Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Samples
- CP: flour from Acheta domesticus “Cricket Powder”, purchased from GRIG Distribuce s.r.o. Czech Republic;
- BW: flour from Alphitobius diaperinus, purchased from isaac nutrition Gesellschaft mit beschränkter Haftung. Germany;
- MW: dried larvae from Tenebrio molitor, purchased from Sahawa, Germany. The larvae were hand grinded in a mortar to obtain a powder similar to the CP and BW flours.
4.1.1. EU Samples’ Authorization as Novel Food
4.2. Headspace Solid-Phase Micro-Extraction (HS-SPME)
4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the development of edible insect-based foods in europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Blakeney, M. Food Loss and Food Waste: Causes and Solutions; Edward Elgar Publishing: Cheltenham, UK, 2019; ISBN 9781788975391. [Google Scholar]
- Van Huis, A. Edible insects are the future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Bärtsch, C.; Schmidt, C.; Christandl, F.; Wyss, A.M. When Utilitarian Claims Backfire: Advertising Content and the Uptake of Insects as Food. Front. Nutr. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Wendin, K.M.; Nyberg, M.E. Factors influencing consumer perception and acceptability of insect-based foods. Curr. Opin. Food Sci. 2021, 40, 67–71. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods—Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Lytou, A.E.; Panagou, E.Z.; Nychas, G.J.E. Volatilomics for food quality and authentication. Curr. Opin. Food Sci. 2019, 28, 88–95. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; De Winne, A.; Devaere, J.; Fraeye, I. The flavour of edible insects: A comprehensive review on volatile compounds and their analytical assessment. Trends Food Sci. Technol. 2022, 127, 352–367. [Google Scholar] [CrossRef]
- Souza-Silva, É.A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Xu, C.H.; Chen, G.S.; Xiong, Z.H.; Fan, Y.X.; Wang, X.C.; Liu, Y. Applications of solid-phase microextraction in food analysis. TrAC—Trends Anal. Chem. 2016, 80, 12–29. [Google Scholar] [CrossRef]
- Xu, S.; Li, H.; Dong, P.; Wang, M.; Chen, C.P.; Feng, S.; Fan, J. High-throughput profiling volatiles in edible oils by cooling assisted solid-phase microextraction technique for sensitive discrimination of edible oils adulteration. Anal. Chim. Acta 2022, 1221, 340159. [Google Scholar] [CrossRef]
- Sun, Y.; Dou, X.; Yue, X.; Yu, L.; Zhang, L.; Li, J.; Li, P. Optimization of Headspace SPME GC × GC-TOF/MS Analysis of Volatile Organic Compounds in Edible Oils by Central Composite Design for Adulteration Detection of Edible Oil. Food Anal. Methods 2020, 13, 1328–1336. [Google Scholar] [CrossRef]
- Reale, S.; Di Cecco, V.; Di Donato, F.; Di Martino, L.; Manzi, A.; Di Santo, M.; D’Archivio, A.A. Characterization of the Volatile Profile of Cultivated and Wild-Type Italian Celery (Apium graveolens L.) Varieties by HS-SPME/GC-MS. Appl. Sci. 2021, 11, 5855. [Google Scholar] [CrossRef]
- Costa, R.; De Grazia, S.; Grasso, E.; Trozzi, A. Headspace-solid-phase microextraction-gas chromatography as analytical methodology for the determination of volatiles in wild mushrooms and evaluation of modifications occurring during storage. J. Anal. Methods Chem. 2015, 2015, 951748. [Google Scholar] [CrossRef]
- Reale, S.; Biancolillo, A.; Foschi, M.; Di Donato, F.; Di Censo, E.; D’Archivio, A.A. Geographical discrimination of Italian carrot (Daucus carota L.) varieties: A comparison between ATR FT-IR fingerprinting and HS-SPME/GC-MS volatile profiling. Food Control 2022, 146, 109508. [Google Scholar] [CrossRef]
- Khatun, H.; Claes, J.; Smets, R.; De Winne, A.; Akhtaruzzaman, M.; Van Der Borght, M. Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur. Food Res. Technol. 2021, 247, 1291–1305. [Google Scholar] [CrossRef]
- Grossmann, K.K.; Merz, M.; Appel, D.; De Araujo, M.M.; Fischer, L. New insights into the flavoring potential of cricket (Acheta domesticus) and mealworm (Tenebrio molitor) protein hydrolysates and their Maillard products. Food Chem. 2021, 364, 130336. [Google Scholar] [CrossRef]
- Żołnierczyk, A.K.; Szumny, A. Sensory and chemical characteristic of two insect species: Tenebrio molitor and zophobas morio larvae affected by roasting processes. Molecules 2021, 26, 2697. [Google Scholar] [CrossRef]
- Chuyen, N.V. Maillard reaction and food processing: Application aspects. In Process-Induced Chemical Changes in Food; Shahidi, F., Ho, C.-T., Chuyen, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 434, pp. 213–235. [Google Scholar]
- Tressl, R.; Kersten, E.; Rewicki, D. Formation of Pyrroles, 2-Pyrrolidones, and Pyridones by Heating of 4-Aminobutyric Acid and Reducing Sugars. J. Agric. Food Chem. 1993, 41, 2125–2130. [Google Scholar] [CrossRef]
- Whitfield, F.B.; Mottram, D.S. Volatiles from interactions of Maillard reactions and lipids. Crit. Rev. Food Sci. Nutr. 1992, 31, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, G.P. The strecker degradation of amino acids: Newer avenues for flavor formation. Food Rev. Int. 2008, 24, 416–435. [Google Scholar] [CrossRef]
- Wong, J.M.; Bernhard, R.A. Effect of Nitrogen Source on Pyrazine Formation. J. Agric. Food Chem. 1988, 36, 123–129. [Google Scholar] [CrossRef]
- Stadler, R.H.; Verzegnassi, L.; Varga, N.; Grigorov, M.; Studer, A.; Riediker, S.; Schilter, B. Formation of Vinylogous Compounds in Model Maillard Reaction Systems. Chem. Res. Toxicol. 2003, 16, 1242–1250. [Google Scholar] [CrossRef]
- Wu, C.M.; Wang, Z.; Wu, Q.H. Volatile compounds produced from monosodium glutamate in common food cooking. J. Agric. Food Chem. 2000, 48, 2438–2442. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, P.Y.; Yaylayan, V.A. Formation of pent-4-en-1-amine, the counterpart of acrylamide from lysine and its conversion into piperidine in lysine/glucose reaction mixtures. J. Agric. Food Chem. 2010, 58, 4456–4462. [Google Scholar] [CrossRef]
- Hofmann, T. Characterization of the Chemical Structure of Novel Colored Maillard Reaction Products from Furan-2-carboxaldehyde and Amino Acids. J. Agric. Food Chem. 1998, 46, 932–940. [Google Scholar] [CrossRef]
- Tesfaye, T.; Chunilall, V.; Sithole, B.; Ramjugernath, D. Identification of Waste Chicken Feathers Degradation Products using Pyrolysis Gas Chromatography/Mass Spectrometry. Int. J. Chem. Sci. Res. 2019, 17, 1000304. [Google Scholar] [CrossRef]
- Said, S.M.; Obuid-Allah, A.H.; El-Shimy, N.A.E.; Ali, R.S.; Mahbob, M.A.E. Analysis of amino acids, fatty acids and neurotoxins using gas chromatography-mass spectrometry in four scorpions species inhabiting new valley governorate, Egypt. Turkish J. Zool. 2021, 45, 442–454. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Adebo, O.A.; Kayitesi, E. Metabolite profile of Bambara groundnut (Vigna subterranea) and dawadawa (an African fermented condiment) investigation using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Heliyon 2021, 7, e06666. [Google Scholar] [CrossRef]
- Grebenteuch, S.; Kanzler, C.; Klaußnitzer, S.; Kroh, L.W.; Rohn, S. The formation of methyl ketones during lipid oxidation at elevated temperatures. Molecules 2021, 26, 1104. [Google Scholar] [CrossRef]
- Berger, R.G. Flavour and Fragrances—Chemistry, Bioprocessing and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, ISBN 978-3-540-49339-6. [Google Scholar]
- Kaseleht, K.; Leitner, E.; Paalme, T. Determining aroma-active compounds in Kama flour using SPME-GC/MS and GC-olfactometry. Flavour Fragr. J. 2011, 26, 122–128. [Google Scholar] [CrossRef]
- Bader, S.; Czerny, M.; Eisner, P.; Buettner, A. Characterisation of odour-active compounds in lupin flour. J. Sci. Food Agric. 2009, 89, 2421–2427. [Google Scholar] [CrossRef]
- Hernández-Álvarez, A.J.; Mondor, M.; Piña-Domínguez, I.A.; Sánchez-Velázquez, O.A.; Melgar Lalanne, G. Drying technologies for edible insects and their derived ingredients. Dry. Technol. 2021, 39, 1991–2009. [Google Scholar] [CrossRef]
- NIST14; Mass Spectral Database. NIST—National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.
Retention Index | CP (n = 3) | BW (n = 3) | MW (n = 3) | ||||
---|---|---|---|---|---|---|---|
# | RT (min) | Compound * | Exp 1 | Lit 2 | Mean A% ± se | Mean A% ± se | Mean A% ± se |
1 | 2.399 | 3-ethylpentane | 684 | 686 ± 1 | 2.11 ± 0.90 | 4.71 ± 0.31 | 16.70 ± 6.05 |
2 | 2.775 | (methyldisulfanyl)methane | 743 | 746 ± 6 | 0.61 ± 0.31 | 1.14 ± 0.19 | n.d. |
3 | 2.891 | pentan-1-ol | 761 | 765 ± 4 | n.d. | n.d. | 1.58 ± 0.13 |
4 | 2.930 | piperidine a | 767 | 764 ± 2 | 0.04 ± 0.04 | 0.56 ± 0.03 | n.d. |
5 | 3.090 | hexan-2-one | 792 | 790 ± 3 | n.d. | n.d. | 3.81 ± 0.27 |
6 | 3.395 | 3-methylpiperidine a | 825 | 823 ± 0 | 0.26 ± 0.18 | 2.91 ± 0.21 | 0.031 ± 0.007 |
7 | 3.493 | 2-methylpyrazine a | 834 | 831 ± 7 | 11.52 ± 2.04 | 2.77 ± 0.47 | n.d. |
8 | 3.571 | 2,3-dimethylpiperidine a | 842 | n/a | 0.13 ± 0.02 | 0.53 ± 0.05 | n.d. |
9 | 4.319 | 2,5-dimethylpyrazine a | 914 | 917 ± 4 | 2.77 ± 0.43 | 3.87 ± 0.39 | n.d. |
10 | 4.976 | dimethyltrisulfane | 977 | 970 ± 7 | 1.58 ± 0.18 | 0.99 ± 0.18 | n.d. |
11 | 4.980 | hexanoic acid | 978 | 990 ± 16 | n.d. | n.d. | 1.17 ± 0.25 |
12 | 5.035 | oct-1-en-3-ol | 983 | 980 ± 2 | n.d. | n.d. | 1.38 ± 0.07 |
13 | 5.130 | 2-pentylfuran a | 992 | 993 ± 2 | n.d. | n.d. | 2.31 ± 0.15 |
14 | 5.450 | 2-ethylpiperidine a | 1020 | n/a | 3.83 ± 0.76 | 9.27 ± 0.34 | n.d. |
15 | 5.530 | 2-methyl-N-(2-methylbutyl)butan-1-imine | 1026 | 1025 ± 0 | 0.54 ± 0.29 | 3.55 ± 0.21 | 0.20 ± 0.03 |
16 | 5.609 | 2-ethylhex-2-enal | 1031 | 999 ± 30 | n.d. | n.d. | 1.36 ± 0.17 |
17 | 5.724 | 3-methyl-N-(3-methylbutyl)butan-1-imine | 1042 | 1047 ± n/a | 0.59 ± 0.27 | 3.05 ± 0.36 | n.d. |
18 | 5.950 | 2-acetylpyrrole a | 1060 | 1064 ± 5 | 3.81 ± 0.72 | 2.93 ± 0.67 | n.d. |
19 | 6.14 | piperidin-4-ylmethanamine a | 1076 | n/a | n.d. | n.d. | 2.01 ± 0.30 |
20 | 6.180 | octa-3,5-dien-2-one | 1079 | 1073 ± 7 | n.d. | n.d. | 0.73 ± 0.10 |
21 | 6.260 | 3-ethyl-2,5-dimethylpyrazine a | 1085 | 1082 ± 3 | 7.87 ± 0.73 | 2.94 ± 0.52 | n.d. |
22 | 6.323 | nonan-2-one | 1090 | 1092 ± 2 | 4.66 ± 0.83 | 0.72 ± 0.03 | 2.10 ± 0.09 |
23 | 6.380 | hygrine (1-[(2R)-1-methylpyrrolidin-2-yl]propan-2-one) § a | 1095 | 1093 ± 2 | n.d. | n.d. | 2.90 ± 0.31 |
24 | 6.410 | hexanamide | 1098 | n/a | n.d. | n.d. | 1.40 ± 0.23 |
25 | 6.520 | 4-methylpyrimidin-2-amine a | 1105 | n/a | 0.28 ± 0.05 | 2.54 ± 0.54 | n.d. |
26 | 7.280 | γ-heptalactone (5-propyloxolan-2-one) § | 1056 | 1159 ± 4 | n.d. | n.d. | 2.12 ± 0.71 |
27 | 7.650 | piperidin-2-one a | 1781 | 1174 ± n/a | 6.83 ± 1.19 | 0.98 ± 0.09 | n.d. |
28 | 7.806 | decan-2-one | 1191 | 1193 ± 2 | 7.23 ± 1.42 | 0.59 ± 0.07 | 2.91 ± 0.23 |
29 | 7.945 | 1-pentylpyrrole a | 1200 | n/a | n.d. | n.d. | 2.08 ± 0.26 |
30 | 8.041 | 1-but-1-enylpyrrolidine a | 1206 | n/a | 0.56 ± 0.11 | 1.03 ± 0.19 | n.d. |
31 | 8.401 | (methyltetrasulfanyl)methane | 1227 | 1234 ± 11 | 1.10 ± 0.17 | 1.17 ± 0.09 | n.d. |
32 | 8.882 | 2-methyl-6-(3-methylbutyl)pyrazine a | 1250 | 1249 ± 4 | 0.36 ± 0.05 | 0.80 ± 0.16 | n.d. |
33 | 9.068 | 2-phenylacetic acid | 1266 | 1262 ± 5 | 0.13 ± 0.09 | 3.29 ± 0.26 | n.d. |
34 | 9.603 | 1H-indole | 1297 | 1295 ± 7 | n.d. | n.d. | 1.64 ± 0.14 |
35 | 9.904 | 2,5-dimethyl-3-(3-methylbutyl)pyrazine a | 1313 | 1315 ± 7 | 1.98 ± 0.38 | 3.70 ± 0.81 | n.d. |
36 | 10.761 | 1-butylpyrrolidin-2-one a | 1360 | n/a | 0.24 ± 0.02 | 2.46 ± 0.53 | 6.75 ± 0.44 |
37 | 10.945 | γ-nonalactone (5-pentyloxolan-2-one) § | 1369 | 1363 ± 5 | n.d. | n.d. | 2.41 ± 0.33 |
38 | 11.265 | α-ionol ((E)-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-ol) § | 1387 | 1390 ± 3 | n.d. | n.d. | 0.06 ± 0.02 |
39 | 11.302 | 2-butyloct-2-enal | 1389 | 1378 ± 10 | n.d. | n.d. | 0.30 ± 0.04 |
40 | 11.393 | 1-pentylpyrrolidin-2-one a | 1394 | n/a | n.d. | n.d. | 2.81 ± 0.29 |
41 | 11.684 | pyridine-4-carboxamide | 1409 | 1408 ± n/a | n.d. | n.d. | 1.81 ± 0.16 |
42 | 12.531 | 2-benzylpiperidine a | 1453 | n/a | 0.39 ± 0.03 | 2.17 ± 0.08 | 0.82 ± 0.11 |
43 | 12.893 | 3-phenylpyridine a | 1472 | 1467 ± 2 | 0.54 ± 0.36 | 0.61 ± 0.02 | n.d. |
44 | 13.32 | 5,6-dihydro-6-pentyl-2H-pyran-2-one | 1495 | 1501 ± 19 | n.d. | n.d. | 0.45 ± 0.07 |
45 | 13.451 | 1-heptylpyrrolidin-2-one a | 1502 | n/a | 0.16 ± 0.07 | 0.85 ± 0.03 | 18.51 ± 1.94 |
46 | 13.590 | 2-hexyldecan-1-ol | 1509 | 1504 ± n/a | n.d. | n.d. | 0.87 ± 0.15 |
47 | 13.797 | 2,5-diethoxyaniline | 1520 | n/a | n.d. | n.d. | 1.67 ± 0.14 |
48 | 14.253 | 1-pyrrolidin-1-yldecan-1-one a | 1554 | n/a | n.d. | n.d. | 1.45 ± 0.10 |
49 | 14.521 | naphthalen-2-amine | 1559 | 1555 ± 7 | 2.40 ± 0.72 | 4.71 ± 0.55 | n.d. |
50 | 15.639 | 1-pyrrolidin-1-yldodecan-1-one a | 1618 | n/a | n.d. | n.d. | 1.41 ± 0.11 |
51 | 16.729 | (1-piperidinyl)-furfural (5-piperidin-1-ylfuran-2-carbaldehyde) § a | 1678 | n/a | 1.24 ± 0.32 | 1.87 ± 0.60 | n.d. |
52 | 16.750 | tetradecan-1-ol | 1679 | 1676 ± 4 | n.d. | n.d. | 1.03 ± 0.21 |
53 | 16.888 | (Z)-pentadec-11-enal | 1686 | 1694 ± 8 | n.d. | n.d. | 1.64 ± 0.31 |
54 | 17.231 | pentadecan-2-one | 1705 | 1698 ± 4 | n.d. | n.d. | 1.58 ± 0.02 |
55 | 17.495 | 1-benzylpyrrolidin-2-one a | 1720 | n/a | n.d. | n.d. | 4.04 ± 0.32 |
56 | 18.442 | tetradecanoic acid | 1774 | 1768 ± 5 | 0.61 ± 0.20 | 0.48 ± 0.04 | 0.42 ± 0.05 |
57 | 18.75 | octadec-1-ene | 1791 | 1793 ± 1 | n.d. | n.d. | 0.72 ± 0.16 |
58 | 19.896 | 1-decylpyrrolidin-2-one a | 1858 | n/a | n.d. | n.d. | 3.53 ± 0.30 |
59 | 20.603 | heptadecan-2-one | 1900 | 1902 ± 7 | 9.75 ± 1.52 | 0.61 ± 0.03 | n.d. |
60 | 21.364 | N-valeryl-l-proline-pentyl ester (hexadecyl 1-pentanoylpyrrolidine-2-carboxylate) § | 1947 | n/a | 0.95 ± 0.35 | 6.61 ± 0.55 | n.d. |
61 | 21.661 | hexadecanoic acid | 1966 | 1968 ± 7 | 14.66 ± 6.25 | 12.21 ± 2.64 | n.d. |
62 | 22.725 | geranyl linalool | 2031 | 2034 ± n/a | n.d. | n.d. | 0.87 ± 0.05 |
63 | 22.750 | N-valeryl-l-proline-hexyl ester (hexadecyl 1-hexanoylpyrrolidine-2-carboxylate) § | 2034 | n/a | 1.47 ± 0.51 | 7.94 ± 0.75 | n.d. |
64 | 23.820 | γ-palmitolactone (5-dodecyloxolan-2-one) § | 2103 | 2105 ± 1 | 1.93 ± 0.42 | 0.28 ± 0.01 | 0.41 ± 0.03 |
65 | 24.246 | (9Z,12Z)-octadeca-9,12-dienoic acid | 2132 | 2133 ± 12 | 2.08 ± 0.65 | 2.09 ± 1.00 | n.d. |
66 | 24.342 | (Z)-octadec-9-enoic acid | 2138 | 2141 ± 11 | 2.41 ± 0.99 | 2.71 ± 0.97 | n.d. |
67 | 24.21 | octadecanoic acid | 2164 | 2172 ± 7 | 2.34 ± 0.51 | 0.34 ± 0.13 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, S.; Biancolillo, A.; Foschi, M.; D’Archivio, A.A. Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study. Molecules 2023, 28, 3075. https://doi.org/10.3390/molecules28073075
Reale S, Biancolillo A, Foschi M, D’Archivio AA. Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study. Molecules. 2023; 28(7):3075. https://doi.org/10.3390/molecules28073075
Chicago/Turabian StyleReale, Samantha, Alessandra Biancolillo, Martina Foschi, and Angelo Antonio D’Archivio. 2023. "Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study" Molecules 28, no. 7: 3075. https://doi.org/10.3390/molecules28073075
APA StyleReale, S., Biancolillo, A., Foschi, M., & D’Archivio, A. A. (2023). Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study. Molecules, 28(7), 3075. https://doi.org/10.3390/molecules28073075