Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Intramolecular Interactions within the β-CD and DM-β-CD Macrocycles
2.2. Intermolecular Interactions between β-CD/DM-β-CD and the Model Guest Phenol
2.3. Dimers of the Macrocycles β-CD and DM-β-CD
3. Methods
3.1. Preparation of Initial Structures and Geometry Optimization
3.2. Noncovalent Interaction (NCI) Analysis
3.3. Calculation of the Individual Non-Covalent Interactions Energies
3.4. Calculation of the Complex Formation Interaction Energies (ΔΕint)
3.5. Calculation of the Complex Formation Interaction Energies Based on Molecular Forcefield (ΔΕint-FF)
3.6. Calculation of the Complex Formation Free Binding Energies (ΔGcalc)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Purdy, W.C. Cyclodextrins and Their Applications in Analytical Chemistry. Chem. Rev. 1992, 92, 1457–1470. [Google Scholar] [CrossRef]
- Dodziuk, H. Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications; Wiley-VCH: Weinheim, Germany, 2006; ISBN 3527312803. [Google Scholar]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from Molecules to Applications. Environ. Chem. Lett. 2018, 16, 1361–1375. [Google Scholar] [CrossRef]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.D.; Tang, G.P.; Chu, P.K. Cyclodextrin-Based Host-Guest Supramolecular Nanoparticles for Delivery: From Design to Applications. Acc. Chem. Res. 2014, 47, 2017–2025. [Google Scholar] [CrossRef]
- Braga, S.S. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019, 9, 801. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Liu, J. Cyclodextrin-Based Delivery Systems for Chemotherapeutic Anticancer Drugs: A Review. Carbohydr. Polym. 2020, 232, 115805. [Google Scholar] [CrossRef]
- Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Latest Developments in the Application of Cyclodextrin Host-Guest Complexes in Beverage Technology Processes. Food Hydrocoll. 2020, 106, 105882. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of Cyclodextrins in Food Science. A Review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Ogoshi, T.; Harada, A. Chemical Sensors Based on Cyclodextrin Derivatives. Sensors 2008, 8, 4961–4982. [Google Scholar] [CrossRef]
- Zhu, G.; Yi, Y.; Chen, J. Recent Advances for Cyclodextrin-Based Materials in Electrochemical Sensing. Trends Anal. Chem. 2016, 80, 232–241. [Google Scholar] [CrossRef]
- Tang, W.; Zou, C.; Da, C.; Cao, Y.; Peng, H. A Review on the Recent Development of Cyclodextrin-Based Materials Used in Oilfield Applications. Carbohydr. Polym. 2020, 240, 116321. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Cyclodextrin-Based Adsorbents for the Removal of Pollutants from Wastewater: A Review. Environ. Sci. Pollut. Res. 2021, 28, 1317–1340. [Google Scholar] [CrossRef]
- Mura, P. Analytical Techniques for Characterization of Cyclodextrin Complexes in Aqueous Solution: A Review. J. Pharm. Biomed. Anal. 2014, 101, 238–250. [Google Scholar] [CrossRef]
- Geue, N.; Winpenny, R.E.P.; Barran, P.E. Structural Characterisation Methods for Supramolecular Chemistry That Go beyond Crystallography. Chem. Soc. Rev. 2022, 51, 8–27. [Google Scholar] [CrossRef]
- Sayede, A.; Monflier, E. Molecular Modeling of Cyclodextrin Inclusion Complexes. In Chemical Modelling; Springbord, M., Joswig, J.-O., Eds.; Royal Society of Chemistry: London, UK, 2021; Volume 16, pp. 72–99. ISBN 9781839161704. [Google Scholar]
- Mazurek, A.H.; Szeleszczuk, Ł.; Gubica, T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int. J. Mol. Sci. 2021, 22, 9422. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868–2881. [Google Scholar] [CrossRef]
- Coleman, A.W.; Nicolis, I.; Keller, N.; Dalbiez, J.P. Aggregation of Cyclodextrins: An Explanation of the Abnormal Solubility of β-Cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 13, 139–143. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Fenyvesi, É.; Szemán, J.; Csabai, K.; Malanga, M.; Szente, L. Methyl-Beta-Cyclodextrins: The Role of Number and Types of Substituents in Solubilizing Power. J. Pharm. Sci. 2014, 103, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, W.; Nguyen, T.A.; Zhao, J. Empirical, Thermodynamic and Quantum-Chemical Investigations of Inclusion Complexation between Flavanones and (2-Hydroxypropyl)-Cyclodextrins. Food Chem. 2012, 134, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, G.L.; Faulkner, J.R.; Han, S.M.; Armstrong, D.W. Substituent Effects on the Binding of Phenols to Cyclodextrins in Aqueous Solution. J. Phys. Chem. 1989, 93, 6863–6867. [Google Scholar] [CrossRef]
- Acuña-Rougier, C.; Olea-Azar, C. Thermodynamic and Geometric Study of Diasteroisomeric Complexes Formed by Racemic Flavanones and Three Cyclodextrins through NMR. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 119–136. [Google Scholar] [CrossRef]
- Sangpheak, W.; Kicuntod, J.; Schuster, R.; Rungrotmongkol, T.; Wolschann, P.; Kungwan, N.; Viernstein, H.; Mueller, M.; Pongsawasdi, P. Physical Properties and Biological Activities of Hesperetin and Naringenin in Complex with Methylated P-Cyclodextrin. Beilstein J. Org. Chem. 2015, 11, 2763–2773. [Google Scholar] [CrossRef]
- Pandey, S.; Xiang, Y.; Walpita Kankanamalage, D.V.D.; Jayawickramarajah, J.; Leng, Y.; Mao, H. Measurement of Single-Molecule Forces in Cholesterol and Cyclodextrin Host-Guest Complexes. J. Phys. Chem. B 2021, 125, 11112–11121. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.W.; Jung, S. Aqueous Solubility Enhancement of Some Flavones by Complexation with Cyclodextrins. Bull. Korean Chem. Soc. 2008, 29, 590–594. [Google Scholar] [CrossRef]
- Gelb, R.I.; Schwartz, L.M. Complexation of Adamantane-Ammonium Substrates by Beta-Cyclodextrin and Its O-Methylated Derivatives. J. Incl. Phenom. Mol. Recognit. Chem. 1989, 7, 537–543. [Google Scholar] [CrossRef]
- Pereira-Vilar, A.; Martin-Pastor, M.; Pessêgo, M.; García-Río, L. Supramolecular Recognition Induces Nonsynchronous Change of Dye Fluorescence Properties. J. Org. Chem. 2016, 81, 6587–6595. [Google Scholar] [CrossRef]
- Wenz, G. Influence of Intramolecular Hydrogen Bonds on the Binding Potential of Methylated β-Cyclodextrin Derivatives. Beilstein J. Org. Chem. 2012, 8, 1890–1895. [Google Scholar] [CrossRef]
- Sangpheak, W.; Khuntawee, W.; Wolschann, P.; Pongsawasdi, P.; Rungrotmongkol, T. Enhanced Stability of a Naringenin/2,6-Dimethyl β-Cyclodextrin Inclusion Complex: Molecular Dynamics and Free Energy Calculations Based on MM- and QM-PBSA/GBSA. J. Mol. Graph. Model. 2014, 50, 10–15. [Google Scholar] [CrossRef]
- Jeromin, J.; Noll, O.; Ritter, H. Cyclodextrins in Polymer Synthesis: Free Radical Polymerization of Cyclodextrin Complexes with N-Methacryloyl-11-Aminoundecanoic Acid or N-Methacryloyl-1-Aminononane as Guest Monomers. Macromol. Chem. Phys. 1998, 199, 2641–2645. [Google Scholar] [CrossRef]
- Choi, S.W.; Ritter, H. Towards Green Routes for Polymer Synthesis: Polymerization of Cyclodextrin Host-Guest Complexed Diethyl Fumarate and Copolymerization with Complexed Styrene in Homogenous Aqueous Solution. Macromol. Rapid Commun. 2004, 25, 716–719. [Google Scholar] [CrossRef]
- Köllisch, H.; Barner-Kowollik, C.; Ritter, H. Living Free Radical Polymerization of Cyclodextrin Host-Guest Complexes of Styrene via the Reversible Addition Fragmentation Chain Transfer (RAFT) Process in Aqueous Solution. Macromol. Rapid Commun. 2006, 27, 848–853. [Google Scholar] [CrossRef]
- Fava, F.; Ciccotosto, V.F. Effects of Randomly Methylated-β-Cyclodextrins (RAMEB) on the Bioavailability and Aerobic Biodegradation of Polychlorinated Biphenyls in Three Pristine Soils Spiked with a Transformer Oil. Appl. Microbiol. Biotechnol. 2002, 58, 393–399. [Google Scholar] [CrossRef]
- Fava, F.; Di Gioia, D.; Marchetti, L.; Fenyvesi, E.; Szejtli, J. Randomly Methylated β-Cyclodextrins (RAMEB) Enhance the Aerobic Biodegradation of Polychlorinated Biphenyl in Aged-Contaminated Soils. J. Incl. Phenom. 2002, 44, 417–421. [Google Scholar] [CrossRef]
- Jeschke, S.; Jankowski, P.; Best, A.S.; Johansson, P. Catching TFSI: A Computational–Experimental Approach to Β-Cyclodextrin-Based Host–Guest Systems as Electrolytes for Li-Ion Batteries. ChemSusChem 2018, 11, 1942–1949. [Google Scholar] [CrossRef]
- Dhiman, P.; Bhatia, M. Pharmaceutical Applications of Cyclodextrins and Their Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 171–186. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Suliman, F.E.O.; Saad, B.; Aboul-Enein, H.Y. Determination of Aminoglutethimide Enantiomers in Pharmaceutical Formulations by Capillary Electrophoresis Using Methylated-β-Cyclodextrin as a Chiral Selector and Computational Calculation for Their Respective Inclusion Complexes. Talanta 2009, 77, 1388–1393. [Google Scholar] [CrossRef]
- Varga, E.; Benkovics, G.; Darcsi, A.; Várnai, B.; Sohajda, T.; Malanga, M.; Béni, S. Comparative Analysis of the Full Set of Methylated β-Cyclodextrins as Chiral Selectors in Capillary Electrophoresis. Electrophoresis 2019, 40, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- Höfler, T.; Wenz, G. Determination of Binding Energies between Cyclodextrins and Aromatic Guest Molecules by Microcalorimetry. J. Incl. Phenom. Mol. Recognit. Chem. 1996, 25, 81–84. [Google Scholar] [CrossRef]
- Zabel, V.; Mason, S.A.; Saenger, W. Neutron Diffraction Study of the Hydrogen Bonding in 0-Cyclodextrin Undecahydrate at 120 K: From Dynamic Flip-Flops to Static Homodromic Chains. J. Am. Chem. Soc. 1986, 108, 3664–3673. [Google Scholar] [CrossRef]
- Chelli, S.; Majdoub, M.; Jouini, M.; Aelyach, S.; Maurel, F.; Chane-Ching, K.I.; Lacaze, P.C. Host-Guest Complexes of Phenol Derivatives with β-Cyclodextrin: An Experimental and Theoretical Investigation. J. Phys. Org. Chem. 2007, 20, 30–43. [Google Scholar] [CrossRef]
- Mahalapbutr, P.; Nutho, B.; Wolschann, P.; Chavasiri, W.; Kungwan, N.; Rungrotmongkol, T. Molecular Insights into Inclusion Complexes of Mansonone E and H Enantiomers with Various β-Cyclodextrins. J. Mol. Graph. Model. 2018, 79, 72–80. [Google Scholar] [CrossRef]
- Creasy, W.R.; Farrar, J.M. Reactive Scattering from Double Minimum Potentials: Energetics and Mechanism of the Gas Phase Dehydration Reaction of Lithium Ion with Tert-Butyl Alcohol. J. Chem. Phys. 1986, 85, 162–178. [Google Scholar] [CrossRef]
- Bonnet, P.; Jaime, C.; Morin-Allory, L. α- β-, and γ-Cyclodextrin Dimers. Molecular Modeling Studies by Molecular Mechanics and Molecular Dynamics Simulations. J. Org. Chem. 2001, 66, 689–692. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, T.; Feng, W.; Van Der Spoel, D. Molecular Recognition in Different Environments: β-Cyclodextrin Dimer Formation in Organic Solvents. J. Phys. Chem. B 2012, 116, 12684–12693. [Google Scholar] [CrossRef]
- Aree, T.; Saenger, W.; Leibnitz, P.; Hoier, H. Crystal Structure of Heptakis(2,6-Di-O-Methyl)-β-Cyclodextrin Dihydrate: A Water Molecule in an Apolar Cavity. Carbohydr. Res. 1999, 315, 199–205. [Google Scholar] [CrossRef]
- Ramos, A.I.; Braga, T.M.; Silva, P.; Fernandes, J.A.; Ribeiro-Claro, P.; De Fátima Silva Lopes, M.; Paz, F.A.A.; Braga, S.S. Chloramphenicol·cyclodextrin Inclusion Compounds: Co-Dissolution and Mechanochemical Preparations and Antibacterial Action. CrystEngComm 2013, 15, 2822–2834. [Google Scholar] [CrossRef]
- Assaba, I.M.; Rahali, S.; Belhocine, Y.; Allal, H. Inclusion Complexation of Chloroquine with α and β-Cyclodextrin: Theoretical Insights from the New B97-3c Composite Method. J. Mol. Struct. 2021, 1227, 129696. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Allouche, A.R. Gabedita—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Zhang, J. Libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation. J. Chem. Theory Comput. 2018, 14, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Anchique, L.; Alcázar, J.J.; Ramos-Hernandez, A.; Méndez-López, M.; Mora, J.R.; Rangel, N.; Paz, J.L.; Márquez, E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers 2021, 13, 1620. [Google Scholar] [CrossRef]
- Johnson, J.K.; Zollweg, J.A.; Gubbins, K.E. The Lennard-Jones Equation of State Revisited. Mol. Phys. 1993, 78, 591–618. [Google Scholar] [CrossRef]
- Jensen, J.H. Predicting Accurate Absolute Binding Energies in Aqueous Solution: Thermodynamic Considerations for Electronic Structure Methods. Phys. Chem. Chem. Phys. 2015, 17, 12441–12451. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
Monomer | β-CD | DM-β-CD | ||
---|---|---|---|---|
Primary Face | Secondary Face | Primary Face | Secondary Face | |
ΔE (HB) | ΔE (HB) | ΔE (vdW) | ΔE (HB) | |
1 | −5.76 | −5.69 | −0.06 | −4.12 |
2 | −5.71 | −5.79 | −0.02 | −4.18 |
3 | −5.45 | −5.94 | −0.22 | −4.29 |
4 | −5.83 | −5.99 | −0.22 | −5.57 |
5 | −5.72 | −5.78 | −0.19 | −3.79 |
6 | −5.58 | −5.81 | −0.04 | −3.07 |
7 | −5.54 | −6.02 | −0.18 | −5.13 |
Average | −5.66 ± 0.05 | −5.86 ± 0.04 | −0.13 ± 0.03 | −4.31 ± 0.29 |
Binding Parameters | β-CD/Phenol | DM-β-CD/Phenol |
---|---|---|
Averaged individual intermolecular interaction energy | −4.99 a | −7.31 a |
Averaged individual intramolecular interaction energy c | −5.38 a | 0.17 b |
Interaction energy (ΔΕint) | −14.96 | −18.27 |
Interaction energy based on molecular forcefield (ΔΕint-FF) | −15.94 | −20.84 |
Electrostatic interaction energy (ΔΕele) | −4.55 | −6.17 |
vdW interaction energy (ΔΕvdW) | −11.40 | −14.67 |
Estimated free binding energy (ΔGcalc) | −2.62 | −5.23 |
Experimental free binding energy (ΔGexp) | −2.69 d | NF e |
Binding Parameters | β-CD Dimer | DM-β-CD Dimer |
---|---|---|
Averaged individual intermolecular interaction energy | −5.33 a | ND b |
Averaged individual intramolecular interaction energy | −5.22 a | ND b |
Interaction energy (ΔΕint) | −53.88 | −41.65 |
Interaction energy based on molecular forcefield (ΔΕint-FF) | −61.16 | −58.77 |
Electrostatic interaction energy (ΔΕele) | −46.40 | −13.28 |
vdW interaction energy (ΔΕvdW) | −14.75 | −45.48 |
Estimated free binding energy (ΔGcalc) | −12.84 | ND b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geue, N.; Alcázar, J.J.; Campodónico, P.R. Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation. Molecules 2023, 28, 2625. https://doi.org/10.3390/molecules28062625
Geue N, Alcázar JJ, Campodónico PR. Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation. Molecules. 2023; 28(6):2625. https://doi.org/10.3390/molecules28062625
Chicago/Turabian StyleGeue, Niklas, Jackson J. Alcázar, and Paola R. Campodónico. 2023. "Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation" Molecules 28, no. 6: 2625. https://doi.org/10.3390/molecules28062625