Antibody–Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors
Abstract
:1. Introduction
2. HER2 ADCs in Clinical Trials
2.1. Trastuzumab Deruxtecan
2.2. Trastuzumab Duocarmazine
3. Preclinical Development
4. Overcoming Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giaquinto, A.N.; Broaddus, R.R.; Jemal, A.; Siegel, R.L. The Changing Landscape of Gynecologic Cancer Mortality in the United States. Obs. Gynecol 2022, 139, 440–442. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, B.; Tang, D.; Bowden, N.A. Biomarkers of Platinum Resistance in Ovarian Cancer: What Can We Use to Improve Treatment. Endocrine-Related Cancer 2018, 25, R303–R318. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Usta, E.H.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Eskander, R.N.; Sill, M.W.; Beffa, L.; Moore, R.G.; Hope, J.M.; Musa, F.B.; Mannel, R.; Shahin, M.S.; Cantuaria, G.H.; Girda, E.; et al. Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2159–2170. [Google Scholar] [CrossRef]
- González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef]
- Pujade-Lauraine, E.; Hilpert, F.; Weber, B.; Reuss, A.; Poveda, A.; Kristensen, G.; Sorio, R.; Vergote, I.; Witteveen, P.; Bamias, A.; et al. Bevacizumab Combined with Chemotherapy for Platinum-Resistant Recurrent Ovarian Cancer: The AURELIA Open-Label Randomized Phase III Trial. J. Clin. Oncol. 2014, 32, 1302–1308. [Google Scholar] [CrossRef]
- Carter, P.J.; Lazar, G.A. Next Generation Antibody Drugs: Pursuit of the “High-Hanging Fruit”. Nat. Rev. Drug Discov. 2018, 17, 197–223. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, E.; Gandullo-Sánchez, L.; Ocaña, A.; Pandiella, A. Novel Adcs and Strategies to Overcome Resistance to Anti-Her2 Adcs. Cancers 2022, 14, 154. [Google Scholar] [CrossRef]
- Tolcher, A.; Hamilton, E.; Coleman, R.L. The Evolving Landscape of Antibody-Drug Conjugates in Gynecologic Cancers. Cancer Treat. Rev. 2023, 116, 102546. [Google Scholar] [CrossRef]
- Fuentes-Antrás, J.; Genta, S.; Vijenthira, A.; Siu, L.L. Antibody–Drug Conjugates: In Search of Partners of Choice. Trends Cancer 2023, 9, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Diver, E.J.; Foster, R.; Rueda, B.R.; Growdon, W.B. The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. Oncol. 2015, 20, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Xu, X.; Ye, M.; Sheng, B.; Zhu, X. The Prognostic Value of HER2 in Ovarian Cancer: A Meta-Analysis of Observational Studies. PLoS ONE 2018, 13, e0191972. [Google Scholar] [CrossRef] [PubMed]
- Tuefferd, M.; Couturier, J.; Penault-Llorca, F.; Vincent-Salomon, A.; Broët, P.; Guastalla, J.P.; Allouache, D.; Combe, M.; Weber, B.; Pujade-Lauraine, E.; et al. HER2 Status in Ovarian Carcinomas: A Multicenter GINECO Study of 320 Patients. PLoS ONE 2007, 2, e1138. [Google Scholar] [CrossRef] [PubMed]
- Citri, A.; Yarden, Y. EGF-ERBB Signalling: Towards the Systems Level. Nat. Rev. Mol. Cell Biol. 2006, 7, 505–516. [Google Scholar] [CrossRef]
- Morrison, C.; Zanagnolo, V.; Ramirez, N.; Cohn, D.E.; Kelbick, N.; Copeland, L.; Maxwell, L.G.; Fowler, J.M. HER-2 Is an Independent Prognostic Factor in Endometrial Cancer: Association with Outcome in a Large Cohort of Surgically Staged Patients. J. Clin. Oncol. 2006, 24, 2376–2385. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the next Generation of Antibody-Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Masters, J.C.; Nickens, D.J.; Xuan, D.; Shazer, R.L.; Amantea, M. Clinical Toxicity of Antibody Drug Conjugates: A Meta-Analysis of Payloads. Investig. New Drugs 2018, 36, 121–135. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Wang, K.; Zhu, H. Treatment-Related Adverse Events of Antibody–Drug Conjugates in Clinical Trials: A Systematic Review and Meta-Analysis. Cancer 2023, 129, 283–295. [Google Scholar] [CrossRef]
- Thomas, A.; Teicher, B.A.; Hassan, R. Antibody–Drug Conjugates for Cancer Therapy. Lancet Oncol. 2016, 17, e254–e262. [Google Scholar] [CrossRef]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and Safety of Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer (innovaTV 204/GOG-3023/ENGOT-Cx6): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Mirvetuximab Soravtansine: First Approval. Drugs 2023, 83, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Zografos, E.; Liontos, M.; Koutsoukos, K.; Dimopoulos, M.A.; Zagouri, F. Trastuzumab Deruxtecan (DS-8201a): The Latest Research and Advances in Breast Cancer. Clin. Breast Cancer 2021, 21, e212–e219. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, a Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef]
- Suzuki, M.; Yagishita, S.; Sugihara, K.; Ogitani, Y.; Nishikawa, T.; Ohuchi, M.; Teishikata, T.; Jikoh, T.; Yatabe, Y.; Yonemori, K.; et al. Visualization of Intratumor Pharmacokinetics of [Fam-] Trastuzumab Deruxtecan (DS-8201a) in HER2 Heterogeneous Model Using Phosphor-Integrated Dots Imaging Analysis. Clin. Cancer Res. 2021, 27, 3970–3979. [Google Scholar] [CrossRef]
- Takegawa, N.; Tsurutani, J.; Kawakami, H.; Yonesaka, K.; Kato, R.; Haratani, K.; Hayashi, H.; Takeda, M.; Nonagase, Y.; Maenishi, O.; et al. [Fam-] Trastuzumab Deruxtecan, Antitumor Activity Is Dependent on HER2 Expression Level Rather than on HER2 Amplification. Int. J. Cancer 2019, 145, 3414–3424. [Google Scholar] [CrossRef]
- Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; et al. Safety, Pharmacokinetics, and Antitumour Activity of Trastuzumab Deruxtecan (DS-8201), a HER2-Targeting Antibody–Drug Conjugate, in Patients with Advanced Breast and Gastric or Gastro-Oesophageal Tumours: A Phase 1 Dose-Escalation Study. Lancet Oncol. 2017, 18, 1512–1522. [Google Scholar] [CrossRef]
- ENHERTU® (Fam-Trastuzumab Deruxtecan-Nxki)|Official Patient Website. ENHERTU® (Fam-Trastuzumab Deruxtecan-Nxki) Patient Website. Available online: https://www.enhertu.com (accessed on 24 August 2023).
- Han, T.H.; Zhao, B. Absorption, Distribution, Metabolism, and Excretion Considerations for the Development of Antibody-Drug Conjugates. Drug Metab. Dispos. 2014, 42, 1914–1920. [Google Scholar] [CrossRef]
- Nagai, Y.; Oitate, M.; Shiozawa, H.; Ando, O. Comprehensive Preclinical Pharmacokinetic Evaluations of Trastuzumab Deruxtecan (DS-8201a), a HER2-Targeting Antibody-Drug Conjugate, in Cynomolgus Monkeys. Xenobiotica 2019, 49, 1086–1096. [Google Scholar] [CrossRef]
- Guo, Z.; Ding, Y.; Wang, M.; Liu, J.; Zhai, Q.; Du, Q. Safety of Trastuzumab Deruxtecan: A Meta-Analysis and Pharmacovigilance Study. J. Clin. Pharm. Ther. 2022, 47, 1837–1844. [Google Scholar] [CrossRef]
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Harnden, K.; Mauro, L.; Pennisi, A.; Armitage, M.; Soliman, H. Clinical Practices and Institutional Protocols on Prophylaxis, Monitoring, and Management of Selected Adverse Events Associated with Trastuzumab Deruxtecan. Oncologist 2022, 27, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Mauricio, D.; Bellone, S.; Mutlu, L.; McNamara, B.; Manavella, D.D.; Demirkiran, C.; Verzosa, M.S.Z.; Buza, N.; Hui, P.; Hartwich, T.M.P.; et al. Trastuzumab Deruxtecan (DS-8201a), a HER2-Targeting Antibody–Drug Conjugate with Topoisomerase I Inhibitor Payload, Shows Antitumor Activity in Uterine and Ovarian Carcinosarcoma with HER2/Neu Expression. Gynecol. Oncol. 2023, 170, 38–45. [Google Scholar] [CrossRef]
- Nishikawa, T.; Hasegawa, K.; Matsumoto, K.; Mori, M.; Hirashima, Y.; Takehara, K.; Ariyoshi, K.; Kato, T.; Yagishita, S.; Hamada, A.; et al. Trastuzumab Deruxtecan for Human Epidermal Growth Factor Receptor 2-Expressing Advanced or Recurrent Uterine Carcinosarcoma (NCCH1615): The STATICE Trial. J. Clin. Oncol. 2023, 41, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Tsurutani, J.; Iwata, H.; Krop, I.; Jänne, P.A.; Doi, T.; Takahashi, S.; Park, H.; Redfern, C.; Tamura, K.; Wise-Draper, T.M.; et al. Targeting Her2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase i Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020, 10, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Mosele, M.F.; Lusque, A.; Dieras, V.; Deluche, E.; Ducoulombier, A.; Pistilli, B.; Bachelot, T.; Viret, F.; Levy, C.; Signolle, N.; et al. LBA1 Unraveling the Mechanism of Action and Resistance to Trastuzumab Deruxtecan (T-DXd): Biomarker Analyses from Patients from DAISY Trial. Ann. Oncol. 2022, 33, S123. [Google Scholar] [CrossRef]
- Shah, S.; Kim, Y.; Ostrovnaya, I.; Murali, R.; Schrader, K.A.; Lach, F.P.; Sarrel, K.; Rau-Murthy, R.; Hansen, N.; Zhang, L.; et al. Assessment of SLX4 Mutations in Hereditary Breast Cancers. PLoS ONE 2013, 8, e66961. [Google Scholar] [CrossRef]
- Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.J.; Ricks, T.K.; Chow, E.C.Y.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; et al. FDA Approval Summary: Fam-Trastuzumab Deruxtecan-Nxki for the Treatment of Unresectable or Metastatic HER2-Positive Breast Cancer. Clin. Cancer Res. 2021, 27, 4478–4485. [Google Scholar] [CrossRef]
- FDA Approves First Targeted Therapy for HER-2 Low Breast Cancer. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-her2-low-breast-cance (accessed on 3 February 2023).
- FDA Grants Accelerated Approval to Fam-Trastuzumab Deruxtecan-Nxki for HER2-Mutant Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-her2-mutant-non-small-cell-lung (accessed on 3 February 2023).
- Elgersma, R.C.; Coumans, R.G.E.; Huijbregts, T.; Menge, W.M.P.B.; Joosten, J.A.F.; Spijker, H.J.; De Groot, F.M.H.; Van Der Lee, M.M.C.; Ubink, R.; Van Den Dobbelsteen, D.J.; et al. Design, Synthesis, and Evaluation of Linker-Duocarmycin Payloads: Toward Selection of HER2-Targeting Antibody-Drug Conjugate SYD985. Mol. Pharm. 2015, 12, 1813–1835. [Google Scholar] [CrossRef]
- Van Der Lee, M.M.C.; Groothuis, P.G.; Ubink, R.; Van Der Vleuten, M.A.J.; Van Achterberg, T.A.; Loosveld, E.M.; Damming, D.; Jacobs, D.C.H.; Rouwette, M.; Egging, D.F.; et al. The Preclinical Profile of the Duocarmycin-Based HER2-Targeting ADC SYD985 Predicts for Clinical Benefit in Low HER2-Expressing Breast Cancers. Mol. Cancer Ther. 2015, 14, 692–703. [Google Scholar] [CrossRef]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab Duocarmazine in Locally Advanced and Metastatic Solid Tumours and HER2-Expressing Breast Cancer: A Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Aftimos, P.; van Herpen, C.; Mommers, E.; Koper, N.; Goedings, P.; Oesterholt, M.; Awada, A.; Desar, I.; Lim, J.; Dean, E.; et al. Abstract P6-12-02: SYD985, a Novel Anti-HER2 ADC, Shows Promising Activity in Patients with HER2-Positive and HER2-Negative Metastatic Breast Cancer. Cancer Res. 2017, 77 (Suppl. 4), 6–12. [Google Scholar] [CrossRef]
- Saura, C.; Thistlethwaite, F.; Banerji, U.; Lord, S.; Moreno, V.; MacPherson, I.; Boni, V.; Rolfo, C.D.; de Vries, E.G.E.; Van Herpen, C.M.L.-; et al. A Phase I Expansion Cohorts Study of SYD985 in Heavily Pretreated Patients with HER2-Positive or HER2-Low Metastatic Breast Cancer. J. Clin. Oncol. 2018, 36 (Suppl. 15), 1014. [Google Scholar] [CrossRef]
- Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Altwerger, G.; Masserdotti, A.; Pettinella, F.; Zammataro, L.; Buza, N.; Hui, P.; et al. SYD985, a Novel Duocarmycin-Based HER2-Targeting Antibody-Drug Conjugate, Shows Promising Antitumor Activity in Epithelial Ovarian Carcinoma with HER2/Neu Expression. Gynecol. Oncol. 2017, 146, 179–186. [Google Scholar] [CrossRef]
- Black, J.; Menderes, G.; Bellone, S.; Schwab, C.L.; Bonazzoli, E.; Ferrari, F.; Predolini, F.; De Haydu, C.; Cocco, E.; Buza, N.; et al. Syd985, a Novel Duocarmycin-Based Her2-Targeting Antibody-Drug Conjugate, Shows Antitumor Activity in Uterine Serous Carcinoma with Her2/Neu Expression. Mol. Cancer Ther. 2016, 15, 1900–1909. [Google Scholar] [CrossRef]
- Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Predolini, F.; Pettinella, F.; Masserdotti, A.; Zammataro, L.; Altwerger, G.; Buza, N.; et al. SYD985, a Novel Duocarmycin-Based Her2-Targeting Antibody–Drug Conjugate, Shows Antitumor Activity in Uterine and Ovarian Carcinosarcoma with HER2/Neu Expression. Clin. Cancer Res. 2017, 23, 5836–5845. [Google Scholar] [CrossRef]
- Burris, H.A.; Tibbitts, J.; Holden, S.N.; Sliwkowski, M.X.; Phillips, G.D.L. Trastuzumab Emtansine (T-DM1): A Novel Agent for Targeting HER2+ Breast Cancer. Clin. Breast Cancer 2011, 11, 275–282. [Google Scholar] [CrossRef]
- English, D.P.; Bellone, S.; Schwab, C.L.; Bortolomai, I.; Bonazzoli, E.; Cocco, E.; Buza, N.; Hui, P.; Lopez, S.; Ratner, E.; et al. T-DM1, a Novel Antibody-Drug Conjugate, Is Highly Effective against Primary HER2 Overexpressing Uterine Serous Carcinoma in Vitro and in Vivo. Cancer Med. 2014, 3, 1256–1265. [Google Scholar] [CrossRef]
- Nicoletti, R.; Lopez, S.; Bellone, S.; Cocco, E.; Schwab, C.L.; Black, J.D.; Centritto, F.; Zhu, L.; Bonazzoli, E.; Buza, N.; et al. T-DM1, a Novel Antibody-Drug Conjugate, Is Highly Effective against Uterine and Ovarian Carcinosarcomas Overexpressing HER2. Clin. Exp. Metastasis 2015, 32, 29–38. [Google Scholar] [CrossRef]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; et al. Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody-Cytotoxic Drug Conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [CrossRef]
- Peddi, P.F.; Hurvitz, S.A. Ado-Trastuzumab Emtansine (T-DM1) in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Metastatic Breast Cancer: Latest Evidence and Clinical Potential. Ther. Adv. Med. Oncol. 2014, 6, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.D.; Bellone, S.; Buza, N.; Schwartz, P.E. Regression of Metastatic, Radiation/Chemotherapy-Resistant Uterine Serous Carcinoma Overexpressing HER2/Neu with Trastuzumab Emtansine (TDM-1). Gynecol. Oncol. Rep. 2017, 19, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Tymon-Rosario, J.; Bonazzoli, E.; Bellone, S.; Manzano, A.; Pelligra, S.; Guglielmi, A.; Gnutti, B.; Nagarkatti, N.; Zeybek, B.; Manara, P.; et al. DHES0815A, a Novel Antibody-Drug Conjugate Targeting HER2/Neu, Is Highly Active against Uterine Serous Carcinomas in Vitro and in Vivo. Gynecol. Oncol. 2021, 163, 334–341. [Google Scholar] [CrossRef]
- Zhang, D.; Pillow, T.H.; Ma, Y.; Cruz-Chuh, J.D.; Kozak, K.R.; Sadowsky, J.D.; Lewis Phillips, G.D.; Guo, J.; Darwish, M.; Fan, P.; et al. Linker Immolation Determines Cell Killing Activity of Disulfide-Linked Pyrrolobenzodiazepine Antibody-Drug Conjugates. ACS Med. Chem. Lett. 2016, 7, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, X.; Wei, X.; Tang, C.; Zhang, W. HER2-Targeted Therapies in Gastric Cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188549. [Google Scholar] [CrossRef]
- Shi, F.; Liu, Y.; Zhou, X.; Shen, P.; Xue, R.; Zhang, M. Disitamab Vedotin: A Novel Antibody-Drug Conjugates for Cancer Therapy. Drug Deliv. 2022, 29, 1335–1344. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.Z.; Wang, L.; Jiang, J.; Dong, L.H.; Chen, F.; Dong, K.; Song, H.F. Conjugating MMAE to a Novel Anti-HER2 Antibody for Selective Targeted Delivery. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 12929–12937. [Google Scholar] [CrossRef]
- Dai, L.; Jin, X.; Wang, L.; Wang, H.; Yan, Z.; Wang, G.; Liang, B.; Huang, F.; Luo, Y.; Chen, T.; et al. Efficacy of Disitamab Vedotin in Treating HER2 2+/FISH-Gastric Cancer. OncoTargets Ther. 2022, 15, 267–275. [Google Scholar] [CrossRef]
- Jiang, J.; Dong, L.; Wang, L.; Wang, L.; Zhang, J.; Chen, F.; Zhang, X.; Huang, M.; Li, S.; Ma, W.; et al. HER2-Targeted Antibody Drug Conjugates for Ovarian Cancer Therapy. Eur. J. Pharm. Sci. 2016, 93, 274–286. [Google Scholar] [CrossRef]
- Yao, Y.; Yu, L.; Su, X.; Wang, Y.; Li, W.; Wu, Y.; Cheng, X.; Zhang, H.; Wei, X.; Chen, H.; et al. Synthesis, Characterization and Targeting Chemotherapy for Ovarian Cancer of Trastuzumab-SN-38 Conjugates. J. Control. Release 2015, 220, 5–17. [Google Scholar] [CrossRef]
- Santi, D.V.; Schneider, E.L.; Ashley, G.W. Macromolecular Prodrug That Provides the Irinotecan (CPT-11) Active-Metabolite SN-38 with Ultralong Half-Life, Low C Max, and Low Glucuronide Formation. J. Med. Chem. 2014, 57, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Xu, Y.Y.; Shao, Z.M.; Yu, K.D. Resistance to Antibody-Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Commun. 2023, 43, 297–337. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Pellizzari, G.; Tarantino, P.; Valenza, C.; Curigliano, G. Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers 2023, 15, 1130. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.M.; Bossenmaier, B.; Kollmorgen, G.; Niederfellner, G. Acquired Resistance to Antibody-Drug Conjugates. Cancers 2019, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Gerber, H.P.; Sapra, P.; Loganzo, F.; May, C. Combining Antibody-Drug Conjugates and Immune-Mediated Cancer Therapy: What to Expect? Biochem. Pharmacol. 2016, 102, 1–6. [Google Scholar] [CrossRef]
- Matusewicz, L.; Meissner, J.; Toporkiewicz, M.; Sikorski, A.F. The Effect of Statins on Cancer Cells—Review. Tumor Biol. 2015, 36, 4889–4904. [Google Scholar] [CrossRef]
- Brown, E.L.; Shmuel, S.; Mandleywala, K.; Panikar, S.S.; Berry, N.-K.; Rao, Y.; Zidel, A.; Lewis, J.S.; Pereira, P.M.R. Immuno-PET Detects Antibody–Drug Potency on Coadministration with Statins. J. Nucl. Med. 2023, 64, 1638–1646. [Google Scholar] [CrossRef]
- Akyildiz, A.; Guven, D.C.; Yildirim, H.C.; Ismayilov, R.; Yilmaz, F.; Tatar, O.D.; Chalabiyev, E.; Kus, F.; Yalcin, S.; Aksoy, S. Do Statins Enhance the Antitumor Effect of Trastuzumab Emtansine (T-DM1)?: Real-Life Cohort. Med. (United States) 2023, 102, e33677. [Google Scholar] [CrossRef]
- Sethunath, V.; Hu, H.; De Angelis, C.; Veeraraghavan, J.; Qin, L.; Wang, N.; Simon, L.M.; Wang, T.; Fu, X.; Nardone, A.; et al. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Mol. Cancer Res. 2019, 17, 2318–2330. [Google Scholar] [CrossRef]
- Schroeder, R.L.; Stevens, C.L.; Sridhar, J. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules 2014, 19, 15196–15212. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Wu, Y.; Wang, J.; Ma, F. Efficacy and Safety of Trastuzumab with or without a Tyrosine Kinase Inhibitor for HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2023, 1878, 188969. [Google Scholar] [CrossRef]
ADC | Target Antigen | Payload | Mechanism of Action | Gynecologic Cancer Type | Trial Phase | Clinicaltrials.gov Identifiers | Key Arms |
---|---|---|---|---|---|---|---|
Trastuzumab deruxtecan (DS-8201a) | HER2 | Deruxtecan (Exatecan derivative) | inhibition of topoisomerase I | Endometrial, Ovarian, Cervical | II | NCT04482309 | DS-8201a monotherapy |
Trastuzumab Duocarmazine (SYD985) | HER2 | Duocarmycin | DNA alkylation | Endometrial, Ovarian | II | NCT04205630 | SYD985 monotherapy |
I | NCT04235101 | SYD985 + Niraparib at various doses |
Clinicaltrials.gov Identifiers | Phase | Drug | Drug Class | Study Population |
---|---|---|---|---|
NCT02491099 | 2 | Afatinib | Tyrosine Kinase Inhibitor | Persistent or recurrent HER2-positive USC |
NCT04235101 | 1 | Trastuzumab Duocarmazine (SYD985) | ADC | HER2-expressing recurrent, advanced or metastatic endometrial carcinoma |
NCT04294628 | 1 | Trastuzumab deruxtecan (T-DXd, DS-8201a) | ADC | HER2 expressing metastatic or unresectable solid tumor |
NCT04482309 | 2 | Trastuzumab deruxtecan (T-DXd, DS-8201a) | ADC | Locally advanced, metastatic, or unresectable endometrial cancer with HER2 overexpression (Cohort 4) |
NCT04585958 | 1 | T-DXd + olaparib | ADC | HER2-expressing metastatic/unresectable cancers, with dose expansion phase limited to endometrial serous carcinoma |
NCT04639219 | 2 | Trastuzumab deruxtecan (T-DXd, DS-8201a) | ADC | HER2-overexpressing metastatic or unresectable solid tumor |
NCT04704661 | 1 | Trastuzumab deruxetcan with ceralasertib | Advanced endometrial cancer with HER2-positive expressing with progression following at least one line of systemic chemotherapy | |
NCT05256225 | 2/3 | Trastuzumab/pertuzumab or trastuzumab with carboplatin-paclitaxel | Monoclonal antibody | Primary, chemotherapy-naïve, HER2-positive endometrial serous carcinoma or carcinosarcoma |
NCT05372614 | 1 | Trastuzumab deruxtecan with neratinib | ADC + Kinase Inhibitor | HER2 expressing metastatic or unresectable solid tumor |
NCT05765851 | 1 | T-DXd + DS-1103a | ADC | HER2-positive metastatic or unresectable solid tumor |
ADC | Monoclonal Antibody | Linker | Payload | DAR |
---|---|---|---|---|
Trastuzumab Deruxtecan (T-DXd) | Trastuzumab | Cleavable | Deruxtecan | 8 |
Trastuzumab duocarmazine (SYD985) | Trastuzumab | Cleavable | Duocarmycin (Seco-DUBA) | 2.8 |
Ado-trastuzumab Emtansine (T-DM1) | Trastuzumab | Non-cleavable | Emtansine (DM1) | 3.5 |
DHES0815A | IgG antiHer2 | Non-cleavable | Purrolo [2,1-c] [1,4] benzodiazepine monoamide (PBD-MA) | 2 |
Disitamab Vedotin (RC-48) | Hertuzumab | Cleavable | Monomethyl auristatin E (MMAE) | 4 |
Trastuzumab-SN-38 conjugates (T-SN38) | Trastuzumab | Cleavable | SN-38 | A: 3.7 B: 3.2 C: 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNamara, B.; Greenman, M.; Pebley, N.; Mutlu, L.; Santin, A.D. Antibody–Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors. Molecules 2023, 28, 7389. https://doi.org/10.3390/molecules28217389
McNamara B, Greenman M, Pebley N, Mutlu L, Santin AD. Antibody–Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors. Molecules. 2023; 28(21):7389. https://doi.org/10.3390/molecules28217389
Chicago/Turabian StyleMcNamara, Blair, Michelle Greenman, Nicole Pebley, Levent Mutlu, and Alessandro D. Santin. 2023. "Antibody–Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors" Molecules 28, no. 21: 7389. https://doi.org/10.3390/molecules28217389
APA StyleMcNamara, B., Greenman, M., Pebley, N., Mutlu, L., & Santin, A. D. (2023). Antibody–Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors. Molecules, 28(21), 7389. https://doi.org/10.3390/molecules28217389