Roasting and Cacao Origin Affect the Formation of Volatile Organic Sulfur Compounds in 100% Chocolate
Abstract
:1. Introduction
- characterize VSCs in different roasting treatments of 100% dark chocolate from three different origins (Ghana, Peru, and Madagascar) using comprehensive gas chromatography paired with sulfur-selective chemiluminescence detection (GCxGC-SCD);
- determine the effect of roasting time, roasting temperature, and cacao origin on the concentration of VSCs in 100% dark chocolate;
- model the effects of roasting time, roasting temperature, and cacao origin on the concentration of VSCs of noted importance to cacao flavor, dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS).
2. Results
2.1. The Roasting of Chocolate Increases Number and Concentration Levels of VSCs
2.2. Roasting Time, Roasting Temperature and Cacao Origin Affect DMDS and DMTS Formation in Chocolate
3. Discussion
4. Materials and Methods
4.1. Chocolate Samples and Chemicals
4.2. Volatile Analysis
4.2.1. Optimization of Headspace-Solid Phase Microextraction (HS-SPME) Parameters
4.2.2. Profiling of Volatile Sulfur Compounds with GCxGC-SCD/FID
4.3. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- ICCO (International Cocoa Organization). Cocoa Market Report January 2022; ICCO: Abidjan, Côte d’Ivoire, 2022. [Google Scholar]
- Fowler, M.S.; Coutel, F. Cocoa Beans: From Tree to Factory. In Beckett’s Industrial Chocolate Manufacture and Use; Beckett, S.T., Fowler, M.S., Ziegler, G.R., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 9–49. ISBN 978-1-118-92359-7. [Google Scholar]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef]
- Tran, P.D.; Van de Walle, D.; De Clercq, N.; De Winne, A.; Kadow, D.; Lieberei, R.; Messens, K.; Tran, D.N.; Dewettinck, K.; Van Durme, J. Assessing Cocoa Aroma Quality by Multiple Analytical Approaches. Food Res. Int. 2015, 77, 657–669. [Google Scholar] [CrossRef]
- Ziegleder, G. Flavour Development in Cocoa and Chocolate. In Beckett’s Industrial Chocolate Manufacture and Use; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 185–215. [Google Scholar]
- Magagna, F.; Guglielmetti, A.; Liberto, E.; Reichenbach, S.E.; Allegrucci, E.; Gobino, G.; Bicchi, C.; Cordero, C. Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. J. Agric. Food Chem. 2017, 65, 6329–6341. [Google Scholar] [CrossRef] [PubMed]
- Frauendorfer, F.; Schieberle, P. Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations. J. Agric. Food Chem. 2006, 54, 5521–5529. [Google Scholar] [CrossRef]
- McClure, A.P.; Hopfer, H.; Grün, I.U. Optimizing Consumer Acceptability of 100% Chocolate through Roasting Treatments and Effects on Bitterness and Other Important Sensory Characteristics. Curr. Res. Food Sci. 2022, 5, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Mussinan, C.J.; Keelan, M.E. Sulfur Compounds in Foods. In Sulfur Compounds in Foods; Mussinan, C.J., Keelan, M.E., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1994; Volume 564, ISBN 978-0-8412-2943-3. [Google Scholar]
- McGorrin, R.J. The Significance of Volatile Sulfur Compounds in Food Flavors: An Overview. In ACS Symposium Series; Qian, M.C., Fan, X., Mahattanatawee, K., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1068, pp. 3–31. ISBN 978-0-8412-2616-6. [Google Scholar]
- Dimick, P.S.; Hoskin, J.M. Chemico-Physical Aspects of Chocolate Processing—A Review. Can. Inst. Food Sci. Technol. J. 1981, 14, 269–282. [Google Scholar] [CrossRef]
- Lopez, A.; Quesnel, V.C. The Contribution of Sulphur Compounds to Chocolate Aroma. In Proceedings of the 1st International Congress on Cocoa and Chocolate Research, Munich, Germany, 8–10 May 1974. [Google Scholar]
- Schnermann, P.; Schieberle, P. Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses. J. Agric. Food Chem. 1997, 45, 867–872. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; He, C.; Song, H.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, J.; Yang, H.; Su, X. Characterization and Comparison of Key Aroma-Active Compounds of Cocoa Liquors from Five Different Areas. Int. J. Food Prop. 2017, 20, 2396–2408. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.D.; Mitchell, D.G.; Bazinet, M.L.; Weurman, C. Studies on the Volatile Components of Different Varieties of Cocoa Beans. J. Food Sci. 1962, 27, 165–170. [Google Scholar] [CrossRef]
- Timbie, D.J.; Keeney, P.G. Extraction, Fractionation, and Amino Acid Composition of Brazilian Comun Cacao Proteins. J. Agric. Food Chem. 1977, 25, 424–426. [Google Scholar] [CrossRef]
- Chetschik, I.; Pedan, V.; Chatelain, K.; Kneubühl, M.; Hühn, T. Characterization of the Flavor Properties of Dark Chocolates Produced by a Novel Technological Approach and Comparison with Traditionally Produced Dark Chocolates. J. Agric. Food Chem. 2019, 67, 3991–4001. [Google Scholar] [CrossRef] [PubMed]
- Rawel, H.; Huschek, G.; Sagu, S.; Homann, T. Cocoa Bean Proteins—Characterization, Changes and Modifications Due to Ripening and Post-Harvest Processing. Nutrients 2019, 11, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballance, P.E. Production of Volatile Compounds Related to the Flavour of Foods from the Strecker Degradation of DL-Methionine. J. Sci. Food Agric. 1961, 12, 532–536. [Google Scholar] [CrossRef]
- Rohsius, C.; Matissek, R.; Lieberei, R. Free Amino Acid Amounts in Raw Cocoas from Different Origins. Eur. Food Res. Technol. 2006, 222, 432–438. [Google Scholar] [CrossRef]
- Kirchhoff, P.-M.; Biehl, B.; Crone, G. Peculiarity of the Accumulation of Free Amino Acids during Cocoa Fermentation. Food Chem. 1989, 31, 295–311. [Google Scholar] [CrossRef]
- Kirchhoff, P.-M.; Biehl, B.; Ziegeler-Berghausen, H.; Hammoor, M.; Lieberei, R. Kinetics of the Formation of Free Amino Acids in Cocoa Seeds during Fermentation. Food Chem. 1989, 34, 161–179. [Google Scholar] [CrossRef]
- Landaud, S.; Helinck, S.; Bonnarme, P. Formation of Volatile Sulfur Compounds and Metabolism of Methionine and Other Sulfur Compounds in Fermented Food. Appl. Microbiol. Biotechnol. 2008, 77, 1191–1205. [Google Scholar] [CrossRef]
- Lopez, A.S.; Quesnel, V.C. Methyl-S-Methionine Sulphonium Salt: A Precursor of Dimethyl Sulphide in Cacao. J. Sci. Food Agric. 1976, 27, 85–88. [Google Scholar] [CrossRef]
- McClure, A.P.; Spinka, C.M.; Grün, I.U. Quantitative Analysis and Response Surface Modeling of Important Bitter Compounds in Chocolate Made from Cocoa Beans with Eight Roast Profiles across Three Origins. J. Food Sci. 2021, 86, 4901–4913. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Schieberle, P. Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef] [PubMed]
- Schieberle, P.; Pfnuer, P. Characterization of Key Odorants in Chocolate. In Flavor Chemistry: Thirty Years of Progress; Teranishi, R., Wick, E.L., Hornstein, I., Eds.; Springer: Boston, MA, USA, 1999; pp. 147–153. ISBN 978-1-4615-4693-1. [Google Scholar]
- Deuscher, Z.; Gourrat, K.; Repoux, M.; Boulanger, R.; Labouré, H.; Le Quéré, J.-L. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020, 25, 1809. [Google Scholar] [CrossRef] [Green Version]
- Rochelle, M.M.; Prévost, G.J.; Acree, T.E. Computing Odor Images. J. Agric. Food Chem. 2018, 66, 2219–2225. [Google Scholar] [CrossRef]
- Segurel, M.A.; Razungles, A.J.; Riou, C.; Salles, M.; Baumes, R.L. Contribution of Dimethyl Sulfide to the Aroma of Syrah and Grenache Noir Wines and Estimation of Its Potential in Grapes of These Varieties. J. Agric. Food Chem. 2004, 52, 7084–7093. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; Marchand, S.; De Revel, G.; Barbe, J.C. How Do Esters and Dimethyl Sulphide Concentrations Affect Fruity Aroma Perception of Red Wine? Demonstration by Dynamic Sensory Profile Evaluation. Food Chem. 2016, 194, 196–200. [Google Scholar] [CrossRef]
- Lestremau, F.; Andersson, F.A.T.; Desauziers, V. Investigation of Artefact Formation During Analysis of Volatile Sulphur Compounds Using Solid Phase Microextraction (SPME). Chromatographia 2004, 59, 607–613. [Google Scholar] [CrossRef]
- Haberhauer-Troyer, C.; Rosenberg, E.; Grasserbauer, M. Evaluation of Solid-Phase Microextraction for Sampling of Volatile Organic Sulfur Compounds in Air for Subsequent Gas Chromatographic Analysis with Atomic Emission Detection. J. Chromatogr. A 1999, 848, 305–315. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma Cacao) Bean Flavour Profile—A Review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Kováts, E. Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Hebbali, A. olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. 2022. Available online: https://CRAN.R-project.org/package=olsrr (accessed on 1 July 2022).
- Gu, Z. Complex Heatmap Visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | RI1D [-] | RT2D [min] | Compound | RI1D [-] | RT2D [min] |
---|---|---|---|---|---|
DMDS | 743 ± 1.5 | 1.98 ± 0.05 | Cpd13 | 1091 ± 0.0 | 2.59 ± 0.02 |
DMTS | 976 ± 0.0 | 3.33 ± 0.03 | Cpd14 | 1092 ± 0.0 | 3.85 ± 0.03 |
Cpd1 | 688 ± 0.0 | 1.58 ± 0.02 | Cpd15 | 1107 ± 0.0 | 3.29 ± 0.01 |
Cpd2 | 714 ± 1.2 | 2.33 ± 0.05 | Cpd16 | 1131 ± 0.0 | 3.20. ± 0.03 |
Cpd3 | 910 ± 0.0 | 3.49 ± 0.05 | Cpd17 | 1134 ± 0.0 | 4.12± 0.03 |
Cpd4 | 926 ± 3.4 | 4.71 ± 0.15 | Cpd18 | 1181 ± 0.0 | 3.70 ± 0.03 |
Cpd5 | 1007 ± 0.0 | 3.30 ± 0.01 | Cpd19 | 1243 ± 0.8 | 5.06 ± 0.06 |
Cpd6 | 1010 ± 0.0 | 4.28 ± 0.03 | Cpd20 | 1246 ± 0.0 | 4.12 ± 0.03 |
Cpd7 | 1034 ± 0.0 | 3.02 ± 0.01 | Cpd21 | 1253 ± 0.0 | 3.73 ± 0.03 |
Cpd8 | 1039 ± 4.0 | 3.64 ± 0.08 | Cpd22 | 1253 ± 0.0 | 4.86 ± 0.04 |
Cpd9 | 1066 ± 1.5 | 5.01 ± 0.07 | Cpd23 | 1267 ± 0.0 | 4.13 ± 0.03 |
Cpd10 | 1079 ± 0.0 | 3.23 ± 0.04 | Cpd24 | 1292 ± 3.5 | 5.12 ± 0.06 |
Cpd11 | 1080 ± 0.8 | 4.28 ± 0.02 | Cpd25 | 1310 ± 3.5 | 4.77 ± 0.06 |
Cpd12 | 1088 ± 0.0 | 3.36 ± 0.03 | Cpd26 | 1398 ± 0.0 | 4.91 ± 0.05 |
Model Term | DMDS | DMTS |
---|---|---|
(Intercept) | −0.127 ± 0.122 | −0.548 ± 0.096 * |
Origin: Madagascar | −0.103 ± 0.154 | - |
Origin: Peru | −0.160 ± 0.154 | - |
Time | 0.210 ± 0.061 * | 0.281 ± 0.082 * |
Temp | 1.45 ± 0.094 * | 0.938 ± 0.073 * |
Temp2 | 0.685 ± 0.083 * | 0.569 ± 0.071 * |
Time2 | −0.238 ± 0.068 * | - |
Time × Temp | 0.204 ± 0.060 * | - |
Origin: Madagascar × Temp | −0.731 ± 0.126 * | - |
Origin: Peru × Temp | −0.909 ± 0.126 * | - |
Origin: Madagascar × Temp2 | −0.418 ± 0.106 * | - |
Origin: Peru × Temp2 | −0.389 ± 0.106 * | - |
Degrees of freedom (df) | 15 | 23 |
Residual Standard Error | 0.246 | 0.351 |
Multiple R2 | 0.965 | 0.891 |
Adjusted R2 | 0.939 | 0.877 |
F-statistic | 37.6 | 62.7 |
p | 6.85 × 10−9 | 3.18 × 10−11 |
No. | Time (min) | Temperature (°C) | Origin | No. | Time (min) | Temperature (°C) | Origin |
---|---|---|---|---|---|---|---|
12 | 0 | 24 | Ghana | 2/13 | 40 | 114 | Ghana |
23 | Madagascar | 14/20 | Madagascar | ||||
5 | Peru | 1/11 | Peru | ||||
25 | 55 | 64 | Ghana | 22 | 80 | 135 | Ghana |
16 | Madagascar | 26 | Madagascar | ||||
10 | Peru | 21 | Peru | ||||
7 | 80 | 84 | Ghana | 18 | 54 | 151 | Ghana |
24 | Madagascar | 3 | Madagascar | ||||
4 | Peru | 9 | Peru | ||||
19 | 11 | 105 | Ghana | 6 | 20 | 171 | Ghana |
17 | Madagascar | 8 | Madagascar | ||||
15 | Peru | 27 | Peru |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiedemer, A.M.; McClure, A.P.; Leitner, E.; Hopfer, H. Roasting and Cacao Origin Affect the Formation of Volatile Organic Sulfur Compounds in 100% Chocolate. Molecules 2023, 28, 3038. https://doi.org/10.3390/molecules28073038
Wiedemer AM, McClure AP, Leitner E, Hopfer H. Roasting and Cacao Origin Affect the Formation of Volatile Organic Sulfur Compounds in 100% Chocolate. Molecules. 2023; 28(7):3038. https://doi.org/10.3390/molecules28073038
Chicago/Turabian StyleWiedemer, Aaron M., Alan P. McClure, Erich Leitner, and Helene Hopfer. 2023. "Roasting and Cacao Origin Affect the Formation of Volatile Organic Sulfur Compounds in 100% Chocolate" Molecules 28, no. 7: 3038. https://doi.org/10.3390/molecules28073038