Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam
Abstract
:1. Introduction
2. Results and Discussion
2.1. TPCs and TFCs
2.2. Antioxidant Capacities
2.2.1. DPPH and ABTS
2.2.2. CUPRAC and FRAP
2.3. Determination of Caffeine, Gallic Acid, and Major Catechins by UPLC-MS/MS
2.4. Pearson Correlation
2.5. Principal Component Analysis
3. Materials and Methods
3.1. Sample Collection, Storage, and Pre-Treatment
3.2. Sample Extraction
3.3. Method Analysis and Validation
3.3.1. Total Phenolic Contents (TPCs)
3.3.2. Total Flavonoid Content (TFCs)
3.3.3. DPPH Assay
3.3.4. ABTS Assay
3.3.5. FRAP Assay
3.3.6. CUPRAC Assay
3.3.7. Quantification of Caffeine, Gallic Acids, and Major Catechins by UPLC-MS/M
3.3.8. Method Validation
3.4. Statistical Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano, J.; Goñi, I.; Saura-Calixto, F. Food Antioxidant Capacity Determined by Chemical Methods May Underestimate the Physiological Antioxidant Capacity. Food Res. Int. 2007, 40, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Frankel, E.N.; Meyer, A.S. The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Gupta, S.; Saha, B.; Giri, A.K. Comparative Antimutagenic and Anticlastogenic Effects of Green Tea and Black Tea: A Review. Mutat. Res./Rev. Mutat. Res. 2002, 512, 37–65. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Mondal, A.; Majumder, A.; Banik, A. Tea and Its Phytochemicals: Hidden Health Benefits & Modulation of Signaling Cascade by Phytochemicals. Food Chem. 2022, 371, 131098. [Google Scholar]
- Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; Abd El-Hack, M.E.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A. Green Tea (Camellia sinensis) and l-Theanine: Medicinal Values and Beneficial Applications in Humans—A Comprehensive Review. Biomed. Pharmacother. 2017, 95, 1260–1275. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, S.P.J.N. Green Tea Extract: Chemistry, Antioxidant Properties and Food Applications–A Review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. In Vivo Total Antioxidant Capacity: Comparison of Different Analytical Methods1. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant Properties of Several Tropical Fruits: A Comparative Study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Anesini, C.; Ferraro, G.E.; Filip, R. Total Polyphenol Content and Antioxidant Capacity of Commercially Available Tea (Camellia Sinensis) in Argentina. J. Agric. Food Chem. 2008, 56, 9225–9229. [Google Scholar] [CrossRef]
- Granato, D.; Grevink, R.; Zielinski, A.A.F.; Nunes, D.S.; van Ruth, S.M. Analytical Strategy Coupled with Response Surface Methodology to Maximize the Extraction of Antioxidants from Ternary Mixtures of Green, Yellow, and Red Teas (Camellia Sinensis Var. Sinensis). J. Agric. Food Chem. 2014, 62, 10283–10296. [Google Scholar] [CrossRef]
- Kuroda, Y.; Hara, Y. Antimutagenic and Anticarcinogenic Activity of Tea Polyphenols. Mutat. Res./Rev. Mutat. Res. 1999, 436, 69–97. [Google Scholar] [CrossRef]
- Coe, S.; Fraser, A.; Ryan, L. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas. Int. J. Food Sci. 2013, 2013, 238216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Liu, R.H. The Phenolic Profiles and Antioxidant Activity in Different Types of Tea. Int. J. Food Sci. Technol. 2013, 48, 163–171. [Google Scholar] [CrossRef]
- Ferruzzi, M.G. The Influence of Beverage Composition on Delivery of Phenolic Compounds from Coffee and Tea. Physiol. Behav. 2010, 100, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Z.; Chen, P.; Harnly, J.M. New Phenolic Components and Chromatographic Profiles of Green and Fermented Teas. J. Agric. Food Chem. 2008, 56, 8130–8140. [Google Scholar] [CrossRef] [Green Version]
- Donlao, N.; Ogawa, Y. The Influence of Processing Conditions on Catechin, Caffeine and Chlorophyll Contents of Green Tea (Camelia Sinensis) Leaves and Infusions. LWT 2019, 116, 108567. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Tsai, Y.-J.; Tsay, J.-S.; Lin, J.-K. Factors Affecting the Levels of Tea Polyphenols and Caffeine in Tea Leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef]
- Carloni, P.; Tiano, L.; Padella, L.; Bacchetti, T.; Customu, C.; Kay, A.; Damiani, E. Antioxidant Activity of White, Green and Black Tea Obtained from the Same Tea Cultivar. Food Res. Int. 2013, 53, 900–908. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant Activity of Camellia Sinensis Leaves and Tea from a Lowland Plantation in Malaysia. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
- Ma, B.; Wang, J.; Xu, C.; Wang, Z.; Yin, D.; Zhou, B.; Ma, C. Interrelation Analysis between Phenolic Compounds and in Vitro Antioxidant Activities in Pu-Erh Tea. LWT 2022, 158, 113117. [Google Scholar] [CrossRef]
- Le, V.S.; Lesueur, D.; Herrmann, L.; Hudek, L.; Quyen, L.N.; Brau, L. Sustainable Tea Production through Agroecological Management Practices in Vietnam: A Review. Environ. Sustain. 2021, 4, 589–604. [Google Scholar] [CrossRef]
- Scoparo, C.T.; de Souza, L.M.; Rattmann, Y.D.; Kiatkoski, E.C.; Dartora, N.; Iacomini, M. The Protective Effect of Green and Black Teas (Camellia sinensis) and Their Identified Compounds against Murine Sepsis. Food Res. Int. 2016, 83, 102–111. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Tang, G.-Y.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Liu, Q.; Mao, Q.-Q.; Shang, A.; Li, H.-B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhu, Y.; Zhang, H.; Wang, J.; Liu, X.; Chen, Z.; Zheng, M.; Liu, B. Phenolic Compounds and the Biological Effects of Pu-Erh Teas with Long-Term Storage. Int. J. Food Prop. 2017, 20, 1715–1728. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Ma, C.; Wu, T.; Xu, C.; Wang, J.; Xia, T. Classification of Raw Pu-Erh Teas with Different Storage Time Based on Characteristic Compounds and Effect of Storage Environment. LWT 2020, 133, 109914. [Google Scholar] [CrossRef]
- Izzreen, N.M.N.Q.; Fadzelly, M.A.B. Phytochemicals and Antioxidant Properties of Different Parts of Camellia Sinensis Leaves from Sabah Tea Plantation in Sabah, Malaysia. Int. Food Res. J. 2013, 20, 307. [Google Scholar]
- Karori, S.M.; Wachira, F.N.; Wanyoko, J.K.; Ngure, R.M. Antioxidant Capacity of Different Types of Tea Products. Afr. J. Biotechnol. 2007, 6, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant Properties of Tropical and Temperate Herbal Teas. J. Food Compos. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Bhagwat, S.; Haytowitz, D.; Holden, J.; Eldridge, A.L.; Beecher, G.; Aladesanmi, J. Major Flavonoids in Dry Tea. J. Food Compos. Anal. 2005, 18, 487–501. [Google Scholar] [CrossRef]
- Unachukwu, U.J.; Ahmed, S.; Kavalier, A.; Lyles, J.T.; Kennelly, E.J. White and Green Teas (Camellia Sinensis Var. Sinensis): Variation in Phenolic, Methylxanthine, and Antioxidant Profiles. J. Food Sci. 2010, 75, C541–C548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusak, G.; Komes, D.; Likić, S.; Horžić, D.; Kovač, M. Phenolic Content and Antioxidative Capacity of Green and White Tea Extracts Depending on Extraction Conditions and the Solvent Used. Food Chem. 2008, 110, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea Chemistry. CRC Crit. Rev. Plant Sci. 1997, 16, 415–480. [Google Scholar] [CrossRef]
- Lee, J.-E.; Lee, B.-J.; Chung, J.-O.; Kim, H.-N.; Kim, E.-H.; Jung, S.; Lee, H.; Lee, S.-J.; Hong, Y.-S. Metabolomic Unveiling of a Diverse Range of Green Tea (Camellia Sinensis) Metabolites Dependent on Geography. Food Chem. 2015, 174, 452–459. [Google Scholar] [CrossRef]
- Shannon, E.; Jaiswal, A.K.; Abu-Ghannam, N. Polyphenolic Content and Antioxidant Capacity of White, Green, Black, and Herbal Teas: A Kinetic Study. Food Res. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Roslan, A.S.; Ismail, A.; Ando, Y.; Azlan, A. Effect of Drying Methods and Parameters on the Antioxidant Properties of Tea (Camellia Sinensis) Leaves. Food Prod. Process. Nutr. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Méndez-Lagunas, L.; Rodríguez-Ramírez, J.; Cruz-Gracida, M.; Sandoval-Torres, S.; Barriada-Bernal, G. Convective Drying Kinetics of Strawberry (Fragaria Ananassa): Effects on Antioxidant Activity, Anthocyanins and Total Phenolic Content. Food Chem. 2017, 230, 174–181. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT-Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Lee, M.-K.; Kim, H.-W.; Lee, S.-H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.-W.; Jung, H.-A.; Yoo, S.M.; Kim, J.-B. Characterization of Catechins, Theaflavins, and Flavonols by Leaf Processing Step in Green and Black Teas (Camellia Sinensis) Using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.J.; Brighenti, F.; Crozier, A. HPLC-MSn Analysis of Phenolic Compounds and Purine Alkaloids in Green and Black Tea. J. Agric. Food Chem. 2004, 52, 2807–2815. [Google Scholar] [CrossRef]
- Bi, W.; He, C.; Ma, Y.; Shen, J.; Zhang, L.H.; Peng, Y.; Xiao, P. Investigation of Free Amino Acid, Total Phenolics, Antioxidant Activity and Purine Alkaloids to Assess the Health Properties of Non-Camellia Tea. Acta Pharm. Sin. B 2016, 6, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudonis, R.; Raudone, L.; Jakstas, V.; Janulis, V. Comparative Evaluation of Post-Column Free Radical Scavenging and Ferric Reducing Antioxidant Power Assays for Screening of Antioxidants in Strawberries. J. Chromatogr. A 2012, 1233, 8–15. [Google Scholar] [CrossRef]
- Soni, U.; Brar, S.; Gauttam, V.K. Effect of Seasonal Variation on Secondary Metabolites of Medicinal Plants. Int. J. Pharm. Sci. Res. 2015, 6, 3654–3662. [Google Scholar]
- Qian, Z.-M.; Fang, B.-W.; Chen, H.-M.; Li, C.-H.; Huang, Q.; Chen, L.; Li, W.-J.; Li, D. Online Liquid Microextraction Coupled with HPLC-ABTS for Rapid Screening of Natural Antioxidants: Case Study of Three Different Teas. J. Chromatogr. Sci. 2020, 58, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Shanty, A.A.; Mohanan, P.V. Heterocyclic Schiff Bases as Non Toxic Antioxidants: Solvent Effect, Structure Activity Relationship and Mechanism of Action. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 192, 181–187. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; de la Cueva, S.P.; Rufián-Henares, J.Á. A Combined Procedure to Evaluate the Global Antioxidant Response of Bread. J. Cereal. Sci. 2010, 52, 239–246. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Solvent Effects on Total Antioxidant Capacity of Foods Measured by Direct QUENCHER Procedure. J. Food Compos. Anal. 2012, 26, 52–57. [Google Scholar] [CrossRef]
- Serpen, A.; Capuano, E.; Fogliano, V.; Gökmen, V. A New Procedure to Measure the Antioxidant Activity of Insoluble Food Components. J. Agric. Food Chem. 2007, 55, 7676–7681. [Google Scholar] [CrossRef] [PubMed]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Total Antioxidant Capacity and Phenolic Composition of Some Apple Juices with Combined HPLC–CUPRAC Assay. Food Chem. 2010, 120, 1201–1209. [Google Scholar] [CrossRef]
- Gülcin, I. Antioxidant Activity of Food Constituents: An Overview. Arch Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademi’r, S.E.; Altun, M. Total Antioxidant Capacity Assay of Human Serum Using Copper (II)-Neocuproine as Chromogenic Oxidant: The CUPRAC Method. Free Radic. Res. 2005, 39, 949–961. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Kim, Y.; Goodner, K.L.; Park, J.-D.; Choi, J.; Talcott, S.T. Changes in Antioxidant Phytochemicals and Volatile Composition of Camellia Sinensis by Oxidation during Tea Fermentation. Food Chem. 2011, 129, 1331–1342. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Xing, H.; Lu, X.; Zhao, L.; Qu, K.; Bi, K. Evaluation of Antioxidant Activity of Ten Compounds in Different Tea Samples by Means of an On-Line HPLC–DPPH Assay. Food Res. Int. 2013, 53, 847–856. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous Determination of Catechins, Caffeine and Gallic Acids in Green, Oolong, Black and Pu-Erh Teas Using HPLC with a Photodiode Array Detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Zhu, L.; Peng, W.-L.; He, X.-C.; Chen, H.-L.; Li, J.; Yu, T.; Liang, Z.-T.; Zhao, Z.-Z.; Chen, H.-B. Comparison of Ten Major Constituents in Seven Types of Processed Tea Using HPLC-DAD-MS Followed by Principal Component and Hierarchical Cluster Analysis. LWT-Food Sci. Technol. 2015, 62, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Nićiforović, N.; Mihailović, V.; Mašković, P.; Solujić, S.; Stojković, A.; Muratspahić, D.P. Antioxidant Activity of Selected Plant Species; Potential New Sources of Natural Antioxidants. Food Chem. Toxicol. 2010, 48, 3125–3130. [Google Scholar] [CrossRef]
- Truong, T.M.; Fumie, N.; Nguyen, V.C. Antioxidant Activities and Hypolipidemic Effects of an Aqueous Extract from Flower Buds of Cleistocalyx Operculatus (Roxb.) Merr. and Perry. J. Food Biochem. 2009, 33, 790–807. [Google Scholar]
- Zhang, C.; Suen, C.L.-C.; Yang, C.; Quek, S.Y. Antioxidant Capacity and Major Polyphenol Composition of Teas as Affected by Geographical Location, Plantation Elevation and Leaf Grade. Food Chem. 2018, 244, 109–119. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Ni, X. The Role of Soil Mineral Multi-Elements in Improving the Geographical Origin Discrimination of Tea (Camellia Sinensis). Biol. Trace Elem. Res. 2021, 199, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Shuai, M.; Peng, C.; Niu, H.; Shao, D.; Hou, R.; Cai, H. Recent Techniques for the Authentication of the Geographical Origin of Tea Leaves from Camellia Sinensis: A Review. Food Chem. 2022, 374, 131713. [Google Scholar] [CrossRef] [PubMed]
- Cong-Hau, N.; Anh-Dao, L.-T.; Nhon-Duc, L.; Thanh-Nho, N. Spectrophotometric Determination of Total Flavonoid Contents in Tea Products and Their Liquors under Various Brewing Conditions. Malays. J. Anal. Sci. 2021, 25, 740–750. [Google Scholar]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of Antiradical Properties of Antioxidants Using DPPH- Assay: A Critical Review and Results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Marc, F.; Davin, A.; Deglène-Benbrahim, L.; Ferrand, C.; Baccaunaud, M.; Fritsch, P. Studies of Several Analytical Methods for Antioxidant Potential Evaluation in Food. Medecine/Sciences 2004, 20, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, N.; Serafini, M.; Colombi, B.; del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
Tea Sample | TPCs | TFCs | DPPH | ABTS | FRAP | CUPRAC |
---|---|---|---|---|---|---|
(mg GAE g–1 DM) | (mg QE g–1 DM) | (µmol TE g–1 DM) | (µmol TE g–1 DM) | (µmol TE g–1 DM) | (µmol TE g–1 DM) | |
DL-G-01 | 217.2 ± 1.1 a | 125.3 ± 1.3 a | 2541.3 ± 31.6 a | 3651.2 ± 37.9 a | 2361.1 ± 23.9 a | 3625.5 ± 31.9 a |
DL-O-01 | 179.2 ± 1.7 b | 73.7 ± 0.6 b | 2074.0 ± 35.8 b | 3505.6 ± 39.2 b | 1561.1 ± 26.7 b | 3079.2 ± 33.4 b |
LH-O-02 | 165.4 ± 3.6 c | 67.7 ± 0.7 c | 1835.6 ± 31.3 c | 3025.7 ± 26.5 c | 1481.2 ± 22.6 c | 2726.2 ± 23.5 c |
LH-O-06 | 169.8 ± 0.5 c | 70.9 ± 1.3 d | 1809.8 ± 30.0 c | 3233.2 ± 34.5 d | 1552.0 ± 23.4 b | 2704.9 ± 22.3 c |
SG-G-01 | 287.2 ± 5.9 d | 177.3 ± 0.7 e | 2769.1 ± 27.5 d | 4675.1 ± 33.4 e | 2927.6 ± 23.5 d | 4141.2 ± 33.8 d |
SG-G-04 | 279.5 ± 0.6 d | 188.6 ± 0.2 f | 2754.0 ± 20.4 d | 4630.3 ± 34.8 e | 2844.5 ± 25.0 e | 4121.1 ± 38.1 d |
SG-G-07 | 268.9 ± 1.5 e | 207.1 ± 0.3 g | 2787.4 ± 31.9 d | 4506.2 ± 35.9 f | 2334.4 ± 25.4 a | 4410.6 ± 37.4 e |
SG-P-01 | 270.8 ± 7.6 e | 183.6 ± 1.4 h | 2482.0 ± 26.3 a | 4431.7 ± 35.1 f | 2721.4 ± 28.9 f | 4201.1 ± 33.7 d |
SG-P-02 | 286.5 ± 6.2 d | 188.0 ± 0.7 f | 2513.5 ± 31.3 a | 4474.3 ± 36.9 f | 2806.3 ± 25.3 e | 4060.7 ± 32.2 d |
SG-B-01 | 151.4 ± 1.5 f | 128.8 ± 0.1 i | 1745.4 ± 26.7 c | 3283.6 ± 35.5 d | 1906.6 ± 23.6 g | 2927.3 ± 39.9 f |
SG-B-02 | 158.2 ± 3.1 f | 136.1 ± 1.1 j | 1803.8 ± 25.0 c | 3343.4 ± 38.4 d | 2043.4 ± 30.1 h | 2928.8 ± 32.6 f |
p-value | 6.19 × 10−25 | 3.51 × 10−38 | 7.98 × 10−25 | 6.89 × 10−27 | 1.56 × 10−28 | 7.67 × 10−28 |
Green tea [28] | 63.87–80.27 | 20.90–35.17 | ||||
Black tea [28] | 56.63–76.93 | 19.07–33.70 | ||||
Green orthodox [29] | 271 | |||||
Green CTC [29] | 250.7–268.5 | |||||
Black orthodox [29] | 222.5 | |||||
Black CTC [29] | 174.5–206.5 | |||||
Oolong orthodox [29] | 261.5 | |||||
Green tea [30] | 113.7–141.2 | |||||
Black tea [30] | 60.6–84.9 | |||||
Oolong tea [30] | 75.0–90.9 |
Tea Sample | CFI | GA | C | EC | ECG | EGC | EGCG | TCs |
---|---|---|---|---|---|---|---|---|
DL-G-01 | 25.94 ± 0.02 | 4.07 ± 0.01 | 5.21 ± 0.04 | 12.77 ± <0.01 | 45.97 ± 0.02 | 19.33 ± 0.07 | 86.31 ± 0.03 | 169.6 |
DL-G-02 | 23.50 ± 0.07 | 5.49 ± 0.40 | 7.18 ± 0.26 | 12.50 ± 0.16 | 22.63 ± 0.15 | 33.56 ± 0.13 | 39.01 ± 0.03 | 114.9 |
DL-G-03 | 27.56 ± 0.01 | 7.84 ± 0.03 | 7.57 ± 0.02 | 14.22 ± 0.03 | 33.42 ± 0.06 | 22.24 ± 0.06 | 74.30 ± 0.01 | 151.7 |
DL-G-04 | 21.45 ± 0.10 | 3.09 ± 0.06 | 2.03 ± 0.75 | 2.27 ± 0.01 | 30.94 ± 0.13 | 29.01 ± 0.42 | 82.37 ± <0.01 | 146.6 |
DL-O-01 | 19.56 ± 0.15 | 1.24 ± <0.01 | 2.12 ± 0.05 | 4.54 ± 0.47 | 30.14 ± 0.22 | 16.15 ± 0.15 | 55.50 ± 0.91 | 108.4 |
DL-O-02 | 17.34 ± 0.02 | 1.60 ± 0.02 | 1.42 ± 0.01 | 9.24 ± <0.01 | 28.83 ± 0.03 | 8.56 ± 0.01 | 55.13 ± 0.02 | 103.2 |
DL-O-03 | 13.64 ± 0.20 | 0.30 ± <0.01 | 4.06 ± 0.04 | 1.53 ± 0.02 | 26.26 ± 0.39 | 28.97 ± 0.41 | 50.66 ± 0.04 | 111.5 |
DL-O-04 | 17.89 ± 0.07 | 6.05 ± 0.36 | 2.13 ± 0.53 | 1.95 ± <0.01 | 25.88 ± 0.15 | 22.34 ± 0.13 | 41.44 ± 0.99 | 93.7 |
DL-O-06 | 20.17 ± 0.33 | 2.16 ± <0.01 | 3.14 ± 0.05 | 5.62 ± 0.05 | 40.15 ± 0.12 | 21.15 ± 0.12 | 54.42 ± 0.60 | 124.5 |
DL-O-08 | 17.97 ± 0.01 | 7.42 ± 0.36 | 6.24 ± 0.33 | 2.12 ± 0.02 | 30.08 ± 0.15 | 33.05 ± 0.11 | 42.36 ± 0.86 | 113.9 |
LH-O-01 | 15.99 ± 0.04 | 2.74 ± <0.01 | 1.26 ± 0.01 | 9.36 ± 0.01 | 39.57 ± 0.05 | 7.85 ± 0.05 | 65.43 ± 0.05 | 123.5 |
LH-O-02 | 19.95 ± 0.01 | 2.75 ± 0.03 | 1.76 ± 0.01 | 8.93 ± 0.04 | 41.15 ± 0.03 | 8.70 ± 0.03 | 67.50 ± 0.04 | 128.0 |
LH-O-03 | 19.17 ± 0.01 | 1.56 ± 0.02 | 1.64 ± <0.01 | 8.32 ± 0.04 | 38.33 ± 0.03 | 8.10 ± 0.03 | 62.87 ± 0.04 | 119.3 |
LH-O-05 | 17.15 ± 0.07 | 2.61 ± 0.03 | 1.47 ± 0.01 | 8.39 ± 0.02 | 38.55 ± 0.09 | 7.62 ± 0.02 | 59.38 ± 0.03 | 115.4 |
LH-O-06 | 17.86 ± 0.02 | 2.50 ± 0.02 | 1.38 ± <0.01 | 9.16 ± 0.01 | 38.99 ± 0.01 | 8.25 ± 0.01 | 65.55 ± 0.05 | 123.3 |
LH-O-07 | 18.38 ± 0.03 | 2.12 ± 0.02 | 2.56 ± <0.01 | 8.70 ± 0.03 | 39.26 ± 0.04 | 8.17 ± 0.02 | 63.82 ± 0.04 | 122.5 |
SG-G-01 | 47.47 ± 0.29 | 1.88 ± 0.03 | 2.82 ± 0.05 | 5.55 ± 0.06 | 21.25 ± 0.20 | 29.45 ± 0.44 | 133.80 ± 1.60 | 192.9 |
SG-G-02 | 33.25 ± 0.13 | 2.21 ± 0.02 | 2.32 ± 0.02 | 9.10 ± 0.12 | 23.41 ± 0.13 | 32.14 ± 0.15 | 99.15 ± 0.14 | 166.1 |
SG-G-03 | 22.98 ± 0.13 | 10.25 ± 0.03 | 2.52 ± 0.29 | 7.32 ± 0.37 | 22.19 ± 0.12 | 20.13 ± 0.15 | 120.39 ± 0.47 | 172.6 |
SG-G-04 | 52.49 ± 0.02 | 2.01 ± 0.02 | 3.25 ± 0.05 | 8.89 ± 0.01 | 23.24 ± 0.01 | 41.46 ± 0.43 | 130.16 ± 1.70 | 207.0 |
SG-G-05 | 35.44 ± 0.25 | 0.55 ± 0.05 | 3.15 ± 0.02 | 14.42 ± 0.04 | 30.12 ± 0.12 | 29.11 ± 0.45 | 90.41 ± 0.25 | 167.2 |
SG-G-06 | 21.43 ± 0.08 | 9.07 ± 0.09 | 4.67 ± 0.46 | 9.94 ± 0.36 | 25.93 ± 0.49 | 23.25 ± 0.47 | 102.44 ± 0.52 | 166.2 |
SG-G-07 | 46.09 ± 0.37 | 1.24 ± 0.01 | 2.14 ± <0.01 | 12.87 ± 0.11 | 19.55 ± 0.07 | 38.34 ± 0.39 | 99.24 ± 0.17 | 172.1 |
SG-P-01 | 48.93 ± 0.72 | 2.59 ± 0.01 | 4.24 ± <0.01 | 7.76 ± 0.01 | 21.50 ± 0.23 | 32.69 ± 0.16 | 114.17 ± 1.59 | 180.4 |
SG-P-02 | 35.02 ± 1.14 | 2.51 ± 0.05 | 4.66 ± 0.06 | 6.90 ± 0.24 | 19.92 ± 0.41 | 20.15 ± 0.32 | 105.46 ± 1.45 | 157.1 |
SG-B-01 | 54.44 ± 0.65 | 3.50 ± 0.02 | 1.74 ± 0.01 | 2.93 ± <0.01 | 10.20 ± 0.03 | 6.11 ± 0.02 | 2.60 ± 0.01 | 23.6 |
SG-B-02 | 35.41 ± 1.24 | 3.54 ± 0.12 | 1.82 ± 0.01 | 3.94 ± 0.06 | 10.41 ± 0.14 | 6.14 ± 0.14 | 10.12 ± 0.12 | 32.5 |
SG-B-03 | 22.44 ± 0.06 | 6.15 ± 0.61 | 1.73 ± 0.17 | 4.30 ± 0.02 | 4.17 ± 0.02 | 8.70 ± 0.33 | 3.30 ± 0.01 | 22.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhu-Trang, T.-T.; Nguyen, Q.-D.; Cong-Hau, N.; Anh-Dao, L.-T.; Behra, P. Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam. Molecules 2023, 28, 3470. https://doi.org/10.3390/molecules28083470
Nhu-Trang T-T, Nguyen Q-D, Cong-Hau N, Anh-Dao L-T, Behra P. Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam. Molecules. 2023; 28(8):3470. https://doi.org/10.3390/molecules28083470
Chicago/Turabian StyleNhu-Trang, Tran-Thi, Quoc-Duy Nguyen, Nguyen Cong-Hau, Le-Thi Anh-Dao, and Philippe Behra. 2023. "Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam" Molecules 28, no. 8: 3470. https://doi.org/10.3390/molecules28083470