Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Sample Treatment
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Limits of Detection and Quantification
2.2.3. Matrix Effect
2.2.4. Working Range
2.2.5. Precision
2.2.6. Trueness
2.3. Application of the Method
3. Materials and Methods
3.1. Reagents and Materials
3.2. Standards
3.3. Sample Procurement and Treatment
3.3.1. Samples
3.3.2. Sample Treatment
3.4. GC-MS Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- López, A.C.; Fernández, L.A.; Alippi, A.M. Traceability of Potential Enterotoxigenic Bacillus cereus in Bee-Pollen Samples from Argentina throughout the Production Process. Int. J. Food Microbiol. 2020, 334, 108816. [Google Scholar] [CrossRef]
- Themelis, T.; Gotti, R.; Orlandini, S.; Gatti, R. Quantitative Amino Acids Profile of Monofloral Bee Pollens by Microwave Hydrolysis and Fluorimetric High Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2019, 173, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Simultaneous Determination of Carvacrol and Thymol in Bee Pollen by Using a Simple and Efficient Solvent Extraction Method and Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 181, 113124. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Amoutzias, G.D.; Mossialos, D. Foodomics in Bee Product Research: A Systematic Literature Review. Eur. Food Res. Technol. 2021, 247, 309–331. [Google Scholar] [CrossRef]
- Ares, A.M.; Toribio, L.; Tapia, J.A.; González-Porto, A.V.; Higes, M.; Martín-Hernández, R.; Bernal, J. Differentiation of Bee Pollen Samples According to the Apiary of Origin and Harvesting Period Based on Their Amino Acid Content. Food Biosci. 2022, 50, 102092. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Zhang, S.; Peng, S.; Cao, W.; Ho, C.T.; Bai, N. Bioactive Constituents of F. esculentum Bee Pollen and Quantitative Analysis of Samples Collected from Seven Areas by HPLC. Molecules 2019, 24, 2705. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Rozas, L.; Horstkotte, B.; García-Campaña, A.M.; Lara, F.J. Sweeping-Micellar Electrokinetic Chromatography with Tandem Mass Spectrometry as an Alternative Methodology to Determine Neonicotinoid and Boscalid Residues in Pollen and Honeybee Samples. J. Chromatogr. A 2022, 1672, 463023. [Google Scholar] [CrossRef]
- Vázquez, P.P.; Lozano, A.; Uclés, S.; Ramos, M.M.G.; Fernández-Alba, A.R. A Sensitive and Efficient Method for Routine Pesticide Multiresidue Analysis in Bee Pollen Samples Using Gas and Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1426, 161–173. [Google Scholar] [CrossRef]
- Wen, X.; Ma, C.; Sun, M.; Wang, Y.; Xue, X.; Chen, J.; Song, W.; Li-Byarlay, H.; Luo, S. Pesticide Residues in the Pollen and Nectar of Oilseed Rape (Brassica napus L.) and Their Potential Risks to Honey Bees. Sci. Total Environ. 2021, 786, 147443. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and Human Health Risk Assessment of Mineral Elements and Pesticides Residues in Bee Pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef]
- Valverde, S.; Bernal, J.L.; Martín, M.T.; Nozal, M.J.; Bernal, J. Fast Determination of Neonicotinoid Insecticides in Bee Pollen Using QuEChERS and Ultra-High Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Electrophoresis 2016, 37, 2470–2477. [Google Scholar] [CrossRef]
- Nozal, M.J.; Imaz, E.; Bernal, J.L.; Nieto, J.L.; Higes, M.; Bernal, J. An Optimized Extraction Procedure for Determining Acaricide Residues in Foundation Sheets of Beeswax by Using Gas Chromatography-Mass Spectrometry. Agronomy 2021, 11, 804. [Google Scholar] [CrossRef]
- Lasheras, R.J.; Lázaro, R.; Burillo, J.C.; Bayarri, S. Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 2262. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Yao, J.; Wang, Y. Varroa Mite and Deformed Wing Virus Infestations Interactively Make Honey Bees (Apis mellifera) More Susceptible to Insecticides. Environ. Pollut. 2022, 292, 118212. [Google Scholar] [CrossRef]
- European Commission EU Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 8 March 2023).
- Wueppenhorst, K.; Eckert, J.H.; Steinert, M.; Erler, S. What about Honey Bee Jelly? Pesticide Residues in Larval Food Jelly of the Western Honey Bee Apis mellifera. Sci. Total Environ. 2022, 850, 158095. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide Residues in Honeybees, Honey and Bee Pollen by LC-MS/MS Screening: Reported Death Incidents in Honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef]
- Tong, Z.; Duan, J.; Wu, Y.; Liu, Q.; He, Q.; Shi, Y.; Yu, L.; Cao, H. A Survey of Multiple Pesticide Residues in Pollen and Beebread Collected in China. Sci. Total Environ. 2018, 640–641, 1578–1586. [Google Scholar] [CrossRef]
- Fuente-Ballesteros, A.; Brugnerotto, P.; Costa, A.C.O.; Nozal, M.J.; Ares, A.M.; Bernal, J. Determination of Acaricides in Honeys from Different Botanical Origins by Gas Chromatography-Mass Spectrometry. Food Chem. 2023, 408, 135245. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J.; Mohamed, H.M.; Kurowska-Susdorf, A.; Dewani, R.; Fares, M.Y.; Andruch, V. Green Analytical Chemistry as an Integral Part of Sustainable Education Development. Curr. Opin. Green Sustain. Chem. 2021, 31, 100508. [Google Scholar] [CrossRef]
- European Commission Directorate—General for Health and Food Safety. Document SANTE/12682/2019. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 8 March 2023).
- Gardana, C.; Del Bo, C.; Quicazán, M.C.; Corrrea, A.R.; Simonetti, P. Nutrients, Phytochemicals and Botanical Origin of Commercial Bee Pollen from Different Geographical Areas. J. Food Compos. Anal. 2018, 73, 29–38. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Pesticide Residues in Honey Bees, Pollen and Beeswax: Assessing Beehive Exposure. Environ. Pollut. 2018, 241, 106–114. [Google Scholar] [CrossRef]
- Koech, S.J.; Karanja, R.H.N.; Kurgat, J.K.; Mokaya, H.O.; Dubois, T.; Lattorff, H.M.G. Pesticide Contamination and Their Botanical Sources in Pollen Loads Collected by Honeybees in Kenya: A Spatio-Temporal Context. Agric. Ecosyst. Environ. 2023, 343, 108264. [Google Scholar] [CrossRef]
- Beyer, M.; Lenouvel, A.; Guignard, C.; Eickermann, M.; Clermont, A.; Kraus, F.; Hoffmann, L. Pesticide Residue Profiles in Bee Bread and Pollen Samples and the Survival of Honeybee Colonies—A Case Study from Luxembourg. Environ. Sci. Pollut. Res. 2018, 25, 32163–32177. [Google Scholar] [CrossRef] [PubMed]
- Hakme, E.; Lozano, A.; Gómez-Ramos, M.M.; Hernando, M.D.; Fernández-Alba, A.R. Non-Target Evaluation of Contaminants in Honey Bees and Pollen Samples by Gas Chromatography Time-of-Flight Mass Spectrometry. Chemosphere 2017, 184, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Tzouganaki, Z.D.; Machera, K. Chromatographic Determination of Monoterpenes and Other Acaricides in Honeybees: Prevalence and Possible Synergies. Sci. Total Environ. 2018, 625, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Janicka, P.; Płotka-Wasylka, J.; Jatkowska, N.; Chabowska, A.; Fares, M.Y.; Andruch, V.; Kaykhaii, M.; Gębicki, J. Trends in the New Generation of Green Solvents in Extraction Processes. Curr. Opin. Green Sustain. Chem. 2022, 37, 100670. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Arribas, M.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Development and Validation of UHPLC—MS/MS Methods for Determination of Neonicotinoid Insecticides in Royal Jelly-Based Products. J. Food Compos. Anal. 2018, 70, 105–113. [Google Scholar] [CrossRef]
- Hrynko, I.; Kaczyński, P.; Łozowicka, B. A Global Study of Pesticides in Bees: QuEChERS as a Sample Preparation Methodology for Their Analysis—Critical Review and Perspective. Sci. Total Environ. 2021, 792, 148385. [Google Scholar] [CrossRef]
- Végh, R.; Csóka, M.; Sörös, C.; Sipos, L. Food Safety Hazards of Bee Pollen—A Review. Trends Food Sci. Technol. 2021, 114, 490–509. [Google Scholar] [CrossRef]
- Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Gad Alla, S.A.; Lotfy, H.M. Simultaneous Determination of 200 Pesticide Residues in Honey Using Gas Chromatography-Tandem Mass Spectrometry in Conjunction with Streamlined Quantification Approach. J. Chromatogr. A 2016, 1427, 142–160. [Google Scholar] [CrossRef]
- Frison, S.; Breitkreitz, W.; Currie, R.; Nelson, D.; Sporns, P. The analysis offluvalinate in beeswax using GC/MS. Food Res. Int. 1999, 32, 35–41. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Bernal, J.L.; Nozal, M.J.; Toribio, L.; Bernal, J. Determination of impurities in pesticides and their degradation products formed during the wine-making process by solid-phase extraction and gaschromatography with detection by electron ionization mass spectrometry. II. Bromopropylate, trichlorphon, parathion-methyl and tebuconazole. Rapid Commun. Mass Spectrom. 2004, 18, 2629–2636. [Google Scholar] [CrossRef] [PubMed]
Acaricide | Family | Retention Time (min) | Target Ions (m/z) | Qualifier Ions (m/z) |
---|---|---|---|---|
Atrazine | Triazines | 8.5 | 200 | 173, 215 |
Chlorpyrifos | Benzylates | 10.8 | 197 | 258, 314 |
Chlorfenvinphos | Organophosphates | 11.8 | 267 | 270, 329 |
α-Endosulfan | Organophosphates | 12.6 | 241 | 195, 207 |
Bromopropylate | Organophosphates | 15.9 | 341 | 183, 185 |
Coumaphos | Organophosphates | 18.2 | 362 | 109, 226 |
τ-Fluvalinate | Pyrethroids | 20.4 | 250 | 181, 208 |
Chlorfenvinphos-d10 | - | 11.7 | 333 | - |
Acaricide | Evaluation of the Extraction Efficiency | Evaluation of the Matrix Effect | ||||
---|---|---|---|---|---|---|
Mean (%) ± RSD (%) | Mean (%) ± RSD (%) | |||||
Low Level | Medium Level | High Level | Low Level | Medium Level | High Level | |
Atrazine | 80 ± 2 | 84 ± 2 | 82 ± 5 | 2 ± 2 | −2 ± 5 | 3 ± 3 |
Chlorpyrifos | 102 ± 6 | 108 ± 3 | 101 ± 6 | −12 ± 3 | −8 ± 5 | −7 ± 6 |
Chlorfenvinphos | 89 ± 4 | 88 ± 5 | 86 ± 3 | −8 ± 1 | −2 ± 2 | −4 ± 2 |
α-Endosulfan | 84 ± 5 | 88 ± 5 | 81 ± 2 | −18 ± 5 | −17 ± 3 | −12 ± 4 |
Bromopropylate | 91 ± 2 | 102 ± 2 | 95 ± 5 | 4 ± 6 | 6 ± 4 | 3 ± 3 |
Coumaphos | 102 ± 4 | 96 ± 4 | 97 ± 3 | 6 ± 5 | 13 ± 6 | 10 ± 3 |
τ-Fluvalinate | 100 ± 4 | 107 ± 6 | 103 ± 4 | 10 ± 2 | 15 ± 2 | 14 ± 2 |
Compound | Standards in Solvent | Standards in Matrix | LOD (µg kg−1) | LOQ (µg kg−1) | MRL (µg kg−1) | ||
---|---|---|---|---|---|---|---|
SCI | R2 | SCI | R2 | ||||
Atrazine | 30.1 ± 2.2 | 0.999 | 30.6 ± 2.1 | 0.998 | 3.1 | 9.7 | 50 |
Chlorpyrifos | 21.7 ± 3.1 | 0.998 | 19.7 ± 1.9 | 0.999 | 2.4 | 8.5 | 10 |
Chlorfenvinphos | 35.1 ± 4.1 | 0.998 | 33.4 ± 2.6 | 0.999 | 1.1 | 3.7 | 10 |
α-Endosulfan | 6.5 ± 3.3 | 0.998 | 5.5 ± 3.5 | 0.998 | 0.2 | 0.6 | 10 |
Bromopropylate | 52.9 ± 1.3 | 0.996 | 55.1 ± 1.8 | 0.999 | 0.8 | 2.8 | 10 |
Coumaphos | 11.5 ± 2.2 | 0.998 | 12.8 ± 2.7 | 0.999 | 1.2 | 4.1 | 100 |
τ-Fluvalinate | 75.3 ± 3.7 | 0.998 | 84.6 ± 3.3 | 0.999 | 2.8 | 9.3 | 50 |
Sample | Chlorfenvinphos | α-Endosulfan | Coumaphos | τ-Fluvalinate |
---|---|---|---|---|
S1 | 35 | <LOD | <LOD | <LOD |
S2 | <LOD | <LOD | <LOQ | 24 |
S3 | 30 | <LOQ | <LOQ | 10 |
S4 | <LOD | <LOD | <LOD | <LOD |
S5 | <LOQ | <LOD | <LOD | 31 |
S6 | 32 | 77 | 42 | <LOD |
S7 | <LOD | <LOD | <LOD | <LOD |
S8 | <LOD | <LOD | <LOD | <LOD |
E1 | <LOD | <LOD | <LOD | <LOD |
E2 | <LOD | <LOD | <LOD | <LOD |
E3 | <LOD | <LOD | <LOD | 97 |
E4 | <LOD | <LOD | <LOD | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuente-Ballesteros, A.; Augé, C.; Bernal, J.; Ares, A.M. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen. Molecules 2023, 28, 2497. https://doi.org/10.3390/molecules28062497
Fuente-Ballesteros A, Augé C, Bernal J, Ares AM. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen. Molecules. 2023; 28(6):2497. https://doi.org/10.3390/molecules28062497
Chicago/Turabian StyleFuente-Ballesteros, Adrián, Camille Augé, José Bernal, and Ana M. Ares. 2023. "Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen" Molecules 28, no. 6: 2497. https://doi.org/10.3390/molecules28062497
APA StyleFuente-Ballesteros, A., Augé, C., Bernal, J., & Ares, A. M. (2023). Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen. Molecules, 28(6), 2497. https://doi.org/10.3390/molecules28062497