ultra-low electrolyte freezing points below −120 °C. This contrasts with our previously investigated three-solvent LHCE, which only allowed for a 14% diluent volume and a −85 °C freezing point. Localized high salt concentrations were shown by less than 3% of FSI- anions being free in solution. The gradient LHCEs also showed room-temperature ionic conductivities above 10–3 S/cm and maintained high ion mobility below −40 °C. Lithium metal coin cells with LiFePO4 (LFP) cathodes featuring the gradient LHCEs, a reference three-solvent LHCE, and commercial (1 M LiPF6 in 1:1 EC:DEC) electrolyte were constructed. All gradient LHCEs outperformed both the three-solvent and commercial electrolytes at all temperatures, with the DEC-based gradient LHCE showing the best performance of 159.7 mAh/g at 25 °C and 109.2 mAh/g at −50 °C, corresponding to a 68% capacity retention. These findings highlight the potential of LHCE systems to improve battery performance in low-temperature environments and propose a new gradient design strategy for electrolytes to yield advantages of both polar and weakly polar solvents. Full article
Show Figures

Figure 1

12 pages, 4353 KB  
Article
A Flexible Yet Robust 3D-Hybrid Gel Solid-State Electrolyte Based on Metal–Organic Frameworks for Rechargeable Lithium Metal Batteries
by Ruliang Liu, Jiaqi Xue, Lijun Xie, Huirong Chen, Zhaoxia Deng and Wei Yin
Gels 2024, 10(12), 812; https://doi.org/10.3390/gels10120812 - 10 Dec 2024
Cited by 2 | Viewed by 1200
Abstract
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal–organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte [...] Read more.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal–organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF). Benefiting from the excellent mechanical properties, rich pore structure, and numerous unsaturated metal sites of GCSE-P/MCN-M, our GCSE-P/MCN-M exhibits excellent mechanical modulus (953 MPa), good ionic conductivity (9.3 × 10−4 S cm−1) and wide electrochemical window (4.8 V). In addition, Li/LiFePO4 batteries based on GCSE-P/MCN-M have also demonstrated excellent cycling performance (a high-capacity retention of 87% after 200 cycles at 0.5 C). This work provides a promising approach for developing gel solid-state electrolytes with high ion conduction and excellent safety performance. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

12 pages, 2457 KB  
Article
Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes
by Gabriela P. Gomide, Wagner A. Alves and Andrzej Eilmes
Molecules 2024, 29(22), 5377; https://doi.org/10.3390/molecules29225377 - 14 Nov 2024
Cited by 3 | Viewed by 1064
Abstract
A Raman and IR study of AlCl3-based ethereal solutions is here presented and aims at identifying the [AlCl2]+ cation, which has been so far unambiguously characterized by 27Al NMR spectrometry. To do that, experimental–theoretical vibrational spectroscopy was [...] Read more.
A Raman and IR study of AlCl3-based ethereal solutions is here presented and aims at identifying the [AlCl2]+ cation, which has been so far unambiguously characterized by 27Al NMR spectrometry. To do that, experimental–theoretical vibrational spectroscopy was so employed, and the data are interpreted successfully. As a known amount of water is added to the tetrahydrofuran (THF)-containing electrolyte, a Raman band at 271 cm−1 has its intensity increased along with the most intense band of [AlCl4], and such behavior is also seen for a band at 405 cm−1 in the IR spectra. New bands at around 420 and 400 cm−1 are observed in both Raman and IR spectra for the tetraglyme (G4)-based systems. The [AlCl2(THF)4]+ complex, in the cis and trans forms, is present in the cyclic ether, while the cis-[AlCl2(G4)]+ isomer is identified in the acyclic one. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

8 pages, 3228 KB  
Article
Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes
by Jose Fernando Florez Gomez, Fernando Camacho Domenech, Songyang Chang, Valerio Dorvilien, Nischal Oli, Brad R. Weiner, Gerardo Morell and Xianyong Wu
Batteries 2024, 10(9), 334; https://doi.org/10.3390/batteries10090334 - 21 Sep 2024
Viewed by 1877
Abstract
Tin dioxide (SnO2) is a low-cost and high-capacity anode material for lithium-ion batteries, but the fast capacity fading significantly limits its practical applications. Current research efforts have focused on preparing sophisticated composite structures or optimizing functional binders, both of which increase [...] Read more.
Tin dioxide (SnO2) is a low-cost and high-capacity anode material for lithium-ion batteries, but the fast capacity fading significantly limits its practical applications. Current research efforts have focused on preparing sophisticated composite structures or optimizing functional binders, both of which increase material manufacturing costs. Herein, we utilize pristine and commercially available SnO2 nanopowders and enhance their cycling performance by simply narrowing the potential range and optimizing electrolytes. Specifically, a narrower potential range (0–1 V) mitigates the capacity fading associated with the conversion reaction, whereas an ether-based electrolyte further suppresses the volume expansion related to the alloy reaction. Consequently, this SnO2 anode delivers a promising battery performance, with a high capacity of ~650 mAhg−1 and stable cycling for 100 cycles. Our work provides an alternative approach to developing high-capacity and long-cycling metal oxide anode materials. Full article
Show Figures

Figure 1

8 pages, 3563 KB  
Proceeding Paper
2,2,3,3,4,4,4-Heptafluorobutyl Acetate: Transesterification Reaction of 2,2,3,3,4,4,4-Heptafluoro-1-Butanol and Isopropyl Acetate—Side-Product Composition
by Andrei V. Polkovnichenko, Evgeniya I. Kovaleva, Nikita A. Selivanov, Tatiana D. Ksenofontova, Sergey Ya. Kvashnin and Egor V. Lupachev
Eng. Proc. 2024, 67(1), 40; https://doi.org/10.3390/engproc2024067040 - 12 Sep 2024
Cited by 3 | Viewed by 977
Abstract
As the object of investigation in the present study, reactive distillation based on the transesterification of isopropyl acetate (IPAc) and 2,2,3,3,4,4,4-heptafluorobutanol (HFBol) under acidic conditions is addressed. This process aims to obtain 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc), which is used in the production of non-aqueous [...] Read more.
As the object of investigation in the present study, reactive distillation based on the transesterification of isopropyl acetate (IPAc) and 2,2,3,3,4,4,4-heptafluorobutanol (HFBol) under acidic conditions is addressed. This process aims to obtain 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc), which is used in the production of non-aqueous electrolytes, ethyllithium sulphate, charge retention medium, ultraviolet light-absorbing oligomers, etc. Through a combination of NMR spectroscopy and GC-MS, it was determined that during the process, the following were primarily formed in the system: target HFBAc and the by-product, isopropanol. The following side-products were identified: di-isopropyl ether, acetic acid, water, and 2,2,3,3,4,4,4-heptafluorobutyl isopropyl ether (HFB-IPEth). No bis(1H,1H-heptafluorobutyl) ether or acetic anhydride were identified in the system. For HFBol, HFBAc and HFB-IPEth the 1H, 19F and 13C{19F}), 19F-19F COSY NMR, and mass spectra were reported in this study. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

17 pages, 2890 KB  
Article
Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up
by Antonino Rizzuti, Elena Dilonardo, Gennaro Cozzolino, Fabio Matera, Alessandra Carbone, Biagia Musio and Piero Mastrorilli
Membranes 2024, 14(8), 176; https://doi.org/10.3390/membranes14080176 - 14 Aug 2024
Viewed by 1953
Abstract
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of [...] Read more.
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm−2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%. Full article
(This article belongs to the Special Issue Membranes for Energy and the Environment)
Show Figures

Figure 1

34 pages, 5117 KB  
Article
Optimizing Renewable Energy Integration for Sustainable Fuel Production: A Techno-Economic Assessment of Dimethyl Ether Synthesis via a Hybrid Microgrid-Hydrogen System
by Mohammed M. Alotaibi and Abdulaziz A. Alturki
Fuels 2024, 5(2), 176-209; https://doi.org/10.3390/fuels5020011 - 16 May 2024
Cited by 6 | Viewed by 3658
Abstract
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery [...] Read more.
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery storage solutions, and electrolytic hydrogen production units, with a targeted reduction in greenhouse gas emissions and the enhancement of overall energy efficiency. A rigorous economic analysis was conducted utilizing the HYSYS V12 software platform and encompassing capital and operational expenditures alongside profit projections to evaluate the system’s economic viability. Furthermore, thermal optimization was achieved through heat integration strategies, employing a cascade analysis methodology and optimization via the General Algebraic Modeling System (GAMS), yielding an 83% decrease in annual utility expenditures. Comparative analysis revealed that the energy requirement of the optimized system was over 50% lower than that of traditional fossil fuel-based reforming processes. A comprehensive assessment of CO2 emissions demonstrated a significant reduction, with the integration of thermal management solutions facilitating a 99.24% decrease in emissions. The outcomes of this study provide critical insights into the engineering of sustainable, low-carbon energy systems, emphasizing the role of renewable energy technologies in advancing fuel science. Full article
Show Figures

Figure 1

24 pages, 15499 KB  
Review
Behavior of NO3-Based Electrolyte Additive in Lithium Metal Batteries
by Jeongmin Kim, Taeho Yoon and Oh B. Chae
Batteries 2024, 10(4), 135; https://doi.org/10.3390/batteries10040135 - 17 Apr 2024
Cited by 9 | Viewed by 6093
Abstract
While lithium metal is highly desired as a next-generation battery material due to its theoretically highest capacity and lowest electrode potential, its practical application has been impeded by stability issues such as dendrite formation and short cycle life. Ongoing research aims to enhance [...] Read more.
While lithium metal is highly desired as a next-generation battery material due to its theoretically highest capacity and lowest electrode potential, its practical application has been impeded by stability issues such as dendrite formation and short cycle life. Ongoing research aims to enhance the stability of lithium metal batteries for commercialization. Among the studies, research on N-based electrolyte additives, which can stabilize the solid electrolyte interface (SEI) layer and provide stability to the lithium metal surface, holds great promise. The NO3 anion in the N-based electrolyte additive causes the SEI layer on the lithium metal surface to contain compounds such as Li3N and Li2O, which not only facilitates the conduction of Li+ ions in the SEI layer but also increases its mechanical strength. However, due to challenges with the solubility of N-based electrolyte additives in carbonate-based electrolytes, extensive research has been conducted on electrolytes based on ethers. Nonetheless, the low oxidative stability of ether-based electrolytes hinders their practical application. Hence, a strategy is needed to incorporate N-based electrolyte additives into carbonate-based electrolytes. In this review, we address the challenges of lithium metal batteries and propose practical approaches for the application and development of N-based electrolyte additives. Full article
Show Figures

Graphical abstract

21 pages, 2151 KB  
Article
Cycloaliphatic Quaternary Ammonium Functionalized Poly(oxindole biphenyl) Based Anion-Exchange Membranes for Water Electrolysis: Stability and Performance
by Sara Gjoshi, Paraskevi Loukopoulou, Michaela Plevova, Jaromir Hnat, Karel Bouzek and Valadoula Deimede
Polymers 2024, 16(1), 99; https://doi.org/10.3390/polym16010099 - 28 Dec 2023
Cited by 8 | Viewed by 2870
Abstract
Mechanically robust anion-exchange membranes (AEMs) with high conductivity and long-term alkali resistance are needed for water electrolysis application. In this work, aryl-ether free polyaromatics containing isatin moieties were prepared via super acid-catalyzed copolymerization, followed by functionalization with alkaline stable cyclic quaternary ammonium (QA) [...] Read more.
Mechanically robust anion-exchange membranes (AEMs) with high conductivity and long-term alkali resistance are needed for water electrolysis application. In this work, aryl-ether free polyaromatics containing isatin moieties were prepared via super acid-catalyzed copolymerization, followed by functionalization with alkaline stable cyclic quaternary ammonium (QA) cationic groups, to afford high performance AEMs for application in water electrolysis. The incorporation of side functional cationic groups (pyrrolidinium and piperidinium) onto a polymer backbone via a flexible alkyl spacer aimed at conductivity and alkaline stability improvement. The effect of cation structure on the properties of prepared AEMs was thoroughly studied. Pyrrolidinium- and piperidinium-based AEMs showed similar electrolyte uptakes and no obvious phase separation, as revealed by SAXS and further supported by AFM and TEM data. In addition, these AEMs displayed high conductivity values (81. 5 and 120 mS cm−1 for pyrrolidinium- and piperidinium-based AEM, respectively, at 80 °C) and excellent alkaline stability after 1 month aging in 2M KOH at 80 °C. Especially, a pyrrolidinium-based AEM membrane preserved 87% of its initial conductivity value, while at the same time retaining its flexibility and mechanical robustness after storage in alkaline media (2M KOH) for 1 month at 80 °C. Based on 1H NMR data, the conductivity loss observed after the aging test is mainly related to the piperidinium degradation that took place, probably via ring-opening Hofmann elimination, alkyl spacer scission and nucleophilic substitution reactions as well. The synthesized AEMs were also tested in an alkaline water electrolysis cell. Piperidinium-based AEM showed superior performance compared to its pyrrolidinium analogue, owing to its higher conductivity as revealed by EIS data, further confirming the ex situ conductivity measurements. Full article
Show Figures

Figure 1

14 pages, 5680 KB  
Article
Self-Healing Sulfonated Poly(ether ether ketone)-Based Polymer Electrolyte Membrane for Direct Methanol Fuel Cells: Effect of Solvent Content
by Mae Hwa Tai, Hui San Thiam, Shiau Foon Tee, Yun Seng Lim, Lip Huat Saw and Soon Onn Lai
Polymers 2023, 15(24), 4641; https://doi.org/10.3390/polym15244641 - 8 Dec 2023
Cited by 7 | Viewed by 2390
Abstract
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed [...] Read more.
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications)
Show Figures

Figure 1

13 pages, 3454 KB  
Article
An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries
by Zeliang Guan, Ling Bai and Binyang Du
Materials 2023, 16(23), 7504; https://doi.org/10.3390/ma16237504 - 4 Dec 2023
Cited by 7 | Viewed by 2498
Abstract
With the development of mobile electronic devices, there are more and more requirements for high-energy storage equipment. Traditional lithium-ion batteries, like lithium–iron phosphate batteries, are limited by their theoretical specific capacities and might not meet the requirements for high energy density in the [...] Read more.
With the development of mobile electronic devices, there are more and more requirements for high-energy storage equipment. Traditional lithium-ion batteries, like lithium–iron phosphate batteries, are limited by their theoretical specific capacities and might not meet the requirements for high energy density in the future. Lithium–sulfur batteries (LSBs) might be ideal next-generation energy storage devices because they have nearly 10 times the theoretical specific capacities of lithium-ion batteries. However, the severe capacity decay of LSBs limits their application, especially at high currents. In this study, an ionic liquid (IL) electrolyte additive, TDA+TFSI, was reported. When 5% of the TDA+TFSI additive was added to a traditional ether-based organic electrolyte, the cycling performance of the LSBs was significantly improved compared with that of the LSBs with the pure traditional organic electrolyte. At a rate of 0.5 C, the discharge specific capacity in the first cycle of the LSBs with the 5% TDA+TFSI electrolyte additive was 1167 mAh g−1; the residual specific capacities after 100 cycles and 300 cycles were 579 mAh g−1 and 523 mAh g−1, respectively; and the average capacity decay rate per cycle was only 0.18% in 300 cycles. Moreover, the electrolyte with the TDA+TFSI additive had more obvious advantages than the pure organic ether-based electrolyte at high charge and discharge currents of 1.0 C. The residual discharge specific capacities were 428 mAh g−1 after 100 cycles and 399 mAh g−1 after 250 cycles, which were 13% higher than those of the LSBs without the TDA+TFSI additive. At the same time, the Coulombic efficiencies of the LSBs using the TDA+TFSI electrolyte additive were more stable than those of the LSBs using the traditional organic ether-based electrolyte. The results showed that the LSBs with the TDA+TFSI electrolyte additive formed a denser and more uniform solid electrolyte interface (SEI) film during cycling, which improved the stability of the electrochemical reaction. Full article
Show Figures

Figure 1

12 pages, 2901 KB  
Article
Construction of a Bis(benzene sulfonyl)imide-Based Single-ion Polymer Artificial Layer for a Steady Lithium Metal Anode
by Yujie Wang, Mengmeng Zhao, Yazhou Chen, Haifeng Bao and Chen Li
Polymers 2023, 15(16), 3490; https://doi.org/10.3390/polym15163490 - 21 Aug 2023
Cited by 4 | Viewed by 1818
Abstract
Dendrite growth and parasitic reactions with liquid electrolyte are the two key factors that restrict the practical application of the lithium metal anode. Herein, a bis(benzene sulfonyl)imide based single-ion polymer artificial layer for a lithium metal anode is successfully constructed, which is prepared [...] Read more.
Dendrite growth and parasitic reactions with liquid electrolyte are the two key factors that restrict the practical application of the lithium metal anode. Herein, a bis(benzene sulfonyl)imide based single-ion polymer artificial layer for a lithium metal anode is successfully constructed, which is prepared via blending the as-prepared copolymer of lithiated 4, 4′-dicarboxyl bis(benzene sulfonyl)imide and 4,4′-diaminodiphenyl ether on the surface of lithium foil. This single-ion polymer artificial layer enables compact structure with unique continuous aggregated Li+ clusters, thus reducing the direct contact between lithium metal and electrolyte simultaneously, ensuring Li+ transport is fast and homogeneous. Based on which, the coulombic efficiency of the Li|Cu half-cell is effectively improved, and the cycle stability of the Li|Li symmetric cell can be prolonged from 160 h to 240 h. Surficial morphology and elemental valence analysis confirm that the bis(benzene sulfonyl)imide based single-ion polymer artificial layer effectively facilitates the Li+ uniform deposition and suppresses parasitic reactions between lithium metal anode and liquid electrolyte in the LFP|Li full-cell. This strategy provides a new perspective to achieve a steady lithium metal anode, which can be a promising candidate in practical applications. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications)
Show Figures

Figure 1

Back to TopTop