Rotenoids and Isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and Their Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of the Isolated Compounds
2.2. Biological Activities
2.2.1. Antibacterial Evaluation
2.2.2. Antifungal Evaluation
2.2.3. Antioxidant Evaluation
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Biological Activities
3.4.1. Antibacterial Activity
3.4.2. Antifungal Activity
3.4.3. Antioxidant Activity
- DPPH radical scavenging assay
- ABTS radical scavenging assay
- FRAP assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kumar, P.R.; Balakrishna, C.; Murali, B.; Gudipati, R.; Hota, P.K.; Chaudhary, A.B.; Shree, A.J.; Yennam, S.; Behera, M. An efficient synthesis of 8-substituted odoratine derivatives by the suzuki coupling reaction. J. Chem. Sci. 2016, 128, 441–450. [Google Scholar] [CrossRef]
- Rahman, A.H.M.M.; Parvin, M.I.A. Study of medicinal uses on Fabaceae family at Rajshahi, Bangladesh. Res. Plant Sci. 2014, 2, 6–8. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A. Leguminosae (Fabaceae) in tribal medicines. IC J. J. Pharmacogn. Phytochem. 2013, 2, 127–134. [Google Scholar]
- Asase, A.; Oteng-Yeboah, A.A.; Odamtten, G.T.; Simmonds, M.S.J. Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol. 2005, 99, 273–279. [Google Scholar] [CrossRef]
- Selemani, M.A.; Kazingizi, L.F.; Manzombe, E.; Bishi, L.Y.; Mureya, C.; Gwata, T.T.; Rwere, F. Phytochemical characterization and in vitro antibacterial activity of Xeroderris Stuhlmannii (Taub.) Mendonca & E.P. Sousa bark extracts. S. Afr. J. Bot. 2021, 142, 344–351. [Google Scholar] [CrossRef]
- Gosavi, P.M.; Ngan, K.C.; Yeo, M.J.R.; Su, C.; Li, J.; Lue, N.Z.; Hoenig, S.M.; Liau, B.B. Profiling the landscape of drug resistance mutations in neosubstrates to molecular glue degraders. ACS Cent. Sci. 2022, 8, 417–429. [Google Scholar] [CrossRef]
- Peter, C.; Van Welzen, K.C. The 11th Flora of Thailand meeting 1999 Leiden, The Netherlands. Thai Forest Bulletin 1999, 28, 1–16. [Google Scholar]
- Nakai, K.; Yoshimura, T. African blackwood (Dalbergia melanoxylon) and other local Tanzanian tree species biological performance against subterranean termites and wood decay fungi. BioResources 2020, 15, 2994–3005. [Google Scholar] [CrossRef]
- Ngarivhume, T.; Van’T Klooster, C.I.E.A.; De Jong, J.T.V.M.; Van Der Westhuizen, J.H. Medicinal plants used by traditional healers for the treatment of malaria in the chipinge district in Zimbabwe. J. Ethnopharmacol. 2015, 159, 224–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maundu, P.M.; Tengnäs, B. Useful Trees and Shrubs for Kenya; World Agroforestry Centre: Nairobi, Kenya, 2005. [Google Scholar]
- Yankep, E.; Njamen, D.; Fotsing, M.T.; Fomum, Z.T.; Mbanya, J.C.; Giner, R.M.; Recio, M.C.; Máñez, S.; Ríos, J.L. Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of Millettia Griffoniana. J. Nat. Prod. 2003, 66, 1288–1290. [Google Scholar] [CrossRef]
- Fuendjiep, V.; Bernard, B.; Nkengfack, A.; Fomum, T.Z.; Sondengam, B. Conrauinones A and B, two new isoflavones from stem bark of Millettia conraui. J. Nat. Prod. 1998, 3864, 380–383. [Google Scholar] [CrossRef]
- Mai, H.D.T.; Nguyen, T.T.O.; Pham, V.C.; Litaudon, M.; Guéritte, F.; Tran, D.T.; Nguyen, V.H. Cytotoxic prenylated isoflavone and bipterocarpan from Millettia Pachyloba. Planta Med. 2010, 76, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Tahara, S.; Eriko, N.; Ingham, J.L.; Junya, M. Isoflavonoids from the root bark of Piscidia erythrina and a note on the structure of piscidone. Z. Naturforsch. 1989, 44, 905–913. [Google Scholar]
- das Neves, M.V.M.; da Silva, T.M.S.; de Oliveira, L.E.; da Cunha, E.V.L.; Oliveira, E.J. Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Braz. J. Microbiol. 2016, 47, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felpin, F.X.; Lory, C.; Sow, H.; Acherar, S. Practical and efficient entry to isoflavones by Pd(0)/C-mediated suzuki-miyaura reaction. Total synthesis of geranylated isoflavones. Tetrahedron 2007, 63, 3010–3016. [Google Scholar] [CrossRef]
- Fuendjiep, V.; Nkengfack, A.E.; Fomum, Z.T.; Sondengam, B.L.; Bodo, B. Conrauinones C and D, two isoflavones from stem bark of Millettia conraui. Phytochemistry 1998, 47, 113–115. [Google Scholar] [CrossRef]
- Rama, M.S.; Rao, E.V. Maxima isoflavone J: A new O-prenylated isoflavone from Tephrosia maxima. J. Nat. Prod. 1985, 48, 967–968. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.W.; Tan, H.B.; Li, B.L.; Qiu, S.X. Three new pterocarpans from the aerial Parts of Abrus precatorius. Nat. Prod. Res. 2020, 34, 1836–1844. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.; Markham, K.; Thomas, M. The Ultraviolet Spectra of Flavones and Flavonols; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Agrawal, P.K.; Bansal, M.C. Carbon-13 NMR of flavonoids. Stud. Org. Chem. 1989, 39, 564. [Google Scholar]
- Torres, R.; Faini, F.; Delle Monache, F.; Delle Monache, G. Two new O-geranyl coumarins from the resinous exudate of Haplopappus multifolius. Fitoterapia 2004, 75, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Lawson, A.M. Phytochemical Study of a Tropical Fabaceae, Lonchocarpus Nicou, Preliminary Biological Assessment. Ph.D. Thesis, University of Limoges, Limoges, France, 2006. [Google Scholar]
- Mathias, L.; Da Silva, B.P.; Mors, W.B.; Parente, J.P. Isolation and structural elucidation of a novel rotenoid from the seeds of Clitoria fairchildiana. Nat. Prod. Res. 2005, 19, 325–329. [Google Scholar] [CrossRef]
- Micco, S.; Zampella, A.; D’Auria, M.; Festa, C.; Marino, S.; Riccio, R.; Butts, C.; Bifulco, G. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts. J. Org. Chem. 2013, 9, 2940–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, S.G. The evaluation of forty-three plant species for in vitro antimycobacterial activities; Isolation of active constituents. J. Ethnopharmacol. 2002, 79, 57–67. [Google Scholar] [CrossRef]
- Akinpelu, A.; Aiyegoro, A.; Okoh, I. The in vitro antioxidant property of methanolic extract of Afzelia africana (Smith.). J. Med. Plants Res. 2010, 4, 2022–2027. [Google Scholar] [CrossRef]
- Buyinza, D.; Yang, L.; Derese, S.; Ndakala, A.; Coghi, P.; Heydenreich, M.; Wong, V.; Möller, H.; Yenesew, A. Cytotoxicity of isoflavones from Millettia dura. Nat. Prod. Res. 2019, 35, 2744–2747. [Google Scholar] [CrossRef]
- Kai-Ching, T.; Tan, L.T.; Chan, C.K.; Hong, S.L.; Chan, C.G.; Yap, W.S.; Pusparajah, P.; Lee, H.L.; Goh, B.H. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front. Pharmacol. 2019, 10, 820. [Google Scholar] [CrossRef] [Green Version]
- Derese, S.; Barasa, L.; Akala, H.M.; Yusuf, A.O.; Kamau, E.; Heydenreich, M.; Yenesew, A. Prenyloxyderrone from the stem bark of Millettia oblata ssp. and the antiplasmodial activities of isoflavones from some Millettia species. Phytochem. Lett. 2014, 8, 69–72. [Google Scholar] [CrossRef]
- Mann, C.M.; Markham, J.L. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol. 1998, 84, 538–544. [Google Scholar] [CrossRef]
- Palomino, J.C.; Martin, A.; Camacho, M.P.F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, E.L.; Stamford, T.L.M.; Lima, E.O.; Trajano, V.N. Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling seasts. Food Control. 2007, 18, 409–413. [Google Scholar] [CrossRef]
- Araújo, F.M.; Ribeiro, P.R.; Guedes, M.L.S.; Young, M.C.M.; Martins, D. A new isoflavone glucoside and other compounds from Poiretia bahiana C. Mueller: Chemophenetics, fragmentation pattern and biogenetic implications. Fitoterapia. 2021, 153, 104977. [Google Scholar] [CrossRef] [PubMed]
- Noghogne, L.; Gatsing, D.; Fotso; Kodjio, N.; Sokoudjou, J.; Kuiate, J. In vitro antisalmonellal and antioxidant properties of Mangifera indica L. stem bark crude extracts and fractions. Br. J. Pharm. Res. 2015, 5, 29–41. [Google Scholar] [CrossRef]
- Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Boas, L.V. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–396. [Google Scholar] [CrossRef]
- Padmaja, M.; Sravanthi, M.; Hemalatha, K.P.J. Evaluation of antioxidant activity of two Indian medicinal plants. J. Phytol. 2011, 3, 86–91. [Google Scholar]
Compound 1 | Compound 2 | |||||
---|---|---|---|---|---|---|
Position | ẟC | ẟH | HMBC | ẟC | ẟH | HMBC |
2 | 152.5 | 7.80 | 3, 4, 8a, 1′ | 152.0 | 7.94 | 3, 4, 8a, 1′ |
3 | 122.5 | - | 124.3 | - | ||
4 | 175.0 | - | 175.9 | - | ||
4a | 113.7 | - | 118.4 | - | ||
5 | 153.0 | - | 127.8 | 8.22 | 4, 7, 8, 8a | |
6 | 152.9 | - | 115.0 | 7.01 | 8, 4a | |
7 | 157.6 | - | 163.2 | - | ||
8 | 96.1 | 6.72 | 4, 6, 7 | 100.9 | 6.88 | 7, 4a, 8a |
8a | 154.6 | - | 157.9 | - | ||
1′ | 112.8 | - | 124.9 | - | ||
2′ | 140.5 | - | 130.2 | 7.52 | 3, 3′, 4′ | |
3′ | 95.3 | 6.63 | 2′, 4′, 5′ | 114.0 | 6.99 | 1′, 2′, 4′, 5′ |
4′ | 148.4 | - | 159.6 | - | ||
4′-OMe | - | - | 55.4 | 3.86 | 4′ | |
5′ | 141.1 | - | 114.0 | 6.99 | 1′, 2′, 4′, 5′ | |
6′ | 111.4 | 6.85 | 2′, 4′, 5′ | 130.2 | 7.52 | 3, 3′, 4′ |
O-CH2-O | 101.3 | 5.97 | 4′, 5′ | - | - | |
5-OMe | 56.3 | 3.98 | 5 | - | - | |
6-OMe | 56.8 | 3.75 | 6 | - | - | |
7-OMe | 62.1 | 3.97 | 6, 7 | - | - | |
2′-OMe | 61.6 | 3.93 | 2′ | - | - | |
1″ | - | - | 65.5 | 4.66 | 7, 2″, 3″ | |
2″ | - | - | 119.3 | 5.55 | 3″-Me, 3″, 4″ | |
3″ | - | - | 141.1 | - | ||
3″-Me | - | - | 16.8 | 1.78 | 2″, 3″, 4″ | |
4″ | - | - | 42.2 | 2.82 | 2″, 3″-Me, 6″ | |
5″ | - | - | 140.5 | 5.70 | 4″, 6″, 7″ | |
6″ | - | - | 123.9 | 5.66 | 4″ | |
7″ | - | - | 70.7 | - | ||
8″ | - | - | 29.9 | 1.35 | 6″, 7″ |
Compound 3 | Compound 4 | Compound 5 | |||||||
---|---|---|---|---|---|---|---|---|---|
Position | ẟC | ẟH | HMBC | ẟC | ẟH | HMBC | ẟC | ẟH | HMBC |
1a | 108.8 | - | 108.8 | - | 127.1 | - | |||
1 | 110.3 | 8.51 | 2, 3, 12a | 110.3 | 8.51 | 2, 3, 12a | 105.4 | 8.33 | 1a, 2, 4a, 12a |
2 | 143.9 | - | 143.9 | - | 140.5 | - | |||
2-OMe | 56.5 | 3.78 | 2 | 56.1 | 3.79 | 2 | - | - | |
3 | 149.8 | - | 149.7 | - | 136.4 | - | |||
3-OMe | 56.1 | 3.80 | 3 | 56.5 | 3.80 | 3 | - | - | |
4 | 102.2 | 6.73 | 1a, 2, 3 | 102.2 | 6.74 | 1a, 2, 3 | 139.4 | - | |
(2/3)-OCH2 | - | - | - | - | 102.4 | 6.07 | 3 | ||
4a | 143.8 | - | 143.8 | - | 127.2 | - | |||
4-OMe | - | - | - | - | 56.6 | 3.97 | 4 | ||
6 | 88.7 | 6.20 | 4a, 6a, 12a | 88.7 | 6.20 | 4a, 6a, 12a | 89.2 | 6.27 | 4a, 6a |
6-OH | - | 7.97 | 6a | - | 7.98 | 6, 6a | - | n. d | |
6a | 155.8 | - | 155.9 | - | 154.5 | - | |||
7a | 156.8 | - | 156.8 | - | 156.5 | - | |||
8 | 101.7 | 7.24 | 7a, 9, 10, 12 | 101.7 | 7.24 | 7a, 9 | 100.8 | 6.89 | 7a, 9, 10 |
9 | 163.6 | - | 163.6 | - | 163.5 | - | |||
10 | 116.0 | 7.13 | 8, 9, 11a | 116.0 | 7.13 | 9, 11a | 115.7 | 7.02 | 8, 11a |
11 | 127.3 | 8.07 | 7a, 9, 12 | 127.4 | 8.07 | 7a, 9, 12 | 127.5 | 8.17 | 7a, 9, 12 |
11a | 117.8 | - | 117.8 | - | 118.0 | - | |||
12 | 174.8 | - | 174.8 | - | 175.4 | - | |||
12a | 110.1 | - | 110.1 | - | 110.7 | - | |||
1′ | 66.0 | 4.73 | 9, 2′, 3′ | 65.7 | 4.75 | 9, 2′ | 65.7 | 4.69 | 9, 2′, 3′ |
2′ | 119.5 | 5.50 | 1′, 3′-Me, 3′ | 119.4 | 5.51 | 1′, 3′ | 119.3 | 5.54 | 3′-Me, 4′ |
3′ | 141.4 | - | 141.4 | - | 141.2 | - | |||
3′-Me | 17.0 | 1.73 | 2′, 3′, 4′ | 17.0 | 1.78 | 3′ | 16.8 | 1.80 | 2′, 4′, 5′ |
4′ | 41.9 | 2.74 | 3′-Me, 3′, 5′ | 41.6 | 2.74/2.25 | 3′ | 42.1 | 2.83 | 2′, 3′-Me, 5′, 6′ |
5′ | 122.6 | 5.53 | 4′, 7′ | 53.8 | 2.96 | 4′ | 140.5 | 5.71 | 4′, 7′, 8′ |
6′ | 142.0 | 5.61 | 4′, 5′, 7′, 8′ | 64.8 | 2.67 | 7′ | 123.9 | 5.66 | 4′, 7′ |
7′ | 69.3 | - | 67.6 | - | 70.8 | - | |||
8′ | 30.5 | 1.17 | 6′, 7′, 8′ | 26.8 | 1.07 | 7′, 8′ | 29.8 | 1.34 | 5′,7′, 8′ |
8′-Me | 30.5 | 1.17 | 6′, 7′, 8′ | 30.5 | 1.17 | 8′-Me, 7′ | 29.8 | 1.36 | 5′,7′, 8′ |
8′-OH | - | 4.49 | 6′, 7′, 8′ | - | n. d | - | 4.18 | 7′ |
Microbial Organisms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test Substance | Parameters | PA | SA | EC | KP | SF | SD | Stm | St | Se |
Leaf extract | MIC | 250 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | 250 |
MBC | 500 | ND | ND | ND | ND | ND | ND | ND | 500 | |
MBC/MIC | 2 | ND | ND | ND | ND | ND | ND | ND | 2 | |
Hexane fraction | MIC | >500 | >500 | >500 | >500 | >500 | 125 | >500 | >500 | >500 |
MBC | ND | ND | ND | ND | ND | 250 | ND | ND | ND | |
MBC/MIC | ND | ND | ND | ND | ND | 2 | ND | ND | ND | |
12 | MIC | >125 | 125 | 62.5 | >125 | >125 | >125 | 125 | >125 | >125 |
MBC | ND | 250 | 250 | ND | ND | ND | 250 | ND | ND | |
MBC/MIC | ND | 2 | 4 | ND | ND | ND | 2 | ND | ND | |
3 | MIC | >125 | >125 | >125 | >125 | 125 | 125 | >125 | 62.5 | >125 |
MBC | ND | ND | ND | ND | 250 | 250 | ND | 250 | ND | |
MBC/MIC | ND | ND | ND | ND | 2 | 2 | ND | 4 | ND | |
10 | MIC | >125 | >125 | >125 | >125 | >125 | >125 | 125 | >125 | >125 |
MBC | ND | ND | ND | ND | ND | ND | 250 | ND | ND | |
MBC/MIC | ND | ND | ND | ND | ND | ND | 2 | ND | ND | |
6 | MIC | >125 | >125 | >125 | 125 | >125 | >125 | >125 | >125 | >125 |
MBC | ND | ND | ND | 250 | ND | ND | ND | ND | ND | |
MBC/MIC | ND | ND | ND | 2 | ND | ND | ND | ND | ND | |
8 | MIC | >125 | 62.5 | >125 | >125 | >125 | >125 | >125 | 125 | >125 |
MBC | ND | 250 | ND | ND | ND | ND | ND | 250 | ND | |
MBC/MIC | ND | 4 | ND | ND | ND | ND | ND | 2 | ND | |
2 | MIC | >125 | >125 | >125 | >125 | >125 | 125 | 125 | 125 | >125 |
MBC | ND | ND | ND | ND | ND | 250 | 250 | 250 | ND | |
MBC/MIC | ND | ND | ND | ND | ND | 2 | 2 | 2 | ND | |
13 | MIC | >125 | >125 | >125 | 125 | 125 | >125 | >125 | >125 | >125 |
MBC | ND | ND | ND | 250 | 250 | ND | ND | ND | ND | |
MBC/MIC | ND | ND | ND | 2 | 2 | ND | ND | ND | ND | |
11 | MIC | >125 | 62.5 | 125 | 62.5 | >125 | >125 | >125 | >125 | >125 |
MBC | ND | 250 | 250 | 250 | ND | ND | ND | ND | ND | |
MBC/MIC | ND | 4 | 2 | 4 | ND | ND | ND | ND | ND | |
Amoxicillin | MIC | 0.5 | ||||||||
MBC | 1 | |||||||||
MBC/MIC | 2 | |||||||||
Cipro | MIC | 1 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | |
MBC | 4 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | ||
MBC/MIC | 4 | 4 | 4 | 0.125 | 2 | 4 | 2 | 4 |
Yeasts Strains | |||||
---|---|---|---|---|---|
Tested Substances | Parameters | CA | CK | CP | CN |
Leaf extract | MIC | >500 | >500 | >500 | >500 |
MFC | ND | ND | ND | ND | |
MFC/MIC | ND | ND | ND | ND | |
12 | MIC | >125 | 62.5 | 125 | 125 |
MFC | ND | 250 | 250 | 250 | |
MFC/MIC | ND | 4 | 2 | 2 | |
3 | MIC | 125 | >125 | 62.5 | 125 |
MFC | 250 | ND | 250 | 250 | |
MFC/MIC | 2 | ND | 4 | 2 | |
6 | MIC | >125 | >125 | 125 | 125 |
MFC | ND | ND | 250 | 250 | |
MFC/MIC | ND | ND | 2 | 2 | |
8 | MIC | 62.5 | 125 | >125 | >125 |
MFC | 250 | 250 | ND | ND | |
MFC/MIC | 4 | 2 | ND | ND | |
2 | MIC | >125 | 125 | >125 | 125 |
MFC | ND | 250 | ND | 250 | |
MFC/MIC | ND | 2 | ND | 2 | |
Hexane fraction | MIC | >500 | >500 | 125 | >500 |
MFC | ND | ND | 250 | ND | |
MFC/MIC | ND | ND | 2 | ND | |
13 | MIC | >125 | 125 | >125 | >125 |
MFC | ND | 250 | ND | ND | |
MFC/MIC | ND | 2 | ND | ND | |
11 | MIC | >125 | 125 | 125 | >125 |
MFC | ND | 250 | 250 | ND | |
MFC/MIC | ND | 2 | 2 | ND | |
Nysta | MIC | 0.5 | 0.25 | 1 | 0.25 |
MFC | 2 | 1 | 2 | 1 | |
MFC/MIC | 4 | 0.25 | 2 | 0.25 |
Tests Materials | DPPH (RSa50 (µg/mL)) | ABTS (RSa50 (µg/mL)) | FRAP (RC50 (µg/mL)) |
---|---|---|---|
Leaf extract | 16.36 ± 0.77 b | 13.44 ± 0.82 b | 39.85 ± 0.96 d |
12 | 17.93 ± 0.82 b | 35.20 ± 0.88 d | 24.09 ± 0.41 b |
6 | 14.97 ± 0.86 b | 22.31 ± 1.20 b | 25.31 ± 0.52 d |
5 | 24.29 ± 2.03 c | 17.41 ± 1.00 b | 15.07 ± 0.41 b |
7 | 19.10 ± 1.50 c | 14.41 ± 0.24 b | 19.50 ± 4.50 b |
Vitamin C | 8.92 ± 0.06 a | 2.71 ± 0.08 a | 13.94 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekuete, L.B.K.; Tsopgni, W.D.T.; Nkojap, A.K.; Kojom, J.J.W.; Stark, T.D.; Fouokeng, Y.; Dongmo, A.B.; Azeufack, L.T.; Azebaze, A.G.B. Rotenoids and Isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and Their Biological Activities. Molecules 2023, 28, 2846. https://doi.org/10.3390/molecules28062846
Mekuete LBK, Tsopgni WDT, Nkojap AK, Kojom JJW, Stark TD, Fouokeng Y, Dongmo AB, Azeufack LT, Azebaze AGB. Rotenoids and Isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and Their Biological Activities. Molecules. 2023; 28(6):2846. https://doi.org/10.3390/molecules28062846
Chicago/Turabian StyleMekuete, Livie Blondèle Kenou, Willifred Dongmo Tékapi Tsopgni, Augustine Kuinze Nkojap, Jacquy Joyce Wanche Kojom, Timo D. Stark, Yannick Fouokeng, Alain Bertrand Dongmo, Léon Tapondjou Azeufack, and Anatole Guy Blaise Azebaze. 2023. "Rotenoids and Isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and Their Biological Activities" Molecules 28, no. 6: 2846. https://doi.org/10.3390/molecules28062846
APA StyleMekuete, L. B. K., Tsopgni, W. D. T., Nkojap, A. K., Kojom, J. J. W., Stark, T. D., Fouokeng, Y., Dongmo, A. B., Azeufack, L. T., & Azebaze, A. G. B. (2023). Rotenoids and Isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and Their Biological Activities. Molecules, 28(6), 2846. https://doi.org/10.3390/molecules28062846