Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.)
Abstract
:1. Introduction
2. Results
2.1. Content of Some Groups of Phenolic Compounds in Different Plant Parts of Meadowsweet
2.2. Content of Individual Phenolic Compounds in Different Plant Parts of Meadowsweet
2.3. Antioxidant Activity of Extracts from Different Plant Parts of Meadowsweet
2.4. Antibacterial Activity of Extracts from Different Plant Parts of Meadowsweet
2.5. Correlation and Cluster Analysis Based on the Content of Phenolic Compounds and Antioxidant Activity of Their Extracts
3. Discussion
3.1. Meadowsweet as a Natural Source of Phenolic Compounds
3.2. Vertical Distribution of Phenolic Compounds in Meadowsweet Plant
4. Materials and Methods
4.1. Plant Samples
4.2. Preparation of Extracts
4.3. Determination of Phenolic Compounds
4.4. Determination of Antioxidant Activity
4.5. Determination of Antibacterial Activity
4.6. Statistical Analysisd
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Bespalov, V.G.; Alexandrov, V.A.; Semenov, A.L.; Vysochina, G.I.; Kostikova, V.A.; Baranenko, D.A. The inhibitory effect of Filipendula ulmaria (L.) Maxim. on colorectal carcinogenesis induced in rats by methylnitrosourea. J. Ethnopharmacol. 2018, 227, 1–7. [Google Scholar] [CrossRef]
- Stawarczyk, K.; Chrupek, A.; Sękara, A.; Gostkowski, M.; Karbarz, M. Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats. Molecules 2021, 26, 5172. [Google Scholar] [CrossRef]
- Amosova, E.N.; Shilova, I.V.; Zueva, E.P.; Rybalkina, O.Y. Influence of Filipendula ulmaria (L.) Maxim. Extract on Lewis Lung Carcinoma Development and Cytostatic Therapy Effectiveness in Mice. Pharm. Chem. J. 2019, 53, 458–461. [Google Scholar] [CrossRef]
- Bijttebier, S.; Van der Auwera, A.; Voorspoels, S.; Noten, B.; Hermans, N.; Pieters, L.; Apers, S. A first step in the quest for the active constituents in Filipendula ulmaria (meadowsweet): Comprehensive phytochemical identification by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. Planta Med. 2016, 82, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Boroja, T.; Mihailović, V.; Nikles, S.; Pan, S.-P.; Rosić, G.; Selaković, D.; Joksimović, J.; Mitrović, S.; Bauer, R. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent. J. Ethnopharmacol. 2016, 193, 627–636. [Google Scholar] [CrossRef]
- Papp, I.; Simándi, B.; Blazics, B.; Alberti, Á.; Héthelyi, É.; Szőke, É.; Kéry, Á. Monitoring volatile and non-volatile salicylates in Filipendula ulmaria by different chromatographic techniques. Chromatographia 2008, 68, 125–129. [Google Scholar] [CrossRef]
- Vasiliauskas, A.; Keturkienei, A.; Leonavièienë, L.; Vaitkiene, D. Influence of herb Filipendula ulmaria (L.) Maxim. tincture on pro-/antioxidant status in gastric tissue with indomethacin-induced gastric ulcer in rats. Acta Med. Litu 2004, 11, 31–36. [Google Scholar]
- Avdeeva, E.Y.; Krasnov, E.A. The biological activity of Filipendula ulmaria (Rosaceae). Rastit. Resur. 2010, 46, 123–130. [Google Scholar]
- Shilova, I.V.; Semenov, A.A.; Suslov, N.I.; Korotkova, E.I.; Vtorushina, A.N.; Belyakova, V. V Chemical composition and biological activity of a fraction of meadowsweet extract. Pharm. Chem. J. 2009, 43, 185–190. [Google Scholar] [CrossRef]
- Pukalskiene, M.; Venskutonis, P.R.; Pukalskas, A. Phytochemical characterization of Filipendula ulmaria by UPLC/Q-TOF-MS and evaluation of antioxidant activity. Rec. Nat. Prod. 2015, 9, 451. [Google Scholar]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef]
- Chepel, V.; Lisun, V.; Skrypnik, L. Changes in the Content of Some Groups of Phenolic Compounds and Biological Activity of Extracts of Various Parts of Heather (Calluna vulgaris (L.) Hull) at Different Growth Stages. Plants 2020, 9, 926. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in Phenolic Compounds Content and Antioxidant Activity of Different Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef]
- Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef] [PubMed]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; Nagaz, K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS ONE 2020, 15, e0232599. [Google Scholar] [CrossRef] [PubMed]
- Gainche, M.; Ogeron, C.; Ripoche, I.; Senejoux, F.; Cholet, J.; Decombat, C.; Delort, L.; Berthon, J.-Y.; Saunier, E.; Caldefie Chezet, F.; et al. Xanthine Oxidase Inhibitors from Filipendula ulmaria (L.) Maxim. and Their Efficient Detections by HPTLC and HPLC Analyses. Molecules 2021, 26, 1939. [Google Scholar] [CrossRef] [PubMed]
- Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT Food Sci. Technol. 2009, 42, 1468–1473. [Google Scholar] [CrossRef]
- Katanić, J.; Boroja, T.; Stanković, N.; Mihailović, V.; Mladenović, M.; Kreft, S.; Vrvić, M.M. Bioactivity, stability and phenolic characterization of Filipendula ulmaria (L.) Maxim. Food Funct. 2015, 6, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Barros, L.; Alves, C.T.; Dueñas, M.; Silva, S.; Oliveira, R.; Carvalho, A.M.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Ind. Crop. Prod. 2013, 44, 104–110. [Google Scholar] [CrossRef]
- Ložienė, K.; Būdienė, J.; Vaitiekūnaitė, U.; Pašakinskienė, I. Variations in Yield, Essential Oil, and Salicylates of Filipendula ulmaria Inflorescences at Different Blooming Stages. Plants 2023, 12, 300. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Sazanova, K.N.; Zaitseva, E.N.; Sharipova, S.K.; Pravdivtseva, O.E.; Avdeeva, E.V.; Gladunova, E.P.; Varina, N.R. Antidepressant Activity of Flavonoids and Thick Extract from Filipendula ulmaria Fruit. Pharm. Chem. J. 2020, 54, 797–799. [Google Scholar] [CrossRef]
- Sukhikh, S.; Ivanova, S.; Skrypnik, L.; Bakhtiyarova, A.; Larina, V.; Krol, O.; Prosekov, A.; Frolov, A.; Povydysh, M.; Babich, O. Study of the Antioxidant Properties of Filipendula ulmaria and Alnus glutinosa. Plants 2022, 11, 2415. [Google Scholar] [CrossRef]
- Baranenko, D.; Bespalov, V.; Nadtochii, L.; Shestopalova, I.; Chechetkina, A.; Lepeshkin, A.; Ilina, V. Development of encapsulated extracts on the basis of meadowsweet (Filipendula ulmaria) in the composition of functional foods with oncoprotective properties. Agron. Res. 2019, 17, 1829–1838. [Google Scholar] [CrossRef]
- Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares, J.V.; Lull, C.; Donat, M.P.; Mayoral, O.; Vicente, O. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol. Plant. 2016, 38, 9. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kruglova, M.Y. A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Compd. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- Poukens-Renwart, P.; Tits, M.; Wauters, J.-N.; Angenot, L. Densitometric evaluation of spiraeoside after derivatization in flowers of Filipendula ulmaria (L.) Maxim. J. Pharm. Biomed. Anal. 1992, 10, 1085–1088. [Google Scholar] [CrossRef]
- Nile, A.; Nile, S.H.; Cespedes-Acuña, C.L.; Oh, J.-W. Spiraeoside extracted from red onion skin ameliorates apoptosis and exerts potent antitumor, antioxidant and enzyme inhibitory effects. Food Chem. Toxicol. 2021, 154, 112327. [Google Scholar] [CrossRef]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Nakanishi, T.; Mukai, K.; Yumoto, H.; Hirao, K.; Hosokawa, Y.; Matsuo, T. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. Eur. J. Oral Sci. 2010, 118, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tsugukuni, T.; Tomiyama, D.; Kurahachi, M.; Nonaka, A.; Miyamoto, T. A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Control 2013, 33, 433–439. [Google Scholar] [CrossRef]
- Katanić, J.; Matić, S.; Pferschy-Wenzig, E.-M.; Kretschmer, N.; Boroja, T.; Mihailović, V.; Stanković, V.; Stanković, N.; Mladenović, M.; Stanić, S.; et al. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis. Food Chem. Toxicol. 2017, 99, 86–102. [Google Scholar] [CrossRef]
- Beecher, G.R. Proanthocyanidins: Biological Activities Associated with Human Health. Pharm. Biol. 2004, 42, 2–20. [Google Scholar] [CrossRef]
- Samardžić, S.; Arsenijević, J.; Božić, D.; Milenković, M.; Tešević, V.; Maksimović, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Lipińska, L.; Klewicka, E.; Sójka, M. The structure, occurrence and biological activity of ellagitannins: A general review. Acta Sci. Pol. Technol. Aliment. 2014, 13, 289–299. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phyther. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Macêdo, N.S.; dos Barbosa, C.R.S.; Bezerra, A.H.; de Silveira, Z.S.; da Silva, L.; Coutinho, H.D.M.; Dashti, S.; Kim, B.; da Cunha, F.A.B.; da Silva, M.V. Evaluation of ellagic acid and gallic acid as efflux pump inhibitors in strains of Staphylococcus aureus. Biol. Open 2022, 11, bio059434. [Google Scholar] [CrossRef]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Fang, Y.; Ji, H. Controlled release and enhanced antibacterial activity of salicylic acid by hydrogen bonding with chitosan. Chin. J. Chem. Eng. 2016, 24, 421–426. [Google Scholar] [CrossRef]
- Papastavropoulou, K.; Oz, E.; Oz, F.; Proestos, C. Polyphenols from Plants: Phytochemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of Some Plants from Different Sites of Greece. Separations 2022, 9, 186. [Google Scholar] [CrossRef]
- Metrouh-Amir, H.; Duarte, C.M.; Maiza, F. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind. Crops Prod. 2015, 67, 249–256. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Bara, M.T.F.; Ferri, P.H.; da Santos, S.C.; de Paula, J.R. Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari. Rev. Bras. Farmacogn. 2011, 21, 1127–1137. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Compos. Anal. 2005, 18, 759–769. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Dangles, O. Antioxidant activity of plant phenols: Chemical mechanisms and biological significance. Curr. Org. Chem. 2012, 16, 692–714. [Google Scholar] [CrossRef]
- Sellami, I.H.; Maamouri, E.; Chahed, T.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Ind. Crop. Prod. 2009, 30, 395–402. [Google Scholar] [CrossRef]
- Fernando, I.D.N.S.; Abeysinghe, D.C.; Dharmadasa, R.M. Determination of phenolic contents and antioxidant capacity of different parts of Withania somnifera (L.) Dunal. from three different growth stages. Ind. Crop. Prod. 2013, 50, 537–539. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Khemakhem, B.; Yangui, T.; Attia, H. Variation in chemical composition and biological activities of two species of Opuntia flowers at four stages of flowering. Ind. Crop. Prod. 2012, 37, 34–40. [Google Scholar] [CrossRef]
- Gupta, N.; Sharma, S.K.; Rana, J.C.; Chauhan, R.S. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. J. Plant Physiol. 2011, 168, 2117–2123. [Google Scholar] [CrossRef]
- Ziaei, M.; Sharifi, M.; Behmanesh, M.; Razavi, K. Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages. Iran. J. Biotechnol. 2012, 10, 32–39. [Google Scholar]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Rühmann, C.; Bannert, M.; Treutter, D. Relationship Between Growth, Secondary Metabolism, and Resistance of Apple. Plant Biol. 2002, 4, 137–143. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Nobossé, P.; Fombang, E.N.; Mbofung, C.M.F. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci. Nutr. 2018, 6, 2188–2198. [Google Scholar] [CrossRef]
- Grayer, R.J.; Harborne, J.B.; Kimmins, F.M.; Stevenson, P.C.; Wijayagunasekera, H.N.P. Phenolics in rice phloem sap as sucking deterrents to the brown planthopper, Nilaparvata lugens. In Proceedings of the International Symposium on Natural Phenols in Plant Resistance, Weihenstephan, Germany, 13–17 September 1993; Geibel, M., Treutter, D., Feucht, W., Eds.; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1994; Volume 381, pp. 691–694. [Google Scholar] [CrossRef]
- Gould, G.G.; Jones, C.G.; Rifleman, P.; Perez, A.; Coleman, J.S. Variation in Eastern Cottonwood (Populus deltoides Bartr.) Phloem Sap Content Caused by Leaf Development May Affect Feeding Site Selection Behavior of the Aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae). Environ. Entomol. 2007, 36, 1212–1225. [Google Scholar] [CrossRef] [PubMed]
- Dinant, S.; Bonnemain, J.-L.; Girousse, C.; Kehr, J. Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biol. 2010, 333, 504–515. [Google Scholar] [CrossRef]
- Hennion, N.; Durand, M.; Vriet, C.; Doidy, J.; Maurousset, L.; Lemoine, R.; Pourtau, N. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol. Plant. 2019, 165, 44–57. [Google Scholar] [CrossRef]
- Knoblauch, M.; Peters, W.S. What actually is the Münch hypothesis? A short history of assimilate transport by mass flow. J. Integr. Plant Biol. 2017, 59, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Veluri, R.; Weir, T.L.; Bais, H.P.; Stermitz, F.R.; Vivanco, J.M. Phytotoxic and Antimicrobial Activities of Catechin Derivatives. J. Agric. Food Chem. 2004, 52, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Padhi, E.M.T.; Liu, R.; Hernandez, M.; Tsao, R.; Ramdath, D.D. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J. Funct. Foods 2017, 38, 602–611. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, Y.; Xiong, B.; Chen, L.; Zhang, Y.; Li, C. Optimization of Ultrasound-Assisted Extraction of Total Flavonoids from Dendranthema indicum var. aromaticum by Response Surface Methodology. J. Anal. Methods Chem. 2019, 2019, 1648782. [Google Scholar] [CrossRef]
- Štefan, M.B.; Rodríguez, J.V.; Blažeković, B.; Kindl, M.; Vladimir-Knežević, S. Total hydroxycinnamic acids assay: Prevalidation and application on Lamiaceae species. Food Anal. Methods 2014, 7, 326–336. [Google Scholar] [CrossRef]
- He, Q.; Yao, K.; Jia, D.; Fan, H.; Liao, X.; Shi, B. Determination of total catechins in tea extracts by HPLC and spectrophotometry. Nat. Prod. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal. 2016, 24, 539–547. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.Y.; Chen, S.Y.; Shi, L.L.; Liu, Y.J.; Ma, C. Antioxidant Potential of Polyphenols and Tannins from Burs of Castanea mollissima Blume. Molecules 2011, 16, 8590–8600. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Novikova, A. Response Surface Modeling and Optimization of Polyphenols Extraction from Apple Pomace Based on Nonionic Emulsifiers. Agronomy 2020, 10, 92. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
Plant Part | TPC 1, mg GAE g−1 | TFC, mg RE g−1 | THA, mg CAE g−1 | TCC, mg CE g−1 | PAs, mg CyE g−1 | TTC, mg GAE g−1 |
---|---|---|---|---|---|---|
Leaves (upper) | 62.87 ± 1.86 a 2 | 117.42 ± 9.14 b | 7.75 ± 0.52 a | 12.15 ± 1.11 d | 3.07 ± 0.23 a | 27.59 ± 2.47 c |
Leaves (middle) | 59.62 ± 1.47 b | 74.55 ± 5.36 c | 3.64 ± 0.51 c | 24.54 ± 2.00 c | 1.73 ± 0.18 c | 27.89 ± 2.27 c |
Leaves (lower) | 61.29 ± 1.85 ab | 66.14 ± 4.60 c | 4.21 ± 0.46 c | 34.26 ± 2.67 b | 2.32 ± 0.21 b | 34.33 ± 1.72 ab |
Stem (upper) | 22.40 ± 0.47 d | 6.15 ± 0.41 e | 0.77 ± 0.06 d | 1.57 ± 0.20 e | 0.29 ± 0.03 d | 8.28 ± 0.67 e |
Stem (middle) | 23.71 ± 1.05 d | 2.11 ± 0.15 e | 0.73 ± 0.02 d | 2.83 ± 0.22 e | 0.46 ± 0.05 d | 11.53 ± 1.21 e |
Stem (lower) | 23.03 ± 0.69 d | 1.54 ± 0.13 e | 1.23 ± 0.17 d | 4.53 ± 0.38 e | 0.53 ± 0.06 d | 17.80 ± 1.48 d |
Flowers | 64.65 ± 1.27 a | 166.78 ± 7.68 a | 8.68 ± 0.62 a | 2.25 ± 0.09 e | 0.55 ± 0.06 d | 29.52 ± 2.60 bc |
Fruits | 63.66 ± 1.61 a | 47.98 ± 4.46 d | 6.39 ± 0.41 b | 4.19 ± 0.26 e | 0.67 ± 0.04 d | 38.31 ± 2.50 a |
Roots | 53.12 ± 0.60 c | 7.52 ± 0.44 e | 1.43 ± 0.12 d | 45.12 ± 3.02 a | 3.37 ± 0.24 a | 31.47 ± 2.21 bc |
Compound | Retention Time, Min | Content of Individual Phenolic Compounds, mg g−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves (Upper) | Leaves (Middle) | Leaves (Lower) | Stem (Upper) | Stem (Middle) | Stem (Lower) | Flowers | Fruits | Roots | ||
Flavonoids | ||||||||||
Catechin | 9.7 | 1.98 ± 0.11 | 4.14 ± 0.28 | 6.28 ± 0.36 | - | - | - | - | - | 7.99 ± 0.61 |
Quercetin 3-O-rutinoside (rutin) | 19.3 | 8.11 ± 0.46 | 4.76 ± 0.34 | 0.62 ± 0.06 | 0.16 ± 0.02 | <LOQ 1 | <LOQ | 4.22 ± 0.30 | 2.06 ± 0.14 | 0.66 ± 0.04 |
Quercetin 3-β-d-glucoside (isoquercitrin) | 19.9 | 5.34 ± 0.32 | 2.62 ± 0.18 | 2.28 ± 0.14 | 0.16 ± 0.02 | 0.074 ± 0.006 | 0.064 ± 0.004 | 2.40 ± 0.16 | 0.54 ± 0.04 | 0.048 ± 0.004 |
Quercetin 4′-O-glucoside (spiraeoside) | 25.3 | - | - | - | - | - | - | 20.42 ± 1.42 | 2.36 ± 0.16 | - |
Luteolin 7-O-glucoside (cynaroside) | 21.5 | 3.26 ± 0.16 | <LOQ | <LOQ | 0.10 ± 0.01 | 0.046 ± 0.006 | 0.12 ± 0.01 | 0.092 ± 0.004 | 0.32 ± 0.04 | <LOQ |
Kaempferol 3-O-glucoside (astragalin) | 24.7 | 1.41 ± 0.08 | - | 0.12 ± 0.02 | - | - | - | - | - | - |
Phenolic acids | ||||||||||
Gallic acid | 3.8 | 0.78 ± 0.08 | 0.78 ± 0.10 | 0.99 ± 0.06 | 1.02 ± 0.12 | 1.26 ± 0.10 | 0.72 ± 0.10 | 5.82 ± 0.40 | 4.32 ± 0.29 | 0.11 ± 0.01 |
3,4-Dihydroxybenzoic acid (protocatechuic acid) | 5.8 | <LOQ | 0.028 ± 0.002 | 0.030 ± 0.004 | 0.024 ± 0.002 | 0.056 ± 0.004 | 0.082 ± 0.012 | 0.12 ± 0.01 | 0.092 ± 0.004 | 0.052 ± 0.004 |
Caftaric acid | 9.2 | 1.12 ± 0.10 | 0.64 ± 0.04 | 0.56 ± 0.04 | 0.060 ± 0.004 | 0.052 ± 0.004 | 0.044 ± 0.002 | 2.92 ± 0.21 | 1.54 ± 0.09 | 0.070 ± 0.004 |
Chlorogenic acid | 10.2 | 1.06 ± 0.12 | 1.31 ± 0.08 | 1.04 ± 0.06 | 0.11 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.01 | 0.32 ± 0.04 | 0.58 ± 0.06 | |
Caffeic acid | 10.5 | - | - | - | - | - | - | 0.14 ± 0.01 | 0.066 ± 0.007 | - |
p-Coumaric acid | 14.2 | 0.44 ± 0.06 | 0.24 ± 0.04 | 0.17 ± 0.01 | - | <LOQ | <LOQ | 0.042 ± 0.007 | 0.72 ± 0.08 | - |
Ellagic acid | 17.9 | 0.58 ± 0.04 | 0.38 ± 0.02 | 2.09 ± 0.12 | 0.18 ± 0.01 | 0.39 ± 0.03 | 0.48 ± 0.04 | 5.84 ± 0.34 | 3.44 ± 0.24 | 1.18 ± 0.08 |
Salicylic acid | 19.1 | - | - | - | 0.98 ± 0.06 | 0.31 ± 0.03 | 0.19 ± 0.02 | 4.51 ± 0.32 | 1.94 ± 0.08 | 0.60 ± 0.04 |
Plant Part | Antioxidant Activity, mg AsA g−1 | ||
---|---|---|---|
DPPH | ABTS | FRAP | |
Leaves (upper) | 172.3 ± 7.6 c 1 | 285.4 ± 12.0 c | 130.9 ± 4.6 c |
Leaves (middle) | 118.8 ± 8.4 d | 219.2 ± 8.5 d | 111.7 ± 6.1 d |
Leaves (lower) | 127.8 ± 7.0 d | 188.5 ± 5.8 de | 136.6 ± 7.2 c |
Stem (upper) | 43.7 ± 4.1 f | 75.7 ± 2.9 f | 37.0 ± 3.3 e |
Stem (middle) | 45.4 ± 4.2 f | 65.4 ± 4.1 f | 32.1 ± 3.4 e |
Stem (lower) | 36.1 ± 3.1 f | 76.1 ± 3.1 f | 30.4 ± 2.2 e |
Flowers | 315.8 ± 13.6 a | 415.7 ± 24.1 a | 230.4 ± 7.1 a |
Fruits | 256.3 ± 9.5 b | 367.8 ± 12.0 b | 176.6 ± 11.0 b |
Roots | 82.0 ± 5.6 e | 174.4 ± 6.3 e | 125.3 ± 8.2 c |
Plant Part | Inhibition Zone 1, mm | |||||||
---|---|---|---|---|---|---|---|---|
Pseudomonas aeruginosa | Bacillus subtilis | |||||||
Extract Concentration, mg disk−1 | Extract Concentration, mg disk−1 | |||||||
0.1 | 0.2 | 0.3 | 0.4 | 0.1 | 0.2 | 0.3 | 0.4 | |
Leaves (upper) | 7.2 ± 0.4 | 8.1 ± 0.3 | 10.7 ± 0.4 | 10.3 ± 0.6 | – | – | – | – |
Leaves (middle) | – | – | – | 8.3 ± 0.4 | – | – | – | – |
Leaves (lower) | – | – | 7.9 ± 0.5 | 8.2 ± 0.3 | – | – | – | – |
Stem (upper) | – | – | – | – | – | – | – | – |
Stem (middle) | – | – | – | – | – | – | – | – |
Stem (lower) | – | – | – | 6.9 ± 0.3 | – | – | – | – |
Flowers | 9.2 ± 0.1 | 10.7 ± 0.3 | 12.1 ± 0.6 | 13.3 ± 0.7 | 8.2 ± 0.2 | 10.3 ± 0.3 | 12.5 ± 0.2 | 13.1 ± 0.5 |
Fruits | 9.6 ± 0.2 | 11.2 ± 0.4 | 13.4 ± 0.4 | 15.2 ± 0.6 | – | – | 9.7 ± 0.3 | 11.3 ± 0.5 |
Roots | – | – | 9.2 ± 0.3 | 11.1 ± 0.3 | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savina, T.; Lisun, V.; Feduraev, P.; Skrypnik, L. Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules 2023, 28, 3512. https://doi.org/10.3390/molecules28083512
Savina T, Lisun V, Feduraev P, Skrypnik L. Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules. 2023; 28(8):3512. https://doi.org/10.3390/molecules28083512
Chicago/Turabian StyleSavina, Tamara, Valery Lisun, Pavel Feduraev, and Liubov Skrypnik. 2023. "Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.)" Molecules 28, no. 8: 3512. https://doi.org/10.3390/molecules28083512
APA StyleSavina, T., Lisun, V., Feduraev, P., & Skrypnik, L. (2023). Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules, 28(8), 3512. https://doi.org/10.3390/molecules28083512