Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microclimate and Particulate Matter Concentration
2.2. Volatile Compounds Contamination
2.3. Determination of Airborne Microorganism Number
2.4. Determination of Surface Microbial Contamination
2.5. Diversity of Microorganisms in the Fitness Center Environment
2.6. Assessment of SARS-CoV-2 Virus Presence in the Fitness Center Environment
2.7. Directions for Minimizing Microbiological and Chemical Threats in the Sports Facilities
3. Materials and Methods
3.1. Tested Fitness Center and Sampling Strategy
3.2. Microclimate, Particulate Matter Concentration Carbon Dioxide, and Formaldehyde Analysis
3.3. Volatile Compounds Analysis
3.4. Determination of Airborne Microorganism Number
3.5. Determination of Surface Microbial Contamination
3.6. Detection of SARS-CoV-2
3.7. Determination of Biodiversity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Małecka-Adamowicz, M.; Kubera, Ł.; Jankowiak, E.; Dembowska, E. Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia 2019, 35, 731–742. [Google Scholar] [CrossRef]
- Ramos, C.A.; Wolterbeek, H.T.; Almeida, S.M. Exposure to indoor air pollutants during physical activity in fitness centers. Build. Environ. 2014, 82, 349–360. [Google Scholar] [CrossRef]
- WHO Physical Activity Fact Sheet. Available online: https://www.who.int/publications/i/item/WHO-HEP-HPR-RUN-2021.2 (accessed on 22 March 2022).
- Deloitte Sports Retail Study 2020. Findings from a Central European Consumer Survey. Available online: https://www2.deloitte.com/pl/pl/pages/consumer-business/articles/sports-retail-study-2020.html (accessed on 29 March 2022).
- Boonrattanakij, N.; Yomchinda, S.; Lin, F.-J.; Bellotindos, L.M.; Lu, M.-C. Investigation and disinfection of bacteria and fungi in sports fitness center. Environ. Sci. Pollut. Res. 2021, 28, 52576–52586. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Szulc, J.; Cichowicz, R.; Gutarowski, M.; Okrasa, M.; Gutarowska, B. Assessment of Dust, Chemical, Microbiological Pollutions and Microclimatic Parameters of Indoor Air in Sports Facilities. Int. J. Environ. Res. Public Health 2023, 20, 1551. [Google Scholar] [CrossRef]
- Bralewska, K.; Rogula-Kozłowska, W.; Bralewski, A. Indoor air quality in sports center: Assessment of gaseous pollutants. Build. Environ. 2022, 208, 108589. [Google Scholar] [CrossRef]
- Finewax, Z.; Pagonis, D.; Claflin, M.S.; Handschy, A.V.; Brown, W.L.; Jenks, O.; Nault, B.A.; Day, D.A.; Lerner, B.M.; Jimenez, J.L.; et al. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. Indoor Air 2021, 31, 1323–1339. [Google Scholar] [CrossRef]
- Mbareche, H.; Morawska, L.; Duchaine, C. On the interpretation of bioaerosol exposure measurements and impacts on health. J. Air Waste Manag. Assoc. 2019, 69, 789–804. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Maus, R.; Goppelsröder, A.; Umhauer, H. Survival of bacterial and mold spores in air filter media. Atmos. Environ. 2001, 35, 105–113. [Google Scholar] [CrossRef]
- Kalogerakis, N.; Paschali, D.; Lekaditis, V.; Pantidou, A.; Eleftheriadis, K.; Lazaridis, M. Indoor air quality—Bioaerosol measurements in domestic and office premises. J. Aerosol Sci. 2005, 36, 751–761. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [PubMed]
- Haghverdian, B.A.; Patel, N.; Wang, L.; Cotter, J.A. The sports ball as a fomite for transmission of Staphylococcus aureus. J. Environ. Health 2018, 80, 8–13. [Google Scholar]
- CDC Centers for Disease Control and Prevention Methicillin-Resistant Staphylococcus Aureus (MRSA). Available online: https://www.cdc.gov/mrsa/index.html (accessed on 29 March 2022).
- Bragoszewska, E.; Biedroń, I.; Mainka, A. Microbiological air quality in a highschool gym located in an urban area of Southern Poland-preliminary research. Atmosphere 2020, 11, 797. [Google Scholar] [CrossRef]
- Kic, P.; Ruzek, L.; Popelářová, E. Concentration of air-borne microorganisms in sport facilities. Agron. Res. 2018, 16, 1720–1727. [Google Scholar] [CrossRef]
- Fadare, O.S.; Durojaye, O.B. Antibiotic Susceptibility Profile of Bacteria Isolated from Fitness Machines in Selected Fitness Centers at Akure and Elizade University in Ondo State Nigeria. Microbiol. Res. J. Int. 2019, 26, 1–9. [Google Scholar] [CrossRef]
- Mukherjee, N.; Dowd, S.; Wise, A.; Kedia, S.; Vohra, V.; Banerjee, P. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area. Int. J. Environ. Res. Public Health 2014, 11, 12544–12561. [Google Scholar] [CrossRef]
- Huang, C.; Que, J.; Liu, Q.; Zhang, Y. On the gym air temperature supporting exercise and comfort. Build. Environ. 2021, 206, 108313. [Google Scholar] [CrossRef]
- International Fitness Association Gym Temperature and Noise Standards. Available online: https://www.ifafitness.com/health/temperature.htm (accessed on 29 March 2022).
- Zhai, Y.; Elsworth, C.; Arens, E.; Zhang, H.; Zhang, Y.; Zhao, L. Using air movement for comfort during moderate exercise. Build. Environ. 2015, 94, 344–352. [Google Scholar] [CrossRef]
- Bralewska; Rogula-Kozłowska; Bralewski Size-Segregated Particulate Matter in a Selected Sports Facility in Poland. Sustainability 2019, 11, 6911. [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L152, 1–44.
- Andrade, A.; Dominski, F.H.; Coimbra, D.R. Scientific production on indoor air quality of environments used for physical exercise and sports practice: Bibliometric analysis. J. Environ. Manag. 2017, 196, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Rundell, K.W.; Caviston, R. Ultrafine and Fine Particulate Matter Inhalation Decreases Exercise Performance in Healthy Subjects. J. Strength Cond. Res. 2008, 22, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Cutrufello, P.T.; Smoliga, J.M.; Rundell, K.W. Small Things Make a Big Difference. Sport. Med. 2012, 42, 1041–1058. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine Particle Deposition in Humans During Rest and Exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Calvo, A.I.; Alves, C.; Alonso-Blanco, E.; Coz, E.; Marques, L.; Nunes, T.; Fernández-Guisuraga, J.M.; Fraile, R. Indoor aerosol size distributions in a gymnasium. Sci. Total Environ. 2015, 524–525, 178–186. [Google Scholar] [CrossRef]
- Phalen, R.F. Inhalation Studies: Foundations and Techniques, 2nd ed.; Informa Healthcare: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. WHO Guidelines for Air Quality: Selected Pollutants; WHO: Copenhagen, Denmark, 2010; ISBN 9789289002134. [Google Scholar]
- Environmental Protection Agency National Ambient Air Quality Standards (NAAQS). Available online: https://www.epa.gov/sites/default/files/2015-02/documents/criteria.pdf (accessed on 29 March 2022).
- Issitt, T.; Wiggins, L.; Veysey, M.; Sweeney, S.T.; Brackenbury, W.J.; Redeker, K. Volatile compounds in human breath: Critical review and meta-analysis. J. Breath Res. 2022, 16, 024001. [Google Scholar] [CrossRef] [PubMed]
- Jahn, L.G.; Tang, M.; Blomdahl, D.; Bhattacharyya, N.; Abue, P.; Novoselac, A.; Ruiz, L.H.; Misztal, P.K. Volatile organic compound (VOC) emissions from the usage of benzalkonium chloride and other disinfectants based on quaternary ammonium compounds. Environ. Sci. Atmos. 2023, 3, 363–373. [Google Scholar] [CrossRef]
- Singal, M.; Vitale, D.; Smith, L. Fragranced Products and VOCs. Environ. Health Perspect. 2011, 119, 17–38. [Google Scholar] [CrossRef]
- Sherzad, M.; Jung, C. Evaluating the emission of VOCs and HCHO from furniture based on the surface finish methods and retention periods. Front. Built Environ. 2022, 8. [Google Scholar] [CrossRef]
- Phenol and Phenolic Compound. Available online: https://cpcb.nic.in/uploads/News_Letter_Phenols_Phenolic_Compounds_2017.pdf (accessed on 29 March 2022).
- European Chemicals Agency Phenol. Available online: https://echa.europa.eu/pl/substance-information/-/substanceinfo/100.003.303 (accessed on 29 March 2022).
- Michałowicz, J.; Duda, W. Phenols—Sources and toxicity. Polish J. Environ. Stud. 2007, 16, 347–362. [Google Scholar]
- Pytel, K.; Marcinkowska, R.; Zabiegała, B. Investigation on air quality of specific indoor environments—Spa salons located in Gdynia, Poland. Environ. Sci. Pollut. Res. 2021, 28, 59214–59232. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.D.; Martins, T.G.; Cassella, R.J. Passive sampling of toluene (and benzene) in indoor air using a semipermeable membrane device. Ecotoxicol. Environ. Saf. 2021, 208, 111707. [Google Scholar] [CrossRef]
- Wakayama, T.; Ito, Y.; Sakai, K.; Miyake, M.; Shibata, E.; Ohno, H.; Kamijima, M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J. Occup. Health 2019, 61, 19–35. [Google Scholar] [CrossRef]
- European Commission—Employment Social Affairs & Inclusion Recommendation from the Scientific Committee on Occupational Exposure Limits for 2-Ethylhexanol. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiX7PGYnLP-AhXis4sKHREOAH8QFnoECA0QAQ&url=https%3A%2F%2Fec.europa.eu%2Fsocial%2FBlobServlet%3FdocId%3D6660%26langId%3Den&usg=AOvVaw0sUX_qCunAQmBjIZhWuHFe (accessed on 29 March 2022).
- Skowroń, J.; Górny, R.L. Harmful biological agents. In The Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment: Limit Values 2020; Pośniak, M., Skowroń, J., Eds.; CIOP-PIB: Warsaw, Poland, 2020. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Adams, R.I.; Bhangar, S.; Pasut, W.; Arens, E.A.; Taylor, J.W.; Lindow, S.E.; Nazaroff, W.W.; Bruns, T.D. Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE 2015, 10, e0128022. [Google Scholar] [CrossRef] [PubMed]
- Frankel, M.; Bekö, G.; Timm, M.; Gustavsen, S.; Hansen, E.W.; Madsen, A.M. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate. Appl. Environ. Microbiol. 2012, 78, 8289–8297. [Google Scholar] [CrossRef]
- Skóra, J.; Gutarowska, B.; Pielech-Przybylska, K.; Stępień, Ł.; Pietrzak, K.; Piotrowska, M.; Pietrowski, P. Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia 2015, 31, 389–401. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Directive (EU) 2019/1833 of 24 October 2019 Amending Annexes I, III, V and VI to Directive 2000/54/EC of the European Parliament and of the Council as Regards Purely Technical Adjustments; European Commission: Brussels, Belgium, 2019; pp. 54–79. [Google Scholar]
- Żyrek, D. Ocena skażenia mikrobiologicznego powierzchni sprzętu do ćwiczeń w siłowniach. Forum Zakażeń 2019, 10, 219–225. [Google Scholar] [CrossRef]
- Turkstani, M.A.; Sultan, R.M.S.; Al-Hindi, R.R.; Ahmed, M.M.M. Molecular identification of microbial contaminations in the fitness center in Makkah region. Biosci. J. 2021, 37, e37020. [Google Scholar] [CrossRef]
- Boa, T.T.; Rahube, T.O.; Fremaux, B.; Levett, P.N.; Yost, C.K. Prevalence of methicillin-resistant staphylococci species isolated from computer keyboards located in secondary and postsecondary schools. J. Environ. Health 2013, 75, 50–58. [Google Scholar] [PubMed]
- Lasek, R.; Szuplewska, M.; Mitura, M.; Decewicz, P.; Chmielowska, C.; Pawłot, A.; Sentkowska, D.; Czarnecki, J.; Bartosik, D. Genome Structure of the Opportunistic Pathogen Paracoccus yeei (Alphaproteobacteria) and Identification of Putative Virulence Factors. Front. Microbiol. 2018, 9, 2553. [Google Scholar] [CrossRef]
- Daneshvar, M.I.; Hollis, D.G.; Weyant, R.S.; Steigerwalt, A.G.; Whitney, A.M.; Douglas, M.P.; Macgregor, J.P.; Jordan, J.G.; Mayer, L.W.; Rassouli, S.M.; et al. Paracoccus yeeii sp. nov. (Formerly CDC Group EO-2), a Novel Bacterial Species Associated with Human Infection. J. Clin. Microbiol. 2003, 41, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-R.; Jiang, Y.; Wang, Q.; Tang, S.-K.; He, W.-X.; Xue, Q.-H.; Xu, L.-H.; Jiang, C.-L. Rubellimicrobium roseum sp. nov., a Gram-negative bacterium isolated from the forest soil sample. Antonie Van Leeuwenhoek 2010, 98, 389–394. [Google Scholar] [CrossRef]
- Leys, N.M.E.J.; Ryngaert, A.; Bastiaens, L.; Verstraete, W.; Top, E.M.; Springael, D. Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol. 2004, 70, 1944–1955. [Google Scholar] [CrossRef]
- El Beaino, M.; Fares, J.; Malek, A.; Hachem, R. Sphingomonas paucimobilis-related bone and soft-tissue infections: A systematic review. Int. J. Infect. Dis. 2018, 77, 68–73. [Google Scholar] [CrossRef]
- Moura, J.B.; Delforno, T.P.; do Prado, P.F.; Duarte, I.C. Extremophilic taxa predominate in a microbial community of photovoltaic panels in a tropical region. FEMS Microbiol. Lett. 2021, 368, fnab105. [Google Scholar] [CrossRef] [PubMed]
- Premalatha, N.; Gopal, N.O.; Jose, P.A.; Anandham, R.; Kwon, S.W. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front. Microbiol. 2015, 6, 1046. [Google Scholar] [CrossRef]
- Viegas, C.; Alves, C.; Carolino, E.; Rosado, L.; Silva Santos, C. Prevalence of Fungi in Indoor Air with Reference to Gymnasiums with Swimming Pools. Indoor Built Environ. 2010, 19, 555–561. [Google Scholar] [CrossRef]
- Zhu, L.; Li, T.; Xu, X.; Shi, X.; Wang, B. Succession of Fungal Communities at Different Developmental Stages of Cabernet Sauvignon Grapes from an Organic Vineyard in Xinjiang. Front. Microbiol. 2021, 12, 718261. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Tanabe, Y.; Vincent, W.F.; Uchida, M. Vishniacozyma ellesmerensis sp. nov., a psychrophilic yeast isolated from a retreating glacier in the Canadian High Arctic. Int. J. Syst. Evol. Microbiol. 2019, 69, 696–700. [Google Scholar] [CrossRef]
- Riebesehl, J.; Yurchenko, E.; Nakasone, K.K.; Langer, E. Phylogenetic and morphological studies in Xylodon (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys 2019, 47, 97–137. [Google Scholar] [CrossRef]
- Markson, A.A.; Akwaji, P.I.; Umana, E.J. Mushroom Biodiversity of Cross River National Park (Oban Hills Division), Nigeria. World Sci. News 2017, 65, 59–80. [Google Scholar]
- Aronsen, A.; Læssøe, T. Fungi of Northern Europe, Volume 5: The Genus Mycena s.l.; Svampetryk: Hornbæk, Denmark, 2016. [Google Scholar]
- de Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2001. [Google Scholar]
- Damji, R.; Mukherji, A.; Mussani, F. Sporobolomyces salmonicolor: A case report of a rare cutaneous fungal infection. SAGE Open Med. Case Rep. 2019, 7, 2050313X1984415. [Google Scholar] [CrossRef] [PubMed]
- Ilinsky, Y.; Lapshina, V.; Verzhutsky, D.; Fedorova, Y.; Medvedev, S. Genetic Evidence of an Isolation Barrier between Flea Subspecies of Citellophilus tesquorum (Wagner, 1898) (Siphonaptera: Ceratophyllidae). Insects 2022, 13, 126. [Google Scholar] [CrossRef]
- Rybitwa, D.; Wawrzyk, A.; Rahnama, M. Application of a Medical Diode Laser (810 nm) for Disinfecting Small Microbiologically Contaminated Spots on Degraded Collagenous Materials for Improved Biosafety in Objects of Exceptional Historical Value From the Auschwitz-Birkenau State Museum and Prot. Front. Microbiol. 2020, 11, 596852. [Google Scholar] [CrossRef] [PubMed]
- Rybitwa, D.; Wawrzyk, A.; Wilczyński, S.; Łobacz, M. Irradiation with medical diode laser as a new method of spot-elimination of microorganisms to preserve historical cellulosic objects and human health. Int. Biodeterior. Biodegrad. 2020, 154, 105055. [Google Scholar] [CrossRef]
- Gutarowska, B.; Szulc, J.; Nowak, A.; Otlewska, A.; Okrasa, M. Dust at various workplaces-microbiological and toxicological threats. Int. J. Environ. Res. Public Health 2018, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Edet, U.; Antai, S.; Brooks, A.; Asitok, A.; Enya, O.; Japhet, F. An Overview of Cultural, Molecular and Metagenomic Techniques in Description of Microbial Diversity. J. Adv. Microbiol. 2017, 7, 1–19. [Google Scholar] [CrossRef]
- Polish Ministry of Health Coronavirus Infections Report (SARS-CoV-2). Available online: https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2 (accessed on 26 April 2022).
- Chu, D.K.W.; Gu, H.; Chang, L.D.J.; Cheuk, S.S.Y.; Gurung, S.; Krishnan, P.; Ng, D.Y.M.; Liu, G.Y.Z.; Wan, C.K.C.; Tsang, D.N.C.; et al. SARS-CoV-2 Superspread in Fitness Center, Hong Kong, China, March 2021. Emerg. Infect. Dis. 2021, 27, 2230–2232. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shankar, S.N.; Witanachchi, C.T.; Lednicky, J.A.; Loeb, J.C.; Alam, M.M.; Fan, Z.H.; Mohamed, K.; Eiguren-Fernandez, A.; Wu, C.-Y. Environmental Surveillance and Transmission Risk Assessments for SARS-CoV-2 in a Fitness Center. Aerosol Air Qual. Res. 2021, 21, 210106. [Google Scholar] [CrossRef] [PubMed]
- Lendacki, F.R.; Teran, R.A.; Gretsch, S.; Fricchione, M.J.; Kerins, J.L. COVID-19 Outbreak Among Attendees of an Exercise Facility—Chicago, Illinois, August–September 2020. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Helsingen, L.M.; Løberg, M.; Refsum, E.; Gjøstein, D.K.; Wieszczy, P.; Olsvik, Ø.; Juul, F.E.; Barua, I.; Jodal, H.C.; Herfindal, M.; et al. COVID-19 transmission in fitness centers in Norway—A randomized trial. BMC Public Health 2021, 21, 2103. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to air contaminants in sports environments. Indoor Air 2020, 30, 1109–1129. [Google Scholar] [CrossRef] [PubMed]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; De Noni, I. Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends Food Sci. Technol. 2019, 90, 147–156. [Google Scholar] [CrossRef]
- Vasilyak, L.M. Physical Methods of Disinfection (A Review). Plasma Phys. Rep. 2021, 47, 318–327. [Google Scholar] [CrossRef]
- Song, X.; Vossebein, L.; Zille, A. Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: A review. Antimicrob. Resist. Infect. Control 2019, 8, 139. [Google Scholar] [CrossRef]
- Viana Martins, C.P.; Xavier, C.S.F.; Cobrado, L. Disinfection methods against SARS-CoV-2: A systematic review. J. Hosp. Infect. 2022, 119, 84–117. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 25 March 2023).
- CEN EN 13098:2019; Workplace Exposure—Measurement of Airborne Microorganisms and Microbial Compounds—General Requirements. CEN: Brussels, Belgium, 2019.
- Schmidt, P.-A.; Bálint, M.; Greshake, B.; Bandow, C.; Römbke, J.; Schmitt, I. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 2013, 65, 128–132. [Google Scholar] [CrossRef]
- Vilgalys, R.; Gonzalez, D. Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr. Genet. 1990, 18, 277–280. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, H.R.; Schigel, D.; Tedersoo, L.; Larsson, K.-H.; May, T.W.; Taylor, A.F.S.; Jeppesen, T.S.; Frøslev, T.G.; Lindahl, B.D.; et al. The Taxon Hypothesis Paradigm—On the Unambiguous Detection and Communication of Taxa. Microorganisms 2020, 8, 1910. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Duxbury Press: London, UK, 1995; ISBN 0534231004. [Google Scholar]
Room No. | Description | Parameter | |||||
---|---|---|---|---|---|---|---|
Temperature, °C | Relative Humidity, % | Air Velocity m/s | Total PM Concentration, mg/m3 | CO2 Concentration, ppm | HCN Concentration, mg/m3 | ||
1 | Reception | M: 25.63 a | M: 58.52 ab | M: 0.092 bdef | M: 0.058 a | M: 800 ab | M: 0.005 a |
SD: 3.57 | SD: 10.23 | SD: 0.153 | SD: 0.009 | SD: 94 | SD: 0.006 | ||
2 | The gym | M: 25.28 ab | M: 53.73 b | M: 0.072 acf | M: 0.057 a | M: 2198 c | M: 0.049 c |
SD: 0.95 | SD: 6.99 | SD: 0.057 | SD: 0.010 | SD: 111 | SD: 0.002 | ||
3 | Fitness room on the first floor | M: 24.82 b | M: 57.62 ab | M: 0.067 aceg | M: 0.057 a | M: 1773 ad | M: 0.042 ab |
SD: 0.81 | SD: 8.16 | SD: 0.053 | SD: 0.009 | SD: 51 | SD: 0.001 | ||
4 | Fitness room on the second floor | M: 25.49 ab | M: 62.31 a | M: 0.025 bdg | M: 0.059 a | M: 2017 cd | M: 0.047 bc |
SD: 0.75 | SD: 6.07 | SD: 0.024 | SD: 0.010 | SD: 32 | SD: 0.001 | ||
5 | Women’s cloakroom | M: 26.18 a | M: 60.82 ab | M: 0.019 b | M: 0.057 a | M: 1925 bcd | M: 0.046 abc |
SD: 0.67 | SD: 5.84 | SD: 0.008 | SD: 0.010 | SD: 67 | SD: 0.001 | ||
6 | Atmospheric air (external background) | M: 26.40 *ab | M: 70.00 *a | M: 5.125 *a | M: 0.024 **b | M: 593 a | M: 0.067 c |
SD: 2.30 | SD: 5.24 | SD: 0.978 | SD: 0.004 | SD: 44 | SD: 0.027 |
Sample No. | Description | RNA Concentration, μg/mL | SARS-CoV-2 RNA |
---|---|---|---|
1 | Treadmill touch panel | 66 | Present |
2 | Panel and grips of elliptical cross trainer | 63 | Absent |
3 | Multi-gym grips panel | 63 | Absent |
Room No. | Description | Area, m2 | Surface Sampling Sites | Number of Users | Number of Ceiling Fans/Opening Windows | Airconditioning | Number of Samples |
---|---|---|---|---|---|---|---|
1 | Reception | 18 | Table for the waiting, receptionist’s desk, armrest on the couch, chair | 2–12 | 1/1 | No | N = 60 n = 4 |
2 | The gym | 220 | Treadmill touch panel, the touch panel of the cross trainer, mirror, thick mat on the floor | 1–9 | 3/6 | Yes (2 units) | N = 60 n = 4 |
3 | Fitness room on the first floor | 100 | Thin exercise mat, MMA bag, small “ovoball”, 1 kg dumbbell holder | 1–11 | 2/5 | Yes (1 unit) | N = 60 n = 4 |
4 | Fitness room on the second floor | 85 | Large exercise ball, exercise bike saddle, trampoline handle, 8 kg dumbbell holder | 1–12 | 2/6 | Yes (1 unit) | N = 60 n = 4 |
5 | Women’s cloakroom | 26 | Mirror, the bottom of the locker, the external part of the locker, shoe cabinet | 1–5 | 1/0 | No | N = 60 n = 4 |
6 | Atmospheric air (external background) | - | Parking lot located 10 m from the entrance to the fitness club building | - | - | - | N = 60 n = 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, J.; Okrasa, M.; Ryngajłło, M.; Pielech-Przybylska, K.; Gutarowska, B. Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers. Molecules 2023, 28, 3560. https://doi.org/10.3390/molecules28083560
Szulc J, Okrasa M, Ryngajłło M, Pielech-Przybylska K, Gutarowska B. Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers. Molecules. 2023; 28(8):3560. https://doi.org/10.3390/molecules28083560
Chicago/Turabian StyleSzulc, Justyna, Małgorzata Okrasa, Małgorzata Ryngajłło, Katarzyna Pielech-Przybylska, and Beata Gutarowska. 2023. "Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers" Molecules 28, no. 8: 3560. https://doi.org/10.3390/molecules28083560