Synthesis of 5,6-Dihydrophenanthridines via Palladium-Catalyzed Intramolecular Dehydrogenative Coupling of Two Aryl C−H Bonds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Reaction Conditions
2.2. Substrate Scope
2.3. Large-Scale Experiment and Synthetic Application
2.4. Mechanistic Investigations
3. Materials and Methods
3.1. General Information
3.2. General Procedure A for Preparation of Substrates
3.3. General Procedure B for Preparation of Substrates
3.4. General Procedure C for Preparation of Products
3.5. The Synthesis of Immunosuppressant 7
3.6. Characterization Data of Substrates and Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stermitz, F.R.; Larson, K.A.; Kim, D.K. Structural relations among cytotoxic and antitumor benzophenanthridine alkaloid derivatives. J. Med. Chem. 1973, 16, 939–940. [Google Scholar] [CrossRef] [PubMed]
- Krane, B.D.; Fagbule, M.O.; Shamma, M.; Gözler, B. The Benzophenanthridine Alkaloids. J. Nat. Prod. 1984, 47, 1–43. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Hsieh, P.-W.; Chang, F.-R.; Wu, R.-R.; Liaw, C.-C.; Lee, K.-H.; Wu, Y.-C. Two New Protopines Argemexicaines A and B and the Anti-HIV Alkaloid 6-Acetonyldihydrochelerythrine from Formosan Argemone Mexicana. Planta Med. 2003, 69, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, O.B.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. New Crinine-Type Alkaloids with Inhibitory Effect on Induction of Inducible Nitric Oxide Synthase from Crinum yemense. J. Nat. Prod. 2004, 67, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Fotie, J.; Bohle, D.S.; Olivier, M.; Gomez, M.A.; Nzimiro, S. Trypanocidal and Antileishmanial Dihydrochelerythrine Derivatives from Garcinia lucida. J. Nat. Prod. 2007, 70, 1650–1653. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, S.; Lang, M.; Dreker, T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prütting, S.; Kuras, Z.; et al. Inhibitors of potassium channels KV1.3 and IK-1 as immunosuppressants. Bioorg. Med. Chem. Lett. 2009, 19, 2299–2304. [Google Scholar] [CrossRef]
- Park, J.E.; Cuong, T.D.; Hung, T.M.; Lee, I.; Na, M.; Kim, J.C.; Ryoo, S.; Lee, J.H.; Choi, J.S.; Woo, M.H.; et al. Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells. Bioorg. Med. Chem. Lett. 2011, 21, 6960–6963. [Google Scholar] [CrossRef]
- Yang, X.-J.; Miao, F.; Yao, Y.; Cao, F.-J.; Yang, R.; Ma, Y.-N.; Qin, B.-F.; Zhou, L. In Vitro Antifungal Activity of Sanguinarine and Chelerythrine Derivatives against Phytopathogenic Fungi. Molecules 2012, 17, 13026–13035. [Google Scholar] [CrossRef]
- Éles, J.; Beke, G.; Vágó, I.; Bozó, É.; Huszár, J.; Tarcsay, Á.; Kolok, S.; Schmidt, É.; Vastag, M.; Hornok, K.; et al. Quinolinyl- and phenantridinyl-acetamides as bradykinin B1 receptor antagonists. Bioorg. Med. Chem. Lett. 2012, 22, 3095–3099. [Google Scholar] [CrossRef]
- Lee, S.-S.; Venkatesham, U.; Rao, C.P.; Lam, S.-H.; Lin, J.-H. Preparation of secolycorines against acetylcholinesterase. Bioorg. Med. Chem. 2007, 15, 1034–1043. [Google Scholar] [CrossRef]
- Malhotra, R.; Rarhi, C.; Diveshkumar, K.V.; Barik, R.; D’cunha, R.; Dhar, P.; Kundu, M.; Chattopadhyay, S.; Roy, S.; Basu, S.; et al. Dihydrochelerythrine and its derivatives: Synthesis and their application as potential G-quadruplex DNA stabilizing agents. Bioorg. Med. Chem. 2016, 24, 2887–2896. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Z.; Jing, C.-X.; Cai, J.-Y.; Wu, J.-B.; Wang, S.; Yin, J.-L.; Li, X.-N.; Li, L.; Hao, X.-J. Design, Synthesis, and Structural Optimization of Lycorine-Derived Phenanthridine Derivatives as Wnt/β-Catenin Signaling Pathway Agonists. J. Nat. Prod. 2016, 79, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Suzuki, M.; Saimoto, A.; Kabasawa, T. Structural Considerations of NK109, an Antitumor Benzo[c]phenanthridine Alkaloid. J. Nat. Prod. 1999, 62, 864–867. [Google Scholar] [CrossRef]
- Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine Blocks Cytokinesis in Bacteria by Inhibiting FtsZ Assembly and Bundling+. Biochemistry 2005, 44, 16584–16593. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, W.-D.; Liu, R.-H.; Zhang, C.; Shen, Y.-H.; Li, H.-L.; Liang, M.-J.; Xu, X.-K. Benzophenanthridine Alkaloids from Zanthoxylum nitidum (Roxb.) DC, and Their Analgesic and Anti-Inflammatory Activities. Chem. Biodivers. 2006, 3, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Cheng, M.-J.; Chiang, M.Y.; Kuo, Y.-H.; Wang, C.-J.; Chen, I.-S. Dihydrobenzo[c]phenanthridine Alkaloids from Stem Bark of Zanthoxylum nitidum. J. Nat. Prod. 2008, 71, 669–673. [Google Scholar] [CrossRef]
- Parhi, A.; Kelley, C.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of substituted 5-methylbenzo[c]phenanthridinium derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 7080–7083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrow, S.C.; Facchini, P.J. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy. J. Bio. Chem. 2013, 288, 28997–29012. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Gao, X.; Zhu, Z.; Cao, Y.; Zhang, Q.; Tu, P.; Chai, X. Alkaloids from the Tribe Bocconieae (Papaveraceae): A Chemical and Biological Review. Molecules 2014, 19, 13042–13060. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.-Z.; Fan, S.-R.; Yang, B.-J.; Yao, H.-C.; Wang, Y.-T.; Cai, J.-Y.; Jing, C.-X.; Pan, Z.-H.; Luo, M.; Yuze, Y.-Q.; et al. Phenanthridine Derivative Host Heat Shock Cognate 70 DownRegulators as Porcine Epidemic Diarrhea Virus Inhibitors. J. Nat. Prod. 2021, 84, 1175–1184. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Long, X.-Y.; Ding, X.; Fan, S.-R.; Cai, J.-Y.; Yang, B.-J.; Zhang, X.-F.; Luo, R.-h.; Yang, L.; Ruan, T.; et al. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. Eur. J. Med. Chem. 2022, 227, 113966. [Google Scholar] [CrossRef] [PubMed]
- Read, M.L.; Gundersen, L.-L. Synthesis of Phenanthridine Derivatives by Microwave-Mediated Cyclization of o-Furyl(allylamino)arenes. J. Org. Chem. 2013, 78, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, F.; Zhang, S.; He, Y.; Yang, N.; Fan, Q.-H. Ruthenium-Catalyzed Enantioselective Hydrogenation of Phenanthridine Derivatives. Org. Lett. 2017, 19, 1458–1461. [Google Scholar] [CrossRef]
- Intrieri, D.; Mariani, M.; Caselli, A.; Ragaini, F.; Gallo, E. [Ru(TPP)CO]-Catalysed Intramolecular Benzylic C-H Bond Amination, Affording Phenanthridine and Dihydrophenanthridine Derivatives. Chem. Eur. J. 2012, 18, 10487–10490. [Google Scholar] [CrossRef]
- Augustine, J.K.; Bombrun, A.; Alagarsamy, P.; Jothi, A. Selective synthesis of 5,6-dihydrophenanthridines, 5,6-dihydrobenzo[c][1,8]naphthyridines and their fully aromatized analogues via the Pictet-Spengler reaction mediated by peptide coupling agent propylphosphonic anhydride (T3P). Tetrahedron Lett. 2012, 53, 6280–6287. [Google Scholar] [CrossRef]
- Lee, W.-I.; Jung, J.-W.; Jang, J.; Yun, H.; Suh, Y.-G. Synthesis of 5,6-dihydrophenanthridines via N,O-acetal TMS ethers. Tetrahedron Lett. 2013, 54, 5167–5171. [Google Scholar] [CrossRef]
- Bao, X.; Yao, W.; Zhu, Q.; Xu, Y. Synthesis of 6-Substituted Phenanthridine Derivatives by Palladium-Catalysed Domino Suzuki-Miyaura/Aza-Michael Reactions. Eur. J. Org. Chem. 2014, 2014, 7443–7450. [Google Scholar] [CrossRef]
- Wang, C.; An, D.; Guan, X.; Fan, Y.; Liu, G.; Zhang, G.; Zhang, S. Organocatalytic Enantioselective Synthesis of 6-Aryl-5,6-dihydrophenanthridines via a Modified Pictet-Spengler Reaction of Biphenyl-2-amines and Aromatic Aldehydes. Eur. J. Org. Chem. 2017, 2017, 1865–1869. [Google Scholar] [CrossRef]
- Raju, S.; Annamalai, P.; Chen, P.-L.; Liu, Y.-H.; Chuang, S.-C. Palladium-Catalyzed C−H Bond Activation by Using Iminoquinone as a Directing Group and an Internal Oxidant or a Co-oxidant: Production of Dihydrophenanthridines, Phenanthridines, and Carbazoles. Org. Lett. 2017, 19, 4134–4137. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, C.; Zhang, X.; Fan, X. sSelective Synthesis of Dihydrophenanthridine and Phenanthridine Derivatives from the Cascade Reactions of o-Arylanilines with Alkynoates through C−H/N−H/C−C Bond Cleavage. J. Org. Chem. 2021, 86, 5805–5819. [Google Scholar] [CrossRef]
- Barluenga, J.; Fañanás, F.J.; Sanz, R.; Fernández, Y. Synthesis of Functionalized Indole- and Benzo-Fused Heterocyclic Derivatives through Anionic Benzyne Cyclization. Chem. Eur. J. 2002, 8, 2034–2046. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.S.; Lagishetti, C.; Chen, S.; Kiran, I.N.C.; He, Y. Synthesis of Dihydrophenanthridines and Oxoimidazolidines from Anilines and Ethylglyoxylate via Aza Diels-Alder Reaction of Arynesand KF-Induced Annulation. Org. Lett. 2016, 18, 4546–4549. [Google Scholar] [CrossRef] [PubMed]
- Asamdi, M.; Chauhan, P.M.; Patel, J.J.; Chikhalia, K.H. Palladium catalyzed annulation of benzylamines and arynes via C-H activation to construct 5,6-dihydrophenanthridine derivatives. Tetrahedron 2019, 75, 3485–3494. [Google Scholar] [CrossRef]
- Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. Catalytic Direct Arylation with Aryl Chlorides, Bromides, and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions. J. Am. Chem. Soc. 2006, 128, 581–590. [Google Scholar] [CrossRef]
- Cropper, E.L.; White, A.J.P.; Ford, A.; Hii, K.K. Ligand Effects in the Synthesis of N-Heterocycles by Intramolecular Heck Reactions. J. Org. Chem. 2006, 71, 1732–1735. [Google Scholar] [CrossRef]
- Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. Synthesis of dihydrophenanthridines by a sequence of Ugi-4CR and palladium-catalyzed intramolecular C-H functionalization. Beilstein J. Org. Chem. 2008, 4, 10. [Google Scholar] [CrossRef]
- Majumdar, K.C.; Nath, S.; Chattopadhyay, B.; Sinha, B. Palladium-Catalyzed Tethered Intramolecular Arylation: An Unusual Synthesis of Linearly Fused Pyridocoumarin Derivatives. Synthesis 2010, 22, 3918–3926. [Google Scholar] [CrossRef]
- Sun, C.-L.; Gu, Y.-F.; Huang, W.-P.; Shi, Z.-J. Neocuproine–KOtBu promoted intramolecular cross coupling to approach fused rings. Chem. Commun. 2011, 47, 9813–9815. [Google Scholar] [CrossRef] [Green Version]
- Roman, D.S.; Takahashi, Y.; Charette, A.B. Potassium tert-Butoxide Promoted Intramolecular Arylation via a Radical Pathway. Org. Lett. 2011, 13, 3242–3245. [Google Scholar] [CrossRef]
- Singh, V.P.; Singh, P.; Singh, H.B.; Butcher, R.J. Intramolecular C-C coupling of 2,6-disubstituted-1-bromoaryls for dihydrophenanthridines. Tetrahedron Lett. 2012, 53, 4591–4594. [Google Scholar] [CrossRef]
- De, S.; Mishra, S.; Kakde, B.N.; Dey, D.; Bisai, A. Expeditious Approach to Pyrrolophenanthridones, Phenanthridines, and Benzo[c]phenanthridines via Organocatalytic Direct Biaryl-Coupling Promoted by Potassium tert-Butoxide. J. Org. Chem. 2013, 78, 7823–7844. [Google Scholar] [CrossRef] [PubMed]
- Laha, J.K.; Dayal, N.; Jain, R.; Patel, K. Palladium-Catalyzed Regiocontrolled Domino Synthesis of N-Sulfonyl Dihydrophenanthridines and Dihydrodibenzo[c,e]azepines: Control over the Formation of Biaryl Sultams in the Intramolecular Direct Arylation. J. Org. Chem. 2014, 79, 10899–10907. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, M.; Sharma, S.; Nayal, O.S.; Kumar, N.; Singh, B.; Sharma, U. Microwave Assisted Synthesis of Phenanthridinones and Dihydrophenanthridines by Vasicine/KOtBu Promoted Intramolecular C-H Arylation. Org. Biomol. Chem. 2016, 14, 8536–8544. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Neuburger, M.; Baudoin, O. Chiral Bifunctional Phosphine-Carboxylate Ligands for Palladium(0)-Catalyzed Enantioselective C-H Arylation. Angew. Chem. Int. Ed. 2018, 57, 1394–1398. [Google Scholar] [CrossRef]
- An, Y.; Zhang, B.-S.; Zhang, Z.; Liu, C.; Gou, X.-Y.; Ding, Y.-N.; Liang, Y.-M. A carboxylate-assisted amination/unactivated C(sp2)-H arylation reaction via a palladium/ norbornene cooperative catalysis. Chem. Commun. 2020, 56, 5933–5936. [Google Scholar] [CrossRef]
- Alberico, D.; Scott, M.E.; Lautens, M. Aryl−Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev. 2007, 107, 174–238. [Google Scholar] [CrossRef]
- García-Rubia, A.; Arrayás, R.G.; Carretero, J.C. Palladium(II)-Catalyzed Regioselective Direct C2 Alkenylation of Indoles and Pyrroles Assisted by the N-(2-Pyridyl)sulfonyl Protecting Group. Angew. Chem. Int. Ed. 2009, 48, 6511–6515. [Google Scholar] [CrossRef]
- Yan, Z.-L.; Chen, W.-L.; Gao, Y.-R.; Mao, S.; Zhang, Y.-L.; Wang, Y.-Q. Palladium-Catalyzed Intermolecular C-2 Alkenylation of Indoles Using Oxygen as the Oxidant. Adv. Synth. Catal. 2014, 356, 1085–1092. [Google Scholar] [CrossRef]
- Perez, K.A.; Rogers, C.R.; Weiss, E.A. Quantum Dot-Catalyzed Photoreductive Removal of Sulfonyl-Based Protecting Groups. Angew. Chem. Int. Ed. 2020, 59, 14091–14095. [Google Scholar] [CrossRef]
- Cuny, G.D. Synthesis of (±)-Aporphine Utilizing Pictet−Spengler and Intramolecular Phenol ortho-Arylation Reactions. Tetrahedron Lett. 2004, 45, 5167–5170. [Google Scholar] [CrossRef]
- García-Rubia, A.; Urones, B.; Arrayás, R.G.; Carretero, J.C. PdII-Catalysed C-H Functionalisation of Indoles and Pyrroles Assisted by the Removable N-(2-Pyridyl)sulfonyl Group: C2-Alkenylation and Dehydrogenative Homocoupling. Chem. Eur. J. 2010, 16, 9676–9685. [Google Scholar] [CrossRef] [PubMed]
- Pintori, D.G.; Greaney, M.F. Intramolecular Oxidative C-H Coupling for Medium-Ring Synthesis. J. Am. Chem. Soc. 2011, 133, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liang, Z.; Wang, Y.; Zhang, Y. Palladium(II)-Catalyzed Direct Alkenylation and Arylation of Arenes: Removable 2-Pyridylsulfinyl Group Assisted C-H Bond Activation. J. Org. Chem. 2011, 76, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Laha, J.K.; Jethava, K.P.; Dayal, N. Palladium-Catalyzed Intramolecular Oxidative Coupling Involving Double C(sp2)-H Bonds for the Synthesis of Annulated Biaryl Sultams. J. Org. Chem. 2014, 79, 8010–8019. [Google Scholar] [CrossRef] [PubMed]
- Laha, J.K.; Dayal, N.; Jethava, K.P.; Prajapati, D.V. Access to Biaryl Sulfonamides by Palladium-Catalyzed Intramolecular Oxidative Coupling and Subsequent Nucleophilic Ring Opening of Heterobiaryl Sultams with Amines. Org. Lett. 2015, 17, 1296–1299. [Google Scholar] [CrossRef]
- Shen, Z.; Ni, Z.; Mo, S.; Wang, J.; Zhu, Y. Palladium-Catalyzed Intramolecular Decarboxylative Coupling of AreneCarboxylic Acids/Esters with Aryl Bromides. Chem. Eur. J. 2012, 18, 4859–4865. [Google Scholar] [CrossRef]
- Laha, J.K.; Gupta, P. Sulfoxylate Anion Radical-Induced Aryl Radical Generation and Intramolecular Arylation for the Synthesis of Biarylsultams. J. Org. Chem. 2022, 87, 4204–4214. [Google Scholar] [CrossRef]
- Pegoraro, S.; Lang, M.; Feurle, J.; Krauss, J. Novel Phenantridine Analogues and Their Uses as Inhibitors of Hyperproliferation of T Cells and/or Keratinocytes. WO 2005/105752 Al., 10 November 2005. [Google Scholar]
- Zhang, X.-S.; Zhang, Y.-F.; Li, Z.-W.; Luo, F.-X.; Shi, Z.-J. Synthesis of Dibenzo[c,e]oxepin-5(7H)-ones from Benzyl Thioethers and Carboxylic Acids: Rhodium-Catalyzed Double C-H Activation Controlled by Different Directing Groups. Angew. Chem., Int. Ed. 2015, 54, 5478–5482. [Google Scholar] [CrossRef]
Entry | DG | PG | Pd cat. | Oxidant | T /°C | Solvent | Yield (%) b |
---|---|---|---|---|---|---|---|
1 | -H | Ac | Pd(OAc)2 | air | 70 | DMSO | 0 |
2 | -CONMe2 | Ac | Pd(OAc)2 | air | 70 | DMSO | trace |
3 | -CO(2-Py) | Ac | Pd(OAc)2 | air | 70 | DMSO | trace |
4 | -SO2(2-Py) | Ac | Pd(OAc)2 | air | 70 | DMSO | 9 |
5 | -SO2(2-Py) | Ac | Pd(OAc)2 | air | 70 | HFIP | 11 |
6 | -SO2(2-Py) | Ac | Pd(OAc)2 | air | 70 | CF3CH2OH | 12 |
7 c | -SO2(2-Py) | Ac | Pd(OAc)2 | air | 70 | Other solvents | <6 |
8 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(TFA)2·H2O | 70 | CF3CH2OH | 31 |
9 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(OAc)2·H2O | 70 | CF3CH2OH | 22 |
10 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(OAc)2 | 70 | CF3CH2OH | 21 |
11 | -SO2(2-Py) | Ac | Pd(OAc)2 | CuF2·2H2O | 70 | CF3CH2OH | 29 |
12 c | -SO2(2-Py) | Ac | Pd(OAc)2 | Other oxidants | 70 | CF3CH2OH | <20 |
13 | -SO2(2-Py) | Ac | Pd(OAc)2 | Argon | 70 | CF3CH2OH | 8 |
14 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(TFA)2·H2O | 60 | CF3CH2OH | 23 |
15 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(TFA)2·H2O | 80 | CF3CH2OH | 35 |
16 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 45 |
17 | -SO2(2-Py) | Ac | Pd(OAc)2 | Cu(TFA)2·H2O | 120 | CF3CH2OH | 46 |
18 | -SO2(2-Py) | Ts | Pd(OAc)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | trace |
19 | -SO2(2-Py) | Boc | Pd(OAc)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | trace |
20 | -SO2(2-Py) | Me | Pd(OAc)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 3 |
21 | -SO2(2-Py) | Ph | Pd(OAc)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 18 |
22 | -SO2(2-Py) | Ac | Pd(PPh3)4 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 53 |
23 | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 62 |
24 c | -SO2(2-Py) | Ac | Other [Pd] | Cu(TFA)2·H2O | 100 | CF3CH2OH | trace |
25 | -SO2(2-Py) | Ac | Pd(PPh3)2Cl2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 36 |
26 d | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 74 |
27 e | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 75 |
28 d,f | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 16 |
29 d,g | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 83 |
30 d,h | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 82 |
31 d,i | -SO2(2-Py) | Ac | Pd(TFA)2 | Cu(TFA)2·H2O | 100 | CF3CH2OH | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-Y.; Zhu, X.-Q.; Zhao, B.-Y.; Zhang, H.-X.; Wang, Y.-Q.; Jia, Q. Synthesis of 5,6-Dihydrophenanthridines via Palladium-Catalyzed Intramolecular Dehydrogenative Coupling of Two Aryl C−H Bonds. Molecules 2023, 28, 2498. https://doi.org/10.3390/molecules28062498
Wang M-Y, Zhu X-Q, Zhao B-Y, Zhang H-X, Wang Y-Q, Jia Q. Synthesis of 5,6-Dihydrophenanthridines via Palladium-Catalyzed Intramolecular Dehydrogenative Coupling of Two Aryl C−H Bonds. Molecules. 2023; 28(6):2498. https://doi.org/10.3390/molecules28062498
Chicago/Turabian StyleWang, Meng-Yue, Xue-Qing Zhu, Bao-Yin Zhao, Hong-Xia Zhang, Yong-Qiang Wang, and Qiong Jia. 2023. "Synthesis of 5,6-Dihydrophenanthridines via Palladium-Catalyzed Intramolecular Dehydrogenative Coupling of Two Aryl C−H Bonds" Molecules 28, no. 6: 2498. https://doi.org/10.3390/molecules28062498
APA StyleWang, M. -Y., Zhu, X. -Q., Zhao, B. -Y., Zhang, H. -X., Wang, Y. -Q., & Jia, Q. (2023). Synthesis of 5,6-Dihydrophenanthridines via Palladium-Catalyzed Intramolecular Dehydrogenative Coupling of Two Aryl C−H Bonds. Molecules, 28(6), 2498. https://doi.org/10.3390/molecules28062498