A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles
Abstract
:1. Introduction
2. Three-Membered Heterocycles
3. Four-Membered Heterocycles
4. Five-Membered Heterocycles
4.1. Nucleophilic Fluorination
4.1.1. Fluorine/Halogen Exchange
4.1.2. Oxidative Desulfurization and Fluorination
4.1.3. Cyclization Induced by Fluoride Ion
4.2. Cyclization Based on N-CF3 Starting Materials
4.2.1. [3+2] Cycloaddition
4.2.2. Other Cyclization
4.3. Electrophilic Trifluoromethylation
5. Six-Membered Heterocycles
5.1. Nucleophilic Trifluoromethylation
5.2. [4+2] Cycloaddition
5.3. Other Approaches
6. Seven- and Larger-Membered Heterocycles
7. Other Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef] [PubMed]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Tomashenko, O.A.; Grushin, V.V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 2011, 111, 4475–4521. [Google Scholar] [CrossRef]
- Besset, T.; Schneider, C.; Cahard, D. Tamed Arene and Heteroarene Trifluoromethylation. Angew. Chem. Int. Ed. 2012, 51, 5048–5050. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Matiadis, D.; Sagnou, M. Pyrazoline hybrids as promising anticancer agents: An up-to-date overview. Int. J. Mol. Sci. 2020, 21, 5507. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M.; Zacconi, F.; Gupta, G.; Aljabali, A.A.A.; Mishra, V.; Tambuwala, M.M.; Kapoor, D.N.; Negi, P.; de Jesus Andreoli Pinto, T.; et al. Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review. Curr. Org. Chem. 2021, 25, 654–668. [Google Scholar]
- Asahina, Y.; Araya, I.; Iwase, K.; Iinuma, F.; Hosaka, M.; Ishizaki, T. Synthesis and antibacterial activity of the 4-quinolone-3-carboxylic acid derivatives having a trifluoromethyl group as a novel N-1 substituent. J. Med. Chem. 2005, 48, 3443–3446. [Google Scholar] [CrossRef]
- Schow, S.R.; Mackman, R.L.; Blum, C.L.; Brooks, E.; Horsma, A.G.; Joly, A.; Kerwar, S.S.; Lee, G.; Shiffman, D.; Nelson, M.G.; et al. Synthesis and activity of 2,6,9-trisubstituted purines. Bioorg. Med. Chem. Lett. 1997, 7, 2697–2702. [Google Scholar] [CrossRef]
- Samadder, P.; Suchankova, T.; Hylse, O.; Khirsariya, P.; Nikulenkov, F.; Drapela, S.; Strakova, N.; Vanhara, P.; Vasickova, K.; Kolarova, H.; et al. Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation. Mol. Cancer Ther. 2017, 16, 1831–1842. [Google Scholar] [CrossRef] [Green Version]
- Gahman, T.C.; Thomas, D.J.; Lang, H.; Massari, M.E. Aminoquinazoline Cannabinoid Receptor Modulators for Treatment of Disease and Their Preparation. U.S. Patent WO2008157500 A1, 24 December 2008. [Google Scholar]
- Miura, T.; Tamatani, Y. Preparation of a Methyllactam Ring Compound and Its Medicinal Uses. U.S. Patent WO2019168096 A1, 6 September 2019. [Google Scholar]
- Scattolin, T.; Bortolamiol, E.; Visentin, F.; Palazzolo, S.; Caligiuri, I.; Perin, T.; Canzonieri, V.; Demitri, N.; Rizzolio, F.; Togni, A. Palladium(II)-η3-Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids. Chem.-Eur. J. 2020, 26, 11868–11876. [Google Scholar] [CrossRef] [PubMed]
- Leroux, F.; Jeschke, P.; Schlosser, M. α-Fluorinated Ethers, Thioethers, and Amines: Anomerically Biased Species. Chem. Rev. 2005, 105, 827–856. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Neumann, C.N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. [Google Scholar] [CrossRef] [Green Version]
- Milcent, T.; Crousse, B. The main and recent syntheses of the N-CF3 motif. C. R. Chim. 2018, 21, 771–781. [Google Scholar] [CrossRef]
- Logothetis, A.L. Aziridines from diazomethane and fluorine-substituted imines. J. Org. Chem. 1964, 29, 3049–3052. [Google Scholar] [CrossRef]
- Coe, P.L.; Holton, A.G. Some reactions of diazomethane with polyfluoroazaolefins. J. Fluor. Chem. 1977, 10, 553–564. [Google Scholar] [CrossRef]
- Kaupp, G.; Dengler, O.; Burger, K.; Rottegger, S. Stable triaziridines. Angew. Chem. 1985, 97, 341–342. [Google Scholar] [CrossRef]
- Mitsch, R.A. Organic fluoronitrogens. X. Reductive defluorination-cyclization. J. Org. Chem. 1968, 33, 1847–1849. [Google Scholar] [CrossRef]
- Chang, S.C.; Desmarteau, D.D. Perfluoromethanamine ion. Polyhedron 1982, 1, 129–130. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Bauknight, C.W., Jr.; DesMarteau, D.D. Some novel reactions of N-chlorodifluoromethanimine. J. Org. Chem. 1984, 49, 3590–3595. [Google Scholar] [CrossRef]
- Bauknight, C.W., Jr.; DesMarteau, D.D. Reactions of N-bromodifluoromethanimine. J. Org. Chem. 1988, 53, 4443–4447. [Google Scholar] [CrossRef]
- Bauknight, C.W., Jr.; DesMarteau, D.D. Fluoride-promoted competitive reactions of cyanogen fluoride, perfluoromethanimine, and pentafluoro-2-azapropene. J. Am. Chem. Soc. 1990, 112, 728–733. [Google Scholar] [CrossRef]
- Petrov, V.A.; Resnati, G. Polyfluorinated Oxaziridines: Synthesis and Reactivity. Chem. Rev. 1996, 96, 1809–1823. [Google Scholar] [CrossRef] [PubMed]
- Falardeau, E.R.; DesMarteau, D.D. Direct synthesis of fluorinated peroxides. 6. The addition of fluorinated hydroperoxides to perfluoro-2-azapropene and the preparation of the first perfluorooxazirine. J. Am. Chem. Soc. 1976, 98, 3529–3532. [Google Scholar] [CrossRef]
- Sekiya, A.; DesMarteau, D.D. Reaction of metal fluorides with CF3OOCF2N(H)CF3. Inorg. Chem. 1979, 18, 919–920. [Google Scholar] [CrossRef]
- Navarrini, W.; Desmarteu, D.D. Preparation of Perfluoroalkylaminooxaziridines as Monomers and Intermediates for Nitrons and Photopolymerization Initiators. U.S. Patent US4874875 A, 17 October 1989. [Google Scholar]
- Ratcliffe, C.T. Epoxides. U.S. Patent US4287128 A, 1 September 1981. [Google Scholar]
- Petrov, V.A.; DesMarteau, D.D. A new method for the synthesis of perfluorooxaziridines. Preparation of perfluoro-cis-2,3-dialkyloxaziridines. J. Org. Chem. 1993, 58, 4754–4755. [Google Scholar] [CrossRef]
- Mlsna, T.E.; Young, J.A.; DesMarteau, D.D. Synthesis and chemistry of novel perhalogenated imines, oxaziridines, and oxazolidines. Z. Anorg. Allg. Chem. 2002, 628, 1789–1793. [Google Scholar] [CrossRef]
- Sekiya, A.; Desmarteau, D.D. The reaction of 2-(trifluoromethyl)-3,3-difluorooxaziridine with nucleophiles. J. Fluor. Chem. 1979, 14, 289–297. [Google Scholar] [CrossRef]
- Sekiya, A.; DesMarteau, D.D. Reaction of 2-trifluoromethyl-3,3-difluorooxaziridine with some fluorinated nucleophiles. J. Org. Chem. 1979, 44, 1131–1133. [Google Scholar] [CrossRef]
- Bragante, L.; Desmarteau, D.D. The chemistry of 3-(trifluoromethyl)perfluoroaza-2-butene and the synthesis of a new oxaziridine: 3,3-bis(trifluoromethyl)-2-(trifluoromethyl)oxaziridine. J. Fluor. Chem. 1991, 53, 181–197. [Google Scholar] [CrossRef]
- Barr, D.A.; Haszeldine, R.N. Perfluoroalkyl derivatives of nitrogen. I. Perfluoro-2-methyl-1,2-oxazetidine and perfluoro (alkylene alkylamines). J. Chem. Soc. 1955, 1881–1889. [Google Scholar] [CrossRef]
- Barr, D.A.; Haszeldine, R.N. Perfluoroalkyl derivatives of nitrogen. III. Heptafluoronitrosopropane, perfluoro-2-n-propyl-1,2-oxazetidine, perfluoro(methylene-n-propylamine), and related compounds. J. Chem. Soc. 1956, 3416–3428. [Google Scholar] [CrossRef]
- Barr, D.A.; Haszeldine, R.N.; Willis, C.J. Perfluoroalkyl derivatives of nitrogen. IX. Reaction of trifluoronitrosomethane with some unsymmetrical olefins. J. Chem. Soc. 1961, 1351–1362. [Google Scholar] [CrossRef]
- Banks, R.E.; Haszeldine, R.N.; Sutcliffe, H.; Willis, C.J. Perfluoroalkyl derivatives of nitrogen. XV. The reaction of trifluoronitrosomethane with trifluoroethylene, vinylidene fluoride, vinyl fluoride, and ethylene. J. Chem. Soc. 1965, 2506–2513. [Google Scholar] [CrossRef]
- Banks, R.E.; Haszeldine, R.N.; Taylor, D.R. Polyhaloallenes. II. Reaction of tetrafluoroallene with trifluoronitrosomethane. J. Chem. Soc. 1965, 5602–5612. [Google Scholar] [CrossRef]
- Coy, D.H.; Haszeldine, R.N.; Newlands, M.J.; Tipping, A.E. Poly(bistrifluoromethylamino)-compounds. Synthesis of NN-bistrifluoromethylamino-substituted allenes and their reaction with trifluoronitrosomethane. J. Chem. Soc. D 1970, 456–457. [Google Scholar] [CrossRef]
- Coy, D.H.; Haszeldine, R.N.; Newlands, M.J.; Tipping, A.E. Polyfluoroalkyl derivatives of nitrogen. XL. Reaction of trifluoronitrosomethane with NN-bis(trifluoromethyl)amino-substituted allenes. J. Chem. Soc. Perkin Trans. 1 1973, 1561–1564. [Google Scholar] [CrossRef]
- Jaeger, U.; Schwab, M.; Sundermeyer, W. Fluorine-substituted 1,2-thiazetan-3-one 1-oxides by reaction of bis(trifluoromethyl)ketene and N-sulfinylamines. Chem. Ber. 1986, 119, 1127–1132. [Google Scholar] [CrossRef]
- Ansorge, A.; Brauer, D.J.; Buerger, H.; Doerrenbach, F.; Hagen, T.; Pawelke, G.; Weuter, W. [2+2]-Cycloaddition reactions of (dialkylamino)bis(trifluoromethyl)boranes with isocyanates and isothiocyanates. Crystal structures of cyclic compounds (CF3)2BNMe2CONtBu, (CF3)2BNMe2CSNtBu, (CF3)2BNPhC(NMe2)S and (CF3)2BNMeC(NEt2)OCONMe. J. Organomet. Chem. 1991, 407, 283–300. [Google Scholar] [CrossRef]
- Meanwell, N.A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Schiesser, S.; Chepliaka, H.; Kollback, J.; Quennesson, T.; Czechtizky, W.; Cox, R.J. N-Trifluoromethyl Amines and Azoles: An Underexplored Functional Group in the Medicinal Chemist’s Toolbox. J. Med. Chem. 2020, 63, 13076–13089. [Google Scholar] [CrossRef] [PubMed]
- Kubo, O.; Takami, K.; Kamaura, M.; Watanabe, K.; Miyashita, H.; Abe, S.; Matsuda, K.; Tsujihata, Y.; Odani, T.; Iwasaki, S.; et al. Discovery of a novel series of GPR119 agonists: Design, synthesis, and biological evaluation of N-(Piperidin-4-yl)-N-(trifluoromethyl)pyrimidin-4-amine derivatives. Bioorg. Med. Chem. 2021, 41, 116208–116220. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Hird, A.W.; Russell, D.J.; Fauber, B.P.; Dakin, L.A.; Zheng, X.; Su, Q.; Godin, R.; Brassil, P.; Devereaux, E.; et al. Discovery of novel hedgehog antagonists from cell-based screening: Isosteric modification of p38 bisamides as potent inhibitors of SMO. Bioorg. Med. Chem. Lett. 2012, 22, 4907–4911. [Google Scholar] [CrossRef] [PubMed]
- Dakin, L.; Fauber, B.; Hird, A.; Janetka, J.; Russell, D.J.; Su, Q.; Yang, B.; Zheng, X.L. Preparation of Amide Compounds Containing Heterocycle Moiety as Hedgehog Pathway Inhibitors. U.S. Patent WO2009027746 A1, 5 March 2009. [Google Scholar]
- Schiffmann, R.; Neugebauer, A.; Klein, C.D. Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: Structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J. Med. Chem. 2006, 49, 511–522. [Google Scholar] [CrossRef]
- Romero, D.; Robinson, S.; Greenwood, J.R. Preparation of IRAK Inhibitors and Their Uses in the Treatment of Diseases and Disorders. U.S. Patent WO2017004134 A1, 5 January 2017. [Google Scholar]
- Goetz, G.H.; Farrell, W.; Shalaeva, M.; Sciabola, S.; Anderson, D.; Yan, J.; Philippe, L.; Shapiro, M.J. High Throughput Method for the Indirect Detection of Intramolecular Hydrogen Bonding. J. Med. Chem. 2014, 57, 2920–2929. [Google Scholar] [CrossRef]
- Goetz, G.H.; Philippe, L.; Shapiro, M.J. EPSA: A Novel Supercritical Fluid Chromatography Technique Enabling the Design of Permeable Cyclic Peptides. ACS Med. Chem. Lett. 2014, 5, 1167–1172. [Google Scholar] [CrossRef]
- Yagupolskii, L.M.; Fedyuk, D.V.; Petko, K.I.; Troitskaya, V.I.; Rudyk, V.I.; Rudyuk, V.V. N-Trihalomethyl derivatives of benzimidazole, benzotriazole and indazole. J. Fluor. Chem. 2000, 106, 181–187. [Google Scholar] [CrossRef]
- Sokolenko, T.M.; Petko, K.I.; Yagupolskii, L.M. N-trifluoromethylazoles. Chem. Heterocycl. Compd. 2009, 45, 430–435. [Google Scholar] [CrossRef]
- Morimoto, K.; Makino, K.; Yamamoto, S.; Sakata, G. Synthesis of fluoromethyl, difluoromethyl and trifluoromethyl analogs of pyrazosulfuron-ethyl as herbicides. J. Heterocycl. Chem. 1990, 27, 807–810. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Wilson, R.R.; Gierczak, T.; Talukdar, R.; McKeen, S.A.; Orlando, J.J.; Vaghjiani, G.L.; Ravishankara, A.R. Atmospheric fate of CF3Br, CF2Br2, CF2ClBr, and CF2BrCF2Br. J. Geophys. Res. Atmos. 1991, 96, 5025–5043. [Google Scholar] [CrossRef]
- Dmowski, W.; Kaminski, M. Reaction of tertiary formamides with sulfur tetrafluoride. Direct synthesis of (trifluoromethyl)amines. J. Fluor. Chem. 1983, 23, 207–218. [Google Scholar] [CrossRef]
- Boswell, G.A., Jr.; Ripka, W.C.; Scribner, R.M.; Tullock, C.W. Fluorination by sulfur tetrafluoride. Org. React. 1974, 21, 1–124. [Google Scholar]
- Kuroboshi, M.; Hiyama, T. A facile synthesis of trifluoromethylamines by oxidative desulfurization-fluorination of dithiocarbamates. Tetrahedron Lett. 1992, 33, 4177–4178. [Google Scholar] [CrossRef]
- Schaub, S.; Becker, J.; Schindler, S. A Facile and Inexpensive Way to Synthesize N-trifluoromethyl Compounds. ChemistrySelect 2022, 7, e202201803. [Google Scholar] [CrossRef]
- Hagooly, Y.; Gatenyo, J.; Hagooly, A.; Rozen, S. Toward the Synthesis of the Rare N-(Trifluoromethyl)amides and the N-(Difluoromethylene)-N-(trifluoromethyl)amines [RN(CF3)CF2R’] Using BrF3. J. Org. Chem. 2009, 74, 8578–8582. [Google Scholar] [CrossRef]
- Scattolin, T.; Deckers, K.; Schoenebeck, F. Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Bench-Stable Precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 2017, 56, 221–224. [Google Scholar] [CrossRef]
- Yu, J.; Lin, J.-H.; Xiao, J.-C. Reaction of Thiocarbonyl Fluoride Generated from Difluorocarbene with Amines. Angew. Chem. Int. Ed. 2017, 56, 16669–16673. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wei, J.; Jiang, L.; Liu, J.; Mumtaz, Y.; Yi, W. One-pot synthesis of trifluoromethyl amines and perfluoroalkyl amines with CF3SO2Na and RfSO2Na. Chem. Commun. 2019, 55, 8536–8539. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.T., Jr.; Frass, W.; Resnick, P.R. Cesium fluoride catalyzed rearrangement of perfluorodienes to perfluorodialkylacetylenes. J. Am. Chem. Soc. 1961, 83, 1767–1768. [Google Scholar] [CrossRef]
- Ogden, P.H.; Mitsch, R.A. Isomerization of perfluoro-α, ω-bisazomethines. J. Am. Chem. Soc. 1967, 89, 5007–5011. [Google Scholar] [CrossRef]
- Scholl, H.J.; Klauke, E.; Lauerer, D. Azomethines. I. Fluorination of tetrachloroethane-1,2-bisisocyanide dichloride. J. Fluor. Chem. 1973, 2, 203–204. [Google Scholar] [CrossRef]
- Scholl, H.J.; Klauke, E.; Lauerer, D. Azomethines. II. New synthesis of perfluoro-2,5-diazahexa-2,4-diene and its dimerization. J. Fluor. Chem. 1973, 2, 205–206. [Google Scholar] [CrossRef]
- Barnes, R.N.; Chambers, R.D.; Silvester, M.J.; Hewitt, C.D.; Klauke, E. Reactions involving fluoride ion. Part 28. Cyclization and formation of dimers from perfluoro-2,5-diazahexa-2,4-diene. J. Fluor. Chem. 1984, 24, 211–218. [Google Scholar] [CrossRef]
- Barnes, R.N.; Chambers, R.D.; Hewitt, C.D.; Silvester, M.J.; Klauke, E. Reaction involving fluoride ion. Part 31. Cooligomers of perfluoro-1-methyl-1,3-diazacyclopent-2- and -3-ene. J. Chem. Soc. Perkin Trans. 1 1985, 53–56. [Google Scholar] [CrossRef]
- Chambers, R.D.; Hewitt, C.D.; Silvester, M.J.; Klauke, E. Reactions involving fluoride ion. Part 33. Perfluoroaza-alkylation of fluorinated heteroaromatics with perfluoro-1-methyl-1,3-diazacyclopent-2- and -3-ene. J. Fluor. Chem. 1986, 32, 389–402. [Google Scholar] [CrossRef]
- Pawelke, G.; Buerger, H.; Brauer, D.J.; Wilke, J. Fluorination with concomitant cyclization of Cl2C=NCCl2CCl2N=CCl2 with antimony pentafluoride and molecular structure of a 2-imidazolidinone derivative. J. Fluor. Chem. 1987, 36, 185–194. [Google Scholar] [CrossRef]
- Lam, W.Y.; DesMarteau, D.D. Unusual cycloaddition reactions with 2-(trifluoromethyl)-3,3-difluorooxaziridine. J. Am. Chem. Soc. 1982, 104, 4034–4035. [Google Scholar] [CrossRef]
- O’Brien, B.A.; Lam, W.Y.; DesMarteau, D.D. Cycloaddition and oxygen-transfer reactions of 2-(trifluoromethyl)-3,3-difluorooxaziridine. J. Org. Chem. 1986, 51, 4466–4470. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Q.; Ye, F.; Xia, Y.; Wu, G.; Hossain, M.L.; Zhang, Y.; Wang, J. Copper(I)-Catalyzed Three-Component Coupling of N-Tosylhydrazones, Alkynes and Azides: Synthesis of Trisubstituted 1,2,3-Triazoles. Adv. Synth. Catal. 2015, 357, 2277–2286. [Google Scholar] [CrossRef]
- Blastik, Z.E.; Voltrova, S.; Matousek, V.; Jurasek, B.; Manley, D.W.; Klepetarova, B.; Beier, P. Azidoperfluoroalkanes: Synthesis and Application in Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Angew. Chem. Int. Ed. 2017, 56, 346–349. [Google Scholar] [CrossRef]
- Blastik, Z.E.; Klepetarova, B.; Beier, P. Enamine-Mediated Azide-Ketone [3+2] Cycloaddition of Azidoperfluoroalkanes. ChemistrySelect 2018, 3, 7045–7048. [Google Scholar] [CrossRef]
- Motornov, V.; Markos, A.; Beier, P. A rhodium-catalyzed transannulation of N-(per)fluoroalkyl-1,2,3-triazoles under microwave conditions—A general route to N-(per)fluoroalkyl-substituted five-membered heterocycles. Chem. Commun. 2018, 54, 3258–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhanovich, O.; Khutorianskyi, V.; Motornov, V.; Beier, P. Synthesis of N-perfluoroalkyl-3,4-disubstituted pyrroles by rhodium-catalyzed transannulation of N-fluoroalkyl-1,2,3-triazoles with terminal alkynes. Beilstein J. Org. Chem. 2021, 17, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Z.; Zhang, R.X.; Wang, S.; Xu, C.; Guan, W.; Wang, M. An N-Trifluoromethylation/Cyclization Strategy for Accessing Diverse N-Trifluoromethyl Azoles from Nitriles and 1,3-Dipoles. Angew. Chem. Int. Ed. 2022, 61, e202110749. [Google Scholar]
- Zhang, R.Z.; Huang, W.; Zhang, R.X.; Xu, C.; Wang, M. Synthesis of N-CF3 Amidines/Imidates/Thioimidates via N-CF3 Nitrilium Ions. Org. Lett. 2022, 24, 2393–2398. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Gao, C.; Guan, W.; Wang, M. Reassembly and functionalization of N-CF3 pyridinium salts: Synthesis of nicotinaldehydes. Org. Chem. Front. 2022, 9, 4549–4553. [Google Scholar] [CrossRef]
- Lutz, W.; Sundermeyer, W. Synthesis and reactions of trifluoromethyl isocyanate. Chem. Ber. 1979, 112, 2158–2166. [Google Scholar] [CrossRef]
- Varwig, J.; Mews, R. Synthesis of a sTable 1,3,4-dioxazolidine. Angew. Chem. 1977, 89, 675. [Google Scholar] [CrossRef]
- Lentz, D.; Bruedgam, I.; Hartl, H. Trifluoromethyl isocyanide as a building block in synthesis. Reaction with trifluoroacetic acid and hexafluoroacetone. Angew. Chem. Int. Ed. Engl. 1987, 99, 921–923. [Google Scholar] [CrossRef]
- Lentz, D.; Marschall, R. Cycloaddition reactions of trifluoromethyl isocyanide with diphosphenes. Synthesis and structure of the new 2-phosphinidene-1,3-azaphospholidine derivative Mes*P=CN(CF3)C(=NCF3)C(=NCF3)-PMes*. Z. Anorg. Allg. Chem. 1992, 617, 53–58. [Google Scholar] [CrossRef]
- Cao, T.; Retailleau, P.; Milcent, T.; Crousse, B. Synthesis of N-CF3 hydrazines through radical trifluoromethylation of azodicarboxylates. Chem. Commun. 2021, 57, 10351–10354. [Google Scholar] [CrossRef]
- Scattolin, T.; Bouayad-Gervais, S.; Schoenebeck, F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas. Nature 2019, 573, 102–107. [Google Scholar] [CrossRef]
- Bouayad-Gervais, S.; Scattolin, T.; Schoenebeck, F. N-Trifluoromethyl Hydrazines, Indoles and Their Derivatives. Angew. Chem. Int. Ed. 2020, 59, 11908–11912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, C.D.T.; Zivkovic, F.G.; Schoenebeck, F. Synthesis of N-CF3 Alkynamides and Derivatives Enabled by Ni-Catalyzed Alkynylation of N-CF3 Carbamoyl Fluorides. J. Am. Chem. Soc. 2021, 143, 13029–13033. [Google Scholar] [CrossRef] [PubMed]
- Bouayad-Gervais, S.; Nielsen, C.D.T.; Turksoy, A.; Sperger, T.; Deckers, K.; Schoenebeck, F. Access to Cyclic N-Trifluoromethyl Ureas through Photocatalytic Activation of Carbamoyl Azides. J. Am. Chem. Soc. 2022, 144, 6100–6106. [Google Scholar] [CrossRef]
- Turksoy, A.; Bouayad-Gervais, S.; Schoenebeck, F. N-CF3 Imidazolidin-2-one Derivatives via Photocatalytic and Silver-Catalyzed Cyclizations. Chem.-Eur. J. 2022, 28, e202201435. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, Y.; Wang, J.; Qing, F.-L.; Xu, X.-H. General Synthesis of N-Trifluoromethyl Compounds with N-Trifluoromethyl Hydroxylamine Reagents. J. Am. Chem. Soc. 2022, 144, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, Y.; Qing, F.-L.; Xu, X.-H. Photoredox/Copper-Catalyzed Trifluoromethylamino-Cyanation of 1,3-Enynes. Eur. J. Org. Chem. 2023, 26, e202201061. [Google Scholar] [CrossRef]
- Eisenberger, P.; Gischig, S.; Togni, A. Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chem.-Eur. J. 2006, 12, 2579–2586. [Google Scholar] [CrossRef]
- Eisenberger, P. The Development of New Hypervalent iodine Reagents for Electrophilic Trifluoromethylation. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2007. [Google Scholar]
- Niedermann, K.; Frueh, N.; Vinogradova, E.; Wiehn, M.S.; Moreno, A.; Togni, A. A Ritter-type reaction: Direct electrophilic trifluoromethylation at nitrogen atoms using hypervalent iodine Reagents. Angew. Chem. Int. Ed. 2011, 50, 1059–1063. [Google Scholar] [CrossRef]
- Niedermann, K.; Frueh, N.; Senn, R.; Czarniecki, B.; Verel, R.; Togni, A. Direct Electrophilic N-Trifluoromethylation of Azoles by a Hypervalent Iodine Reagent. Angew. Chem. Int. Ed. 2012, 51, 6511–6515. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, T.; Adachi, K.; Ishihara, S. CF3 Oxonium Salts, O-(Trifluoromethyl)dibenzofuranium Salts: In Situ Synthesis, Properties, and Application as a Real CF3+ Species Reagent. J. Org. Chem. 2007, 72, 6905–6917. [Google Scholar] [CrossRef] [PubMed]
- Onida, K.; Vanoye, L.; Tlili, A. Direct Synthesis of Thiocarbamoyl Fluorides and Trifluoromethylamines Through Fluorinative Desulfurization. Eur. J. Org. Chem. 2019, 2019, 6106–6109. [Google Scholar] [CrossRef]
- Debreczeni, N.; Hotzi, J.; Bege, M.; Lovas, M.; Mezo, E.; Bereczki, I.; Herczegh, P.; Kiss, L.; Borbas, A. N-Fluoroalkylated Morpholinos—A New Class of Nucleoside Analogues. Chem.-Eur. J. 2023, 29, e202203248. [Google Scholar] [CrossRef] [PubMed]
- Banks, R.E.; Barlow, M.G.; Haszeldine, R.N. Perfluoroalkyl derivatives of nitrogen. XVIII. Reaction of trifluoronitrosomethane with perfluorobutadiene and 3,4-dichlorohexafluorobut-1-ene. J. Chem. Soc. 1965, 6149–6163. [Google Scholar] [CrossRef]
- Banks, R.E.; Barlow, M.G.; Haszeldine, R.N. Perfluoroalkyl derivatives of nitrogen. XVI. Reaction of trifluoronitrosomethane with butadiene and with isobutene. J. Chem. Soc. 1965, 4714–4718. [Google Scholar] [CrossRef]
- Banks, R.E.; Harrison, A.C.; Haszeldine, R.N.; Orrell, K.G. Polyfluorocyclopentadienes. III. Diels-Alder reactions of perfluorocyclopentadiene. J. Chem. Soc. C 1967, 1608–1621. [Google Scholar] [CrossRef]
- Haszeldine, R.N.; Banks, R.E.; Bridge, M.; Roberts, D.W.; Tucker, N.I. Polyfluorocyclopentadienes. VI. Synthesis of 1- and 5-chloropentafluorocyclopentadiene. J. Chem. Soc. C 1970, 2531–2535. [Google Scholar] [CrossRef]
- Barlow, M.G.; Haszeldine, R.N.; Murray, K.W. Polyfluoroalkyl derivatives of nitrogen. Part 49. Ene reactions of trifluoronitrosomethane: Formation of N-trifluoromethylhydroxylamines. J. Chem. Soc. Perkin Trans. 1 1980, 1960–1964. [Google Scholar] [CrossRef]
- Carson, P.A.; Roberts, D.W. Nucleophilic substitution reactions of the heterocyclic fluoro-olefin perfluoro-(3,6-dihydro-2-methyl-2H-1,2-oxazine). Tetrahedron 1986, 42, 6495–6510. [Google Scholar] [CrossRef]
- Al’bekov, V.A.; Benda, A.F.; Gontar, A.F.; Sokol’skii, G.A.; Knunyants, I.L. [2+4]-Cycloaddition reactions of perfluoroazomethines. Izv. Akad. Nauk SSSR Ser. Khim. 1986, 1437–1440. [Google Scholar] [CrossRef]
- Jaeger, U.; Sundermeyer, W. [4+2]-Cycloaddition products of perfluoroorgano-N-sulfinylamines and their oxidation. Chem. Ber. 1986, 119, 3405–3410. [Google Scholar] [CrossRef]
- Flowers, W.T.; Franklin, R.; Haszeldine, R.N.; Perry, R.J. Reaction of amines with perfluoroazapropene: Formation of the novel 4H-pyrido [1,2-a]-s-triazine system via unsymmetrical carbodi-imides. J. Chem. Soc. Chem. Commun. 1976, 567–568. [Google Scholar] [CrossRef]
- Tesky, F.M.; Mews, R. 1,1,3,3-Tetraoxo-2,4-bis(perfluoroalkyl)cyclodiaza-λ6-thianes (RfNSO2)2. Chem.-Ztg. 1987, 111, 345–346. [Google Scholar]
- Lin, W.H.; Lagow, R.J. The synthesis of perfluoro highly branched heterocyclic fluorine compounds by direct fluorination. J. Fluor. Chem. 1990, 50, 15–30. [Google Scholar] [CrossRef]
- Banks, R.E.; Eapen, K.C.; Haszeldine, R.N.; Holt, A.V.; Myerscough, T.; Smith, S. Nitroxide chemistry. VII. Synthesis and reactions of perfluoro-2,5-diazahexane 2,5-dioxyl. J. Chem. Soc., Perkin Trans. 1 1974, 2532–2538. [Google Scholar] [CrossRef]
- Banks, R.E.; Haszeldine, R.N.; Stevenson, M.J. Perfluoroalkyl derivatives of nitrogen. XXI. Some reactions of bis(trifluoromethyl) nitroxide. J. Chem. Soc. C 1966, 901–904. [Google Scholar] [CrossRef]
- Banks, R.E.; Eapen, K.C.; Haszeldine, R.N.; Mitra, P.; Myerscough, T.; Smith, S. Perfluoro-2,5-diazahexane-2,5-dioxyl and its use in polymer chemistry and in polymer cross-linking. J. Chem. Soc. Chem. Commun. 1972, 833–834. [Google Scholar] [CrossRef]
- Green, M.J.; Tipping, A.E. The reaction of perfluoro-2,5-diazahexane 2,5-dioxyl with alkenes. J. Fluor. Chem. 1993, 65, 115–125. [Google Scholar] [CrossRef]
- Green, M.J.; Tipping, A.E. The reactions of mercury(II) perfluoro-2,5-diazahexane-2,5-dioxyl and perfluoro-2,5-diazahexane-2,5-diol with haloalkanes, acid chlorides, and dichlorosilanes. J. Fluor. Chem. 1994, 66, 271–277. [Google Scholar] [CrossRef]
- Booth, B.L.; Haszeldine, R.N.; Holmes, R.G.G. Some oxidative-addition reactions of the diradical, perfluoro-NN’-dimethylethane-1,2-bis(aminooxyl), CF3N(O)CF2CF2N(O)CF3, with iridium(I) and platinum(0) complexes. J. Chem. Soc. Dalton Trans. 1982, 671–672. [Google Scholar] [CrossRef]
- Arfaei, A.; Smith, S. Reactions of perfluoronitroxides with sulfur dioxide. J. Chem. Soc. Perkin Trans. 1 1984, 1791–1794. [Google Scholar] [CrossRef]
- Motornov, V.; Beier, P. Chemoselective Aza-[4+3]-annulation of N-Perfluoroalkyl-1,2,3-triazoles with 1,3-Dienes: Access to N-Perfluoroalkyl-Substituted Azepines. J. Org. Chem. 2018, 83, 15195–15201. [Google Scholar] [CrossRef]
- Ogden, P.H. Cyclizations via fluoride ion induced isomerizations. Novel perfluoroheterocyclic compounds. J. Chem. Soc. C 1971, 2920–2926. [Google Scholar] [CrossRef]
- Banks, R.E.; Cheng, W.M.; Haszeldine, R.N. Heterocyclic polyfluoro compounds. II. Reactions of undecafluoropiperidine. The preparation of perfluoro-2,3,4,5-tetrahydropyridine and perfluoro-(1-methylpyrrolidine). J. Chem. Soc. 1962, 3407–3416. [Google Scholar] [CrossRef]
- Banks, R.E.; Burling, E.D. Heterocyclic polyfluoro compounds. IX. Some reactions of perfluoro-N-fluoromorpholine. The preparation of perfluoro-5,6-dihydro-2H-1,4-oxazine and perfluoro-3-methyloxazolidine. J. Chem. Soc. 1965, 6077–6083. [Google Scholar] [CrossRef]
- Banks, R.E.; Haszeldine, R.N.; Matthews, V. Heterocyclic polyfluoro compounds. XIII. Thermal reactions of perfluorotetrahydro-2-methyl-2H-1,2-oxazine and perfluoro-3,6-dihydro-2-methyl-2H-1,2-oxazine. Synthesis and properties of perfluoro-1-methyl-2-pyrrolidone, perfluoro-1-methyl-2-oxo-3-pyrroline, and perfluoro-1-methylazetidine. J. Chem. Soc. C 1967, 2263–2267. [Google Scholar] [CrossRef]
- Plevey, R.G.; Rendell, R.W.; Tatlow, J.C. Fluorinations with complex metal fluorides. Part 7. Fluorinations of the methylpyridines with cesium tetrafluorocobaltate. J. Fluor. Chem. 1982, 21, 265–286. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Guo, P.; Han, J.-F.; Ye, K.-Y. Cobalt fluorides: Preparation, reactivity and applications in catalytic fluorination and C-F functionalization. Chem. Commun. 2020, 56, 8512–8523. [Google Scholar] [CrossRef]
- Meinert, H.; Fackler, R.; Mader, J.; Reuter, P.; Roehlke, W. The electrochemical fluorination of derivatives of morpholine, piperidine and carbazole. J. Fluor. Chem. 1992, 59, 351–365. [Google Scholar] [CrossRef]
- Abe, T.; Hayashi, E.; Baba, H.; Fukaya, H. The electrochemical fluorination of nitrogen-containing carboxylic acids. Fluorination of dimethylamino- or diethylamino-substituted carboxylic acid derivatives. J. Fluor. Chem. 1990, 48, 257–279. [Google Scholar] [CrossRef]
- Abe, T.; Hayashi, E.; Fukaya, H.; Hayakawa, Y.; Baba, H.; Ishikawa, S.; Asahino, K. The electrochemical fluorination of nitrogen-containing carboxylic acids. Fluorination of methyl esters of 3-(dialkylamino)propionic acids. J. Fluor. Chem. 1992, 57, 101–111. [Google Scholar] [CrossRef]
- Abe, T.; Baba, H.; Soloshonok, I. Electrochemical fluorination of 1-ethylpiperazine and 4-methyl- and/or 4-ethylpiperazinyl substituted carboxylic acid methyl esters. J. Fluor. Chem. 2001, 108, 21–35. [Google Scholar] [CrossRef]
- Abe, T.; Baba, H.; Fukaya, H.; Tamura, M.; Sekiya, A. Simons electrochemical fluorination of substituted homopiperazines(hexahydro-1,4-diazepines) and piperazines. J. Fluor. Chem. 2003, 119, 27–38. [Google Scholar] [CrossRef]
- Naito, Y.; Inoue, Y.; Ono, T.; Arakawa, Y.; Fukaya, C.; Yokoyama, K.; Kobayashi, Y.; Yamanouchi, K. Synthesis of perfluorochemicals for use as blood substitutes, part I. Electrochemical fluorination of N-methyldecahydroquinoline and N-methyldecahydroisoquinoline. J. Fluor. Chem. 1984, 26, 485–497. [Google Scholar] [CrossRef]
- Sartori, P.; Velayutham, D.; Ignat’ev, N.; Noel, M. Investigations on the product distribution pattern during the electrochemical fluorination of 2-fluoropyridine and pyridine. J. Fluor. Chem. 1998, 87, 31–36. [Google Scholar] [CrossRef]
Structure | pH 1.0 [d] | pH 7.4 [d] | pH 10.0 [d] |
---|---|---|---|
19a | 0.2 | 0.4 | 0.3 |
20a | <0.6 | <0.6 | <0.6 |
21a | >72 | >72 | >72 |
22a | >72 | >72 | >72 |
23a | >72 | >72 | 71 |
24a | <1.3 | <0.8 | <0.5 |
Structure | Number | Log D7.4 [a] | Chrom- log D7.4 [a] | ePSA [b] [Å2] | Caco-2 Papp [c] [10−6 cm/s] | HLM [d] [L/min/mg] |
---|---|---|---|---|---|---|
19a R = CF3 | 1.6 (0.1) | 1.5 (0.1) | 82 (1) | nd [e] | nd [e] | |
19b R = CH3 | 0.6 (0.1) | 1.3 (0.1) | 81 (1) | nd [e] | nd [e] | |
20a R = CF3 | >4.0 | 4.9 (0.2) | 38 (2) | nd [e] | nd [e] | |
20c R = CH3 | 2.8 (0.1) | 3.3 (0.1) | 50 (1) | nd [e] | nd [e] | |
21a R = CF3 | 3.7 (0.1) | 3.3 (0.0) | 73 (1) | 61 (27) | 47 (11) | |
21b R = CH3 | 2.7 (0.1) | 2.2 (0.1) | 92 (1) | 72 (1) | 4.8 (1.9) | |
22a R = CF3 | 3.0 (0.1) | 3.3 (0.0) | 39 (2) | 58 (18) | 39 (18) | |
22b R = CH3 | 2.3 (0.0) | 1.5 (0.1) | 56 (1) | 72 (20) | 172 (41) | |
23a R = CF3 | 2.2 (0.1) | 2.2 (0.0) | 92 (1) | 12 (8) | <3.0 | |
23b R = CH3 | 0.6 (0.1) | <0.0 | 98 (0) | 2.4 (0.9) | <3.0 | |
24a R = CF3 | >4.0 | >5.3 | 67 (1) | nd [e] | nd [e] | |
24b R = CH3 | 2.7 (0.1) | 3.3 (0.1) | 73 (0) | nd [e] | nd [e] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Chang, W.; Guo, H.; Feng, J.; Zhang, Z. A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles. Molecules 2023, 28, 3012. https://doi.org/10.3390/molecules28073012
Lei Z, Chang W, Guo H, Feng J, Zhang Z. A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles. Molecules. 2023; 28(7):3012. https://doi.org/10.3390/molecules28073012
Chicago/Turabian StyleLei, Zizhen, Wenxu Chang, Hong Guo, Jiyao Feng, and Zhenhua Zhang. 2023. "A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles" Molecules 28, no. 7: 3012. https://doi.org/10.3390/molecules28073012
APA StyleLei, Z., Chang, W., Guo, H., Feng, J., & Zhang, Z. (2023). A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles. Molecules, 28(7), 3012. https://doi.org/10.3390/molecules28073012