Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation
Abstract
:1. Introduction
2. New Sources of Phenolic Compounds
2.1. Wild-Growing Plants
Compound | Plant Species | Ref. |
---|---|---|
Apigenin-7-glucoside, gallic acid, luteolin-7-glucoside, ρ-coumaric acid, robinin, rosmarinic acid, rutin | Ageratina petiolaris (Moc. and Sessé ex DC.) RM King & H. Rob. (Asteraceae) | [19] |
Flavonoids, phenols, tanins | Pinus nigra Arn. ((Pinaceae) | [29] |
Catechins, flavonoids, hydroxycinnamic acids, proanthocyanidins, tannins | Rumex spp. (Polygonaceae) | [21] |
Chlorogenic acid, leucoseptoside A, martinoside, verbascoside | Sideritis spp. (Lamiaceae) | [22,24] |
Chlorogenic acid, ferulic acid, gallic acid | Valeriana carnosa (Sm.) Dufr. (Caprifoliaceae) | [25] |
Anthocyanins, flavan-3-ols, flavonols, phenolic acids | Vaccinium macrocarpon Aiton (Ericaceae) | [26,27] |
2.2. Cereals
2.3. Plant Cell, Tissue and Organ Cultures (PCTOCs)
2.4. Agri-Food By-Products
2.4.1. Vegetable and Fruit Processing
2.4.2. Oil and Wine Production
2.4.3. Other Plant By-Products
3. Plant Genotype and Phenolic Complex
3.1. Genetic Variation vs. Taxonomy and Breeding
3.2. Polyploidisation and Biochemical Modifications
4. Ontogenetic Variation
4.1. Age of the Plant
4.2. Plant Organs
4.3. Development Stage
4.4. Practical Aspects of Ontogenetic Variability
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lattanzio, V. Phenolic Compounds: Introduction; Ramawat, K.G., Mérillon, J.M., Eds.; Natural Products; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Farhat, N.; Hussain, S.; Syed, S.K.; Amjad, M.; Javed, M.; Iqbal, M.; Hussain, M.; Haroon, S.M.; Raza, H.; Butt, S.Z.; et al. Dietary phenolic compounds in plants: Their antioxidant and pharmacological potential. Post. Biol. Kom. 2020, 47, 307–320. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Jesus, F.; Simões, M.; Silva, L.R. Phenolic compounds: Sources, properties and applications. In Bioactive Compounds: Sources, Properties and Applications; Porter, R., Parker, N., Eds.; Nova Science Publishers: New York, NY, USA, 2017; pp. 271–299. ISBN 6312317269. [Google Scholar]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphnols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in Phenolic Compounds Content and Antioxidant Activity of Di_erent Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Guajardo, J.J.; Gastaldi, B.; González, S.B.; Nagahama, N. Variability of phenolic compounds at different phenological stages in two populations of Valeriana carnosa Sm. (Valerianoideae, Caprifoliaceae) in Patagonia. Bol. Latinoam. Caribe. Plant. Med. Aromat. 2018, 17, 381–393. [Google Scholar]
- Liu, W.; Zhang, Z.; Zhang, T.; Qiao, Q.; Hou, X. Phenolic profiles and antioxidant activity in different organs of Sinopodophyllum hexandrum. Front. Plant Sci. 2022, 13, 1037582. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Zaini, N.S.; Karim, R.; Abdull Razis, A.F.; Zawawi, N. Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules 2022, 27, 6813. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.A.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef]
- Sharma, A.; Flores-Vallejo, R.C.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef]
- Pérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Mondragón-Chaparro, D.M.; Sandoval-Torres, S.; Carrillo-Rodríguez, J.C.; Chávez-Servia, J.L. Effects of Growth Conditions on Phenolic Composition and Antioxidant Activity in the Medicinal Plant Ageratina petiolaris (Asteraceae). Diversity 2022, 14, 595. [Google Scholar] [CrossRef]
- Li, J.-J.; Li, Y.-X.; Li, N.; Zhu, H.-T.; Wang, D.; Zhang, Y.-J. The genus Rumex (Polygonaceae): An ethnobotanical, phytochemical and pharmacological review. Nat. Prod. Bioprospect. 2022, 12, 21. [Google Scholar] [CrossRef]
- Feduraev, P.; Skrypnik, L.; Nebreeva, S.; Dzhobadze, G.; Vatagina, A.; Kalinina, E.; Pungin, A.; Maslennikov, P.; Riabova, A.; Krol, O.; et al. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some Rumex Species (Polygonaceae). Antioxidants 2022, 11, 311. [Google Scholar] [CrossRef]
- Gökbulut, A.; Yazgan, A.N.; Duman, H.; Yilmaz, B.S. Evaluation of the Antioxidant Potential and Chlorogenic Acid Contents of Three Endemic Sideritis Taxa from Turkey. Fabad J. Pharm. Sci. 2017, 42, 81–86. [Google Scholar]
- Lall, N.; Chrysargyris, A.; Lambrechts, I.; Fibrich, B.; Blom Van Staden, A.; Twilley, D.; de Canha, M.N.; Oosthuizen, C.B.; Bodiba, D.; Tzortzakis, N. Sideritis Perfoliata (Subsp. Perfoliata) Nutritive Value and Its Potential Medicinal Properties. Antioxidants 2019, 8, 521. [Google Scholar] [CrossRef]
- Bardakci, H.; Cevik, D.; Barak, T.H.; Gozet, T.; Kan, Y.; Kirmizibekmez, H. Secondary metabolites, phytochemical characterization and antioxidant activities of different extracts of Sideritis congesta P.H. Davis et Hub.-Mor. Biochem. Syst. Ecol. 2020, 92, 104120. [Google Scholar] [CrossRef]
- Fuica, C.; Bustos, E.; Hernandez, V. Chemical characterization and biological activity of populations of Valeriana carnosa SM (Caprifoliaceae) distributed in the south-central Andes. J. Chil. Chem. Soc. 2022, 67, 5398–5402. [Google Scholar] [CrossRef]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit Physical Features, Phenolic Compounds Profile and Inhibition Activities of Cranberry Cultivars (Vaccinium macrocarpon) Compared to Wild-Grown Cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef]
- Gudžinskaitė, I.; Stackevičienė, E.; Liaudanskas, M.; Zymonė, S.; Žvikas, V.; Viškelis, J.; Urbštaitė, R.; Janulis, V. Variability in the Qualitative and Quantitative Composition and Content of Phenolic Compounds in the Fruit of Introduced American Cranberry (Vaccinium macrocarpon Aiton). Plants 2020, 9, 1379. [Google Scholar] [CrossRef]
- Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus Species as Prospective Reservesof Bioactive Compounds with Potential Use in Functional Food—Current State of nowledge. Plants 2021, 10, 1306. [Google Scholar] [CrossRef]
- Fkiri, S.; Mezni, F.; Ouarghi, A.; Ghazghazi, H.; Larbi Khouja, M.; Khaldi, A.; Nasr, Z. Variability of phenolic compounds and antioxidant efficacy in needles extracts of Pinus nigra Arn. J. New Sci. Agric. Biotechnol. 2018, 53, 3528–3535. [Google Scholar]
- Kovalikova, Z.; Lnenicka, J.; Andrys, R. The Influence of Locality on Phenolic Profile and Antioxidant Capacity of Bud Extracts. Foods 2021, 10, 1608. [Google Scholar] [CrossRef]
- Saada, M.; Khemakhem, M.; Ksouri, R. Variabilité des teneurs en composés phénoliques et des activités biologiques chez six espèces médicinales. J. New Sci. Agric. Biotechnol. 2021, 82, 4791–4800. [Google Scholar]
- Garutti, M.; Nevola, G.; Mazzeo, R.; Cucciniello, L.; Totaro, F.; Bertuzzi, C.A.; Caccialanza, R.; Pedrazzoli, P.; Puglisi, F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front. Nutr. 2022, 9, 888974. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.S.; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum (Sorghum bicolor (L.) Moench) grains. Cereal Res. Commun. 2021, 49, 343–353. [Google Scholar] [CrossRef]
- Bhukya, R.; Chamarthy, R.V.; Ediga, S.; Reddy, A.C.; Marriboina, S.B.; Tonapi, V.A. Variability of Polyphenols, Antioxidant Activity and UFLC Phenolic Acid Profiles of Different Sorghum Genotypes. Sch. Int. J. Biochem. 2020, 3, 104–113. [Google Scholar] [CrossRef]
- Baniwal, P.; Mehra, R.; Kumar, N.; Sharma, S.; Kumar, S. Cereals: Functional constituents and its health benefits. Pharma Innov. 2021, 10, 343–349. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and Antioxidant Activity of Polyphenols from Pigmented Barley and Wheat. Foods 2022, 11, 3697. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muñoz, A.M.; Alvarado-Ortíz, C.; Alvarado, A.; Yáñez, J.A. Purple Corn (Zea mays L.) Phenolic Compounds Profile and Its Assessment as an Agent Against Oxidative Stress in Isolated Mouse Organs. J. Med. Food 2012, 15, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Mawouma, S.; Condurache, N.N.; Turturica, M.; Constantin, O.E.; Croitoru, C.; Rapeanu, G. Chemical Composition and Antioxidant Profile of Sorghum (Sorghum bicolor (L.) Moench) and Pearl Millet (Pennisetum glaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods 2022, 11, 2026. [Google Scholar] [CrossRef]
- Lao, F.; Sigurdson, G.T.; Giusti, M.M. Health Benefits of Purple Corn (Zea mays L.) Phenolic Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 234–246. [Google Scholar] [CrossRef]
- Magaña-Cerino, J.M.; Peniche-Pavía, H.A.; Tiessen, A.; Gurrola-Díaz, C.M. Pigmented Maize (Zea mays L.) Contains Anthocyanins with Potential Therapeutic Action Against Oxidative Stress—A Review. Pol. J. Food Nutr. Sci. 2020, 70, 85–99. [Google Scholar] [CrossRef]
- Summpunn, P.; Panpipat, W.; Manurakchinakorn, S.; Bhoopong, P.; Cheong, L.-Z.; Chaijan, M. Comparative Analysis of Antioxidant Compounds and Antioxidative Properties of Thai Indigenous Rice: Effects of Rice Variety and Processing Condition. Molecules 2022, 27, 5180. [Google Scholar] [CrossRef]
- Wu, T.; Kerbler, S.M.; Fernie, A.R.; Zhang, Y. Plant cell cultures as heterologous biofactories for secondary metabolite production. Plant Commun. 2021, 2, 100235. [Google Scholar] [CrossRef]
- Matkowski, A. Plant in vitro culture for the production of antioxidants—A review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef]
- Wang, H.; Luo, G.; Wang, J.; Shen, H.; Luo, Y.; Dai, H.; Mei, W. Flavonoids Produced by Tissue Culture of Dracaena cambodiana. Nat. Prod. Commun. 2014, 9, 39–40. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Victório, C.P.; Arruda, R.C.O.; Lage, C.L.S.; Kusterc, R.M. Production of Flavonoids in Organogenic Cultures of Alpinia zerumbet. Nat. Prod. Commun. 2010, 5, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Zenkteler, M.; Zenkteler, E. 65 years of in vitro culture in Poland. Acta Soc. Bot. Pol. 2013, 82, 183–192. [Google Scholar] [CrossRef]
- León, M.D.; Arias, M.E.; Correa, G.A. Optimization of Flavonoid Production in Plant Cell Culture of Thevetia peruviana Elicited with Methyl Jasmonate and Salicylic Acid. Braz. Arch. Biol. Technol. 2021, 64, e21210022. [Google Scholar] [CrossRef]
- Yang, Y.; He, F.; Yu, L.; Ji, J.; Wang, Y. Flavonoid accumulation in cell suspension cultures of Glycyrrhiza inflata Batal under optimizing conditions. Z. Für. Nat. C 2008, 64, 68–72. [Google Scholar] [CrossRef]
- Naik, P.M.; Al-Khayri, J.M. Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Ciência E Agrotecnologia 2018, 42, 464–473. [Google Scholar] [CrossRef]
- Śliwińska, A.A.; Sykłowska-Baranek, K.; Kośmider, A.; Granica, S.; Miszczak, K.; Nowicka, G.; Kasztelan, A.; Podsadni, P.; Turło, J.; Pietrosiuk, A. Stimulation of phenolic compounds production in the in vitro cultivated Polyscias filicifolia Bailey shoots and evaluation of the antioxidant and cytotoxic potential of plant extracts. Acta Soc. Bot. Pol. 2018, 87, 3586. [Google Scholar] [CrossRef]
- Oliviero, M.; Langellotti, A.L.; Russo, G.L.; Baselice, M.; Donadio, A.; Ritieni, A.; Graziani, G.; Masi, P. Use of Different Organic Carbon Sources in Cynara cardunculus Cells: Effects on Biomass Productivity and Secondary Metabolites. Plants 2022, 11, 701. [Google Scholar] [CrossRef]
- Zheleznichenko, T.V.; Muraseva, D.S.; Erst, A.S.; Kuznetsov, A.A.; Kulikovskiy, M.S.; Kostikova, V.A. The Influence of Solid and Liquid Systems In Vitro on the Growth and Biosynthetic Characteristics of Microshoot Culture of Spiraea betulifolia ssp. aemiliana. Int. J. Mol. Sci. 2023, 24, 2362. [Google Scholar] [CrossRef]
- Tarbeeva, D.V.; Fedoreyev, S.A.; Veselova, M.V.; Kalinovskiy, A.I.; Seletskaya, L.D.; Mazurok, T.I.; Bulgakov, V.P. Polyphenolic Compounds from Callus Cultures of Iris pseudacorus. Nat. Prod. Comm. 2013, 8, 1419–1420. [Google Scholar]
- Devrnja, N.; Krstić-Milošević, D.; Janošević, D.; Tešević, V.; Vinterhalter, B.; Savić, J.; Ćalić, D. In vitro cultivation of tansy (Tanacetum vulgare L.): A tool for the production of potent pharmaceutical agents. Protoplasma 2021, 258, 587–599. [Google Scholar] [CrossRef]
- Królicka, A.; Szpitter, A.; Maciąg, M.; Biskup, E.; Gilgenast, E.; Romanik, G.; Kamiński, M.; Węgrzyn, G.; Łojkowska, E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae). Biotechnol. Appl. Biochem. 2009, 53, 175–184. [Google Scholar] [CrossRef]
- Ekiert, H.; Kwiecień, I.; Szopa, A. Rosmarinic acid production in plant in vitro cultures. Pol. J. Cosmetol. 2013, 16, 49–58. [Google Scholar]
- Suvanto, J.; Nohynek, L.; Seppänen-Laakso, T.; Rischer, H.; Salminen, J.-P.; Puupponen-Pimia, R. Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species. Planta 2017, 246, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Eltamany, E.E.; Goda, M.S.; Nafie, M.S.; Abu-Elsaoud, A.M.; Hareeri, R.H.; Aldurdunji, M.M.; Elhady, S.S.; Badr, J.M.; Eltahawy, N.A. Comparative Assessment of the Antioxidant and Anticancer Activities of Plicosepalus acacia and Plicosepalus curviflorus: Metabolomic Profiling and In Silico Studies. Antioxidants 2022, 11, 1249. [Google Scholar] [CrossRef]
- Macharia, J.M.; Mwangi, R.W.; Rozmann, N.; Zsolt, K.; Varjas, T.; Uchechukwu, P.O.; Wagara, N.W.; Raposa, B.L. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed. Pharmacother. 2022, 153, 113383. [Google Scholar] [CrossRef]
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef]
- Mahbub, A.A.; Le Maitre, C.L.; Haywood-Small, S.; Cross, N.A.; Jordan-Mahy, N. Polyphenols enhance the activity of alkylating agents in leukaemia cell lines. Oncotarget 2019, 10, 4570–4586. [Google Scholar] [CrossRef]
- Shahidi, F.; Vamadevan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Najda, A.; Sharma, R.; Nurzyńska-Wierdak, R.; Dhanjal, D.S.; Sharma, R.; Manickam, S.; Kabra, A.; Kuča, K.; Bhardwaj, P. Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. Evid. -Based Complement. Altern. Med. 2022, 2022, 8543881. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods 2022, 11, 2578. [Google Scholar] [CrossRef]
- Szabo, K.; Mitrea, L.; Călinoiu, L.F.; Teleky, B.-E.; Martău, G.A.; Plamada, D.; Pascuta, M.S.; Nemeş, S.-A.; Varvara, R.-A.; Vodnar, D.C. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022, 27, 7977. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Andersson, S.C.; Johansson, E.; Rumpunen, K. An Optimized Method for Analysis of Phenolic Compounds in Buds, Leaves, and Fruits of Black Currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Pinela, J.; Cirić, A.; Calhelha, R.C.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; Torija-Isasa, E.; Cortes Sanchez-Mata, M. Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds. Food Chem. 2022, 374, 131754. [Google Scholar] [CrossRef] [PubMed]
- Safarzadeh Markhali, F. Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes. Processes 2021, 9, 953. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Najafian, M.; Jahromi, M.Z.; Nowroznejhad, M.J.; Khajeaian, P.; Kargar, M.M.; Sadeghi, M.; Arasteh, A. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol. Biol. Rep. 2012, 39, 5299–5306. [Google Scholar] [CrossRef] [PubMed]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants 2022, 11, 1933. [Google Scholar] [CrossRef]
- Kilit, A.C.; Aydemir, E. Cytotoxic Effects of Floridzin. Northwestern Med. J. 2022, 2, 16–22. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y. Citrus phytochemicals and their potential effects on the prevention and treatment of obesity: Review and progress of the past 10 years. J. Food Bioact. 2018, 4, 99–106. [Google Scholar] [CrossRef]
- Gorinstein, S.; Martin-Belloso, O.; Park, Y.S.; Haruenkit, R.; Lojek, A.; Ciz, M.; Caspi, A.; Libman, I.; Trakhtenberg, S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001, 74, 309–315. [Google Scholar] [CrossRef]
- Manthey, A.; Grohmann, K. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J. Agric. Food Chem. 2001, 49, 3268–3273. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Multescu, M.; Marinas, I.C.; Susman, I.E.; Belc, N. Byproducts (Flour, Meals, and Groats) from the Vegetable Oil Industry as a Potential Source of Antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.-L. Wine by-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.A.; Heeba, G.H.; Elwy, H.M.; Murali, C.; El-Awady, R.; Amin, A. Molecular characterization of the grape seeds extract’s effect against chemically induced liver cancer: In vivo and in vitro analyses. Sci. Rep. 2018, 8, 1270. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.S.; Oh, C.L.Y.; Tan, J.C.W.; Foo, S.Y.; Leo, C.H. Pressurized Hot Water Extraction of Okra Seeds Reveals Antioxidant, Antidiabetic and Vasoprotective Activities. Plants 2021, 10, 1645. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Ismail, M.; Mohd Esa, N.; Mohamed Alitheen, N.B.; Imam, M.U.; Ooi, D.J.; Khong, N.M.H. Defatted Kenaf (Hibiscus cannabinus L.) Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes. Oxidative Med. Cell. Longev. 2018, 2018, 6742571. [Google Scholar] [CrossRef] [PubMed]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect of Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Goodger, J.Q.D.; Heskes, A.M.; Woodrow, I.E. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii. Ann. Bot. 2013, 112, 651–659. [Google Scholar] [CrossRef]
- Graham, L.E.; Cook, M.E.; Busse, J.S. The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proc. Natl. Acad. Sci. USA 2000, 97, 4535–4540. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.R.; Kwak, J.-H.; Jo, J.S.; Lee, J.G. Changes in phytochemical content and antioxidant activity during inflorescence development in broccoli. Chill. J. Agric. Res. 2019, 79, 36–47. [Google Scholar] [CrossRef]
- Bakhtiar, Z.; Hassandokht, M.R.; Naghavi, M.R.; Mirjalili, M.H. Study of variability in agro-morphological traits, proximate composition, and phenolic compounds of some Trigonella L. species in Iran. J. Med. Plants 2022, 21, 1–12. [Google Scholar] [CrossRef]
- Khorsand, G.J.; Morshedloo, M.R.; Mumivand, H.; Bistgani, Z.E.; Maggi, F.; Khademi, A. Natural diversity in phenolic components and antioxidant properties of oregano (Origanum vulgare L.) accessions, grown under the same conditions. Sci. Rep. 2022, 12, 5813. [Google Scholar] [CrossRef]
- Palmieri, L.; Masuero, D.; Martinatti, P.; Baratto, G.; Martens, S.; Vrhovsek, U. Genotype-by-environment effect on bioactive compounds in strawberry (Fragaria x ananasa Duch.). J. Sci. Food Agric. 2017, 97, 4180–4189. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Lebedeva, T.N.; Vidyagina, E.O.; Sorokopudov, V.N.; Popova, A.A.; Shestibratov, K.A. Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants 2022, 11, 1961. [Google Scholar] [CrossRef] [PubMed]
- Iannicelli, J.; Guariniello, J.; Tossib, V.E.; Regalado, J.J.; Di Ciaccioa, L.; van Barene, C.M.; Pitta Álvarez, S.I.; Escandón, A.S. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. 2020, 260, 108854. [Google Scholar] [CrossRef]
- Asensio, E.; Vitales, D.; Pérez, I.; Peralba, L.; Viruel, J.; Montaner, C.; Vallès, J.; Garnatje, T.; Sales, E. Phenolic Compounds Content and Genetic Diversity at Population Level across the Natural Distribution Range of Bearberry (Arctostaphylos uva-ursi, Ericaceae) in the Iberian Peninsula. Plants 2020, 9, 1250. [Google Scholar] [CrossRef]
- Bhalla, M.; Mittal, R.; Kumar, M.; Kushwah, A.S. Pharmacological Aspects of a Bioactive Compound Arbutin: A Comprehensive Review. Biointerface Res. Appl. Chem. 2023, 13, 119. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs. Integrative Medicine Communications: Newton, MA, USA, 2000; pp. 389–391. [Google Scholar]
- Koricheva, J.; Barton, K.E. Temporal Changes in Plant Secondary Metabolite Production: Patterns, Causes and Consequences. In The Ecology of Plant Secondary Metabolites: From Genes to Global Processes; Iason, G., Dicke, M., Hartley, S., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 34–55. [Google Scholar] [CrossRef]
- Góra, J.; Lis, A.; Kula, J.; Staniszewska, M.; Wołoszyn, A. Chemical composition variability of essential oils in the ontogenesis of some plants. Flavour Fragr. J. 2002, 17, 445–451. [Google Scholar] [CrossRef]
- Fialová, S.; Tekeľová, D.; Rendeková, K.; Klinčok, J.; Kolárik, M.; Kurucová, K.; Grančai, D. Phenolic compounds variation in Mentha L. species in the course of a four-years period. Acta Fac. Pharm. Univ. Comen. 2015, 62, 2–7. [Google Scholar] [CrossRef]
- Bielecka, M.; Zielińska, S.; Pencakowski, B.; Stafiniak, M.; Ślusarczyk, S.; Prescha, A.; Matkowski, A. Age-related variation of polyphenol content and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. Ind. Crop. Prod. 2019, 141, 111743. [Google Scholar] [CrossRef]
- Pavlović, J.; Mitić, S.; Mitić, M.; Kocić, G.; Pavlović, A.; Tošić, S. Variation in the Phenolic Compounds Profi le and Antioxidant Activity in Different Parts of Hawthorn (Crataegus pentagyna Willd.) During Harvest Periods. Pol. J. Food Nutr. Sci. 2019, 69, 367–378. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Najda, A.; Sałata, A.; Krajewska, A. Bioactive compounds and antioxidant properties of black elderberry (Sambucus nigra L.). Acta Sci. Pol. Hortorum Cultus 2022, 21, 143–156. [Google Scholar] [CrossRef]
- Andrade-Andrade, G.; Delgado-Alvarado, A.; Herrera-Cabrera, B.E.; Arévalo-Galarza, L.; Caso-Barrera, L. Variation of phenolic compounds, flavonoids and tannins in Vanilla planifolia Jacks. ex Andrews in the Huasteca Hidalguense, Mexico. Agrociencia 2018, 52, 55–66. [Google Scholar]
- Anwar, K.; Rahmanto, B.; Triyasmono, L.; Rizki, M.I.; Halwany, W.; Lestari, F. The Influence of Leaf Age On Total Phenolic, Flavonoids, And Free Radical Scavenging Capacity of Aquilaria beccariana. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 129–133. [Google Scholar]
- Alba, T.M.; Tessaro, E.; Sobottka, A.M. Seasonal effect on phenolic content and antioxidant activity of young, mature and senescent leaves from Anredera cordifolia (Ten.) Steenis (Basellaceae). Braz. J. Biol. 2024, 84, e254174. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical Constituents and Pharmacological Effects of Lythrum Salicaria—A Review. IOSR J. Pharm. 2019, 9, 51–59. [Google Scholar]
- Bencsik, T.; Horváth, G.; Papp, N. Variability of Total Flavonoid, Polyphenol and Tannin Contents in Some Lythrum salicaria Populations. Nat. Prod. Commun. 2011, 6, 1417–1420. [Google Scholar] [CrossRef]
- Bunning, M.L.; Kendall, P.A.; Stone, M.B.; Stonaker, F.H.; Stushnoff, C. Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars. J. Food Sci. 2010, 75, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Asnaashari, S.; Dadpour, M.R. Ontogenetic Variation of Total Phenolics and Antioxidant Activity in Roots, Leaves and Flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts 2012, 2, 105–109. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Węglarz, Z. Accumulation of phenolic compounds in the purple betony herb (Stachys officinalis L.) originated from cultivation. Herba Pol. 2016, 62, 7–16. [Google Scholar] [CrossRef] [Green Version]
Cereals | Compounds | Ref. |
---|---|---|
Barley (Hordeum vulgare L.) | flavonoids, proanthocyanidins | [32,35,36] |
Buckwheat (Fagopyrum esculentum Moench) | flavonoids (rutin, catechin), proanthocyanidins | [32,35] |
Emmer (Triticum dicoccoides (Körn. ex Asch. & Graebn.) Schweinf.) | polyphenols | [32] |
Einkorn (Triticum monococcum L.) | polyphenols | [32] |
Maize (Zea mays L.) | anthocyanins, flavonoids (kaempferol, morin, naringenin, quercetin rutin), phenolic acids (caffeic acid, chlorogenic acid, ferulic acid) | [32,37] |
Millets (Panicum miliaceum L.) | anthocyanins, flavonoids, phenolic acids | [32,38] |
Oats (Avena sativa L.) | polyphenols | [32,35] |
Rice (Oryza sativa L.) | anthocyanins, phenolic acids, proanthocyanidins | [32,35] |
Rye (Secale cereale L.) | anthocyanins, phenolic acids | [32] |
Sorghum (Sorghum bicolor (L.) Moench) | anthocyanins, flavonoids, phenolic acids (chlorogenic acid, gallic acid, ferulic acid), proanthocyanidins | [32,34,38] |
Triticale (x Triticosecale spp.) | phenolic acids, proanthocyanidins | [32] |
Wheat (Triticum aestivum L.) | anthocyanins, flavonoids, phenolic acids (hydroxycinnamic and hydroxybenzoic) | [32,35] |
Wheat (Triticum durum Desf.) | anthocyanins, flavonoids, phenolic acids, polyphenols | [32,36] |
Compound | Source | Ref. |
---|---|---|
Arbutin | Catharanthus roseus L. | [43] |
Caffeic acid | Phoenix dactylifera L.; Polyscias filicifolia Bailey | [50,51] |
Cambodianol | Dracaena cambodiana Pierre ex Gagnep. | [44] |
Chlorogenic acid | Cynara cardunculus L.; P. filicifolia Bailey; Spiraea betulifolia ssp. aemiliana (C.K. Schneid.) H. Hara | [51,52,53] |
Cinnamic acid | S. betulifolia ssp. aemiliana (C.K. Schneid.) H. Hara, Iris pseudacorus L. | [53,54] |
Cynarin | C. cardunculus L. | [52] |
7,4′-Dihydroxyflavanone | Dracaena cambodiana Pierre ex Gagnep. | [44] |
Ferulic acid | C. cardunculus L.; P. filicifolia Bailey | [51,52] |
Iristorigenin A | I. pseudacorus L. | [54] |
Isochlorogenic acid A | Tanacetum vulgare L. | [55] |
Kaempferol | Alpinia zerumbet (Pers.) Burtt et Smith; Ginkgo biloba L.; P. dactylifera L.; S. betulifolia ssp. aemiliana (C.K. Schneid.) H. Hara | [43,46,50,53] |
Lavandoside | I. pseudacorus L. | [54] |
Myricetin | Drosera aliciae R. Hamet | [56] |
p-Coumaric acid | C. cardunculus L.; S. betulifolia ssp. aemiliana (C.K. Schneid.) H. Hara | [52,53] |
Quercetin | D. aliciae R. Hamet; S. betulifolia ssp. aemiliana (C.K. Schneid.) H. Hara | [53,56] |
Resveratrol | Vitis vinifera L. | [43] |
Rosmarinic acid | Anchusa officinalis L.; Duboisia R. Br. spp.; Hyssopus officinalis L.; Lavandula officinalis Chaix., Ocimum basilicum L.; Salvia officinalis L. | [43,47,57] |
Rutin | Alpinia zerumbet (Pers.) Burtt et Smith | [46] |
Tectoridin | I. pseudacorus L. | [54] |
Tectorigenin | I. pseudacorus L. | [54] |
Source | Compound | Ref. |
---|---|---|
Apple pomace | chlorogenic acid, epicatechin, phloridzin | [66] |
Apple peels | caffeic acid, caffeic acid-4-O-glucoside, 5-caffeoylquinic acid, 3-caffeoylquinic acid, catechin 3-O-glucose, cyanidin 3-O-arabinoside, 3,4-dicaffeoylquinic acid, epicatechin, malvidin 3-O-(6′-p-coumaroyl)-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, petunidin 3-O-(6′-pcoumaroyl)-glucoside, phloridzin, phloretin, quercitrin, quercetin, rutin | [64] |
Blackcurrant buds | flavonol glycosides quercetin, myricetin, isoramnetin, kaempferol | [67] |
Blackcurrant leaves | chlorogenic acid, kaempferol-3-O-rutinoside, neochlorogenic acid | [67] |
Cereal bran | cyanidin-3-glucoside, ferulic acid | [66] |
Cottonseed | gallic acid, quercetin, flavonol glycosides, 3,4-dihydroxybenzoic acid | [16] |
Hemp seeds | cinnamic acid, ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, vanillic acid, | [68] |
Olive pomace | caffeic acid, catechol, elenolic acid, hydroxytyrosol, oleuropein, p-coumaric acid, vanillic acidrutin, verbascoside, tyrosol | [69,70] |
Tomato by-products | caffeic acid, catechin, gallic acid, naringenin, procatchoic acid, quercetin, rutin, vanillic acid | [64,66] |
Plant Genotype | Compound | Ref. |
---|---|---|
Brassica oleracea L. var. italic Plenck | apigenin, kaempferol, myricetin, quercetin | [89] |
Fragaria x ananassa Duch. | benzoic acid derivatives, ellagtannins, flavons, flavonols, phenylpropanoids | [92] |
Origanum vulgare L. | chicory acid, coumarin, luteolin, quercetin, rosmarinic acid | [91] |
Trigonella L., Medicago L. | apigenin, caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, kaempferol, quercetin, rosmarinic acid, syringic acid | [91] |
Vaccinium macrocarpon Aiton | caffeic acid, catechin, chlorogenic acid, p-coumaric acid, epicatechin, ferulic acid, gallic acid, hyperoside, kaempferol, neochlorogenic acid, quercetin, phloretin, phloridzin, procyanidin A2, rutin, vanillic acid | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyńska-Wierdak, R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. https://doi.org/10.3390/molecules28041731
Nurzyńska-Wierdak R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules. 2023; 28(4):1731. https://doi.org/10.3390/molecules28041731
Chicago/Turabian StyleNurzyńska-Wierdak, Renata. 2023. "Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation" Molecules 28, no. 4: 1731. https://doi.org/10.3390/molecules28041731
APA StyleNurzyńska-Wierdak, R. (2023). Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules, 28(4), 1731. https://doi.org/10.3390/molecules28041731