A Fluorescent Molecularly Imprinted Polymer-Coated Paper Sensor for On-Site and Rapid Detection of Glyphosate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of Fluorescent Monomers
2.3. Synthesis of Fluorescent MIPs
2.4. Preparation of Fluorescent MIP Coated Paper (MIP@P)
2.5. Fluorescence Test of MIP Particles
2.6. Fluorescence Test of the Fluorescent Papers
2.7. Specificity Tests of MIP1 and MIP@P
2.8. Application in Real Samples
3. Results and Discussion
3.1. Preparation of MIP@P
3.2. Characterization
3.3. Selectivity and Specificity of MIP@P
3.4. Application in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gomez-Caballero, A.; Diaz-Diaz, G.; Bengoetxea, O.; Quintela, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Water compatible stir-bar devices imprinted with underivatised glyphosate for selective sample clean-up. J. Chromatogr. A 2016, 1451, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.S.; Pontes, M.S.; Santiago, E.F.; Fiorucci, A.R.; Arruda, G.J. An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. Sci. Total Environ. 2020, 749, 142385. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Florea, A.; Farre, C.; Bonhomme, A.; Bessueille, F.; Vocanson, F.; Tran-Thi, N.-T.; Jaffrezic-Renault, N. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int. J. Environ. Anal. Chem. 2015, 95, 1489–1501. [Google Scholar] [CrossRef]
- Xu, J.; Smith, S.; Smith, G.; Wang, W.; Li, Y. Glyphosate contamination in grains and foods: An overview. Food Control 2019, 106, 106710. [Google Scholar] [CrossRef]
- Saunders, L.E.; Pezeshki, R. Glyphosate in Runoff Waters and in the Root-Zone: A Review. Toxics 2015, 3, 462–480. [Google Scholar] [CrossRef] [Green Version]
- Rigobello-Masini, M.; Pereira, E.A.O.; Abate, G.; Masini, J.C. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. Chromatographia 2019, 82, 1121–1138. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A. Experimental Study and Mathematical Modeling of a Glyphosate Impedimetric Microsensor Based on Molecularly Imprinted Chitosan Film. Chemosensors 2020, 8, 104. [Google Scholar] [CrossRef]
- Wirth, M.A.; Schulz-Bull, D.E.; Kanwischer, M. The challenge of detecting the herbicide glyphosate and its metabolite AMPA in seawater—Method development and application in the Baltic Sea. Chemosphere 2021, 262, 128327. [Google Scholar] [CrossRef]
- Gotti, R.; Fiori, J.; Bosi, S.; Dinelli, G. Field-amplified sample injection and sweeping micellar electrokinetic chromatography in analysis of glyphosate and aminomethylphosphonic acid in wheat. J. Chromatogr. A 2019, 1601, 357–364. [Google Scholar] [CrossRef]
- Berry, C. Glyphosate and cancer: The importance of the whole picture. Pest Manag. Sci. 2020, 76, 2874–2877. [Google Scholar] [CrossRef] [Green Version]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Zine, N.; Errachid, A.; Jaffrezic-Renault, N. Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules 2022, 27, 493. [Google Scholar] [CrossRef] [PubMed]
- GB2763-2021; National Standard of China. National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Agriculture Press: Beijing, China, 2021; pp. 57–58.
- European Food Safety, A. Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005. Eur. Food Saf. Auth. EF 2018, 16, 5263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Mayan, L.; Castro, G.; Ramil, M.; Cela, R.; Rodriguez, I. Approaches to liquid chromatography tandem mass spectrometry assessment of glyphosate residues in wine. Anal. Bioanal. Chem. 2022, 414, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn–ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021, 225, 122077. [Google Scholar] [CrossRef]
- Ibarra Bouzada, L.M.E.; Hernández, S.R.; Kergaravat, S.V. Glyphosate detection from commercial formulations: Comparison of screening analytic methods based on enzymatic inhibition. Int. J. Environ. Anal. Chem. 2019, 101, 1821–1835. [Google Scholar] [CrossRef]
- Viirlaid, E.; Ilisson, M.; Kopanchuk, S.; Mäeorg, U.; Rinken, A.; Rinken, T. Immunoassay for rapid on-site detection of glyphosate herbicide. Environ. Monit. Assess. 2019, 191, 507. [Google Scholar] [CrossRef]
- Sanchís, J.; Kantiani, L.; Llorca, M.; Rubio, F.; Ginebreda, A.; Fraile, J.; Garrido, T.; Farré, M. Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2335–2345. [Google Scholar] [CrossRef]
- Vaghela, C.; Kulkarni, M.; Haram, S.; Aiyer, R.; Karve, M. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int. J. Biol. Macromol. 2018, 108, 32–40. [Google Scholar] [CrossRef]
- Ding, X.; Yang, K.L. Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Anal. Chem. 2013, 85, 5727–5733. [Google Scholar] [CrossRef]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef]
- Majdinasab, M.; Daneshi, M.; Louis Marty, J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021, 232, 122397. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Pei, Y.; Fan, Z.; Cao, J.; Wu, J. Application of immunoassay techniques in glyphosate residue detection. Chin. J. Immunol. 2018, 34, 291–295. [Google Scholar]
- Melnikov, P.; Bobrov, A.; Marfin, Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers 2022, 14, 4448. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, S.; Mathur, D. Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: A review. J. Solid State Electrochem. 2021, 25, 2145–2159. [Google Scholar] [CrossRef]
- Li, Q.; Kamra, T.; Ye, L. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex. Chem. Commun. 2016, 52, 3701–3704. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jiang, L.; Kamra, T.; Ye, L. Synthesis of fluorescent molecularly imprinted nanoparticles for turn-on fluorescence assay using one-pot synthetic method and a preliminary microfluidic approach. Polymer 2018, 138, 352–358. [Google Scholar] [CrossRef]
- Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef]
- Ye, L.; Mosbach, K. Molecular Imprinting: Synthetic Materials As Substitutes for Biological Antibodies and Receptors. Chem. Mater. 2008, 20, 859–868. [Google Scholar] [CrossRef]
- Xing, R.R.; Guo, Z.C.; Lu, H.F.; Zhang, Q.; Liu, Z. Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity. Sci. Bull. 2021, 67, 278–287. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wu, K.; Zhang, L.; Ge, S.; Yu, J. A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Microchim. Acta 2017, 184, 1959–1967. [Google Scholar] [CrossRef]
- Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J. Hazard. Mater. 2020, 392, 122506. [Google Scholar] [CrossRef] [PubMed]
- Mampallil, D.; Eral, H.B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 2018, 252, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, C.Z.; Li, Y.F. Fluorescence assay based on preconcentration by a self-ordered ring using berberine as a model analyte. Anal. Chem. 2002, 74, 5564–5568. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Q.; Wang, M.; Xu, J.; Li, J.; Wang, F. Synthesis of fluorescent artificial receptors with high specificity for simultaneous detection of non-steroidal anti-inflammatory drugs. Food Chem. 2023, 410, 135419. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Wang, T.; Jin, Y.; Ling, B.; Li, Q.; Li, J. A simple approach to prepare fluorescent molecularly imprinted nanoparticles. RSC Adv. 2021, 11, 7732–7737. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, T.; Li, Q.; Wang, F.; Li, J. A microfluidic approach for rapid and continuous synthesis of glycoprotein-imprinted nanospheres. Talanta 2022, 239, 123084. [Google Scholar] [CrossRef]
- Xu, R.; Dai, S.; Dou, M.; Yang, J.; Wang, X.; Liu, X.; Wei, C.; Li, Q.; Li, J. Simultaneous, Label-Free and High-throughput SERS Detection of Multiple Pesticides on Ag@Three-Dimensional Silica Photonic Microsphere Array. J. Agric. Food Chem. 2023, 71, 3050–3059. [Google Scholar] [CrossRef]
- Wang, F.; Ling, B.; Li, Q.; Abouhany, R. Dual roles of 3-aminopropyltriethoxysilane in preparing molecularly imprinted silica particles for specific recognition of target molecules. RSC Adv. 2020, 10, 20368–20373. [Google Scholar] [CrossRef]
- Ye, L.; Cormack, P.A.G.; Mosbach, K. Molecular imprinting on microgel spheres. Anal. Chim. Acta 2001, 435, 187–196. [Google Scholar] [CrossRef]
- Kimani, M.; Pérez-Padilla, V.; Valderrey, V.; Gawlitza, K.; Rurack, K. Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection. Chemosensors 2022, 10, 99. [Google Scholar] [CrossRef]
- Kimani, M.; Kislenko, E.; Gawlitza, K.; Rurack, K. Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents. Sci. Rep. 2022, 12, 14151. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Shin, I.S. Advanced method for fabrication of molecularly imprinted mesoporous organosilica with highly sensitive and selective recognition of glyphosate. Sci. Rep. 2019, 9, 10293. [Google Scholar] [CrossRef] [Green Version]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Ben Halima, H.; Gallardo-Gonzalez, J.; El Alami El Hassani, N.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens. Actuators B Chem. 2020, 309, 127753. [Google Scholar] [CrossRef]
- Thimoonnee, S.; Somnet, K.; Ngaosri, P.; Chairam, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Fast, sensitive and selective simultaneous determination of paraquat and glyphosate herbicides in water samples using a compact electrochemical sensor. Anal. Methods 2022, 14, 820–833. [Google Scholar] [CrossRef]
- Uka, B.; Kieninger, J.; Urban, G.A.; Weltin, A. Electrochemical Microsensor for Microfluidic Glyphosate Monitoring in Water Using MIP-Based Concentrators. ACS Sens. 2021, 6, 2738–2746. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yan, Y.; Liu, C.; Zhang, D.; Wang, D.; Ispas, A.; Bund, A.; Du, B.; Zhang, Z.; Schaaf, P.; et al. Plasma-Assisted Fabrication of Molecularly Imprinted NiAl-LDH Layer on Ni Nanorod Arrays for Glyphosate Detection. ACS Appl. Mater. Interfaces 2022, 14, 35704–35715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef]
- Mazouz, Z.; Rahali, S.; Fourati, N.; Zerrouki, C.; Aloui, N.; Seydou, M.; Yaakoubi, N.; Chehimi, M.M.; Othmane, A.; Kalfat, R. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate. Sensors 2017, 17, 2586. [Google Scholar] [CrossRef] [Green Version]
- Balciunas, D.; Plausinaitis, D.; Ratautaite, V.; Ramanaviciene, A.; Ramanavicius, A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing. Talanta 2022, 241, 123252. [Google Scholar] [CrossRef]
Polymer Name | Template, 0.1 mmol | Functional Monomer, 0.6 mmol | Fluorescent Functional Monomer, 2 μmol |
---|---|---|---|
MIP1 | Glyphosate | APTES | APTES-FITC |
NIP1 | / | APTES | APTES-FITC |
MIP2 | Glyphosate | AAPTMS | AAPTMS-FITC |
NIP2 | / | AAPTMS | AAPTMS-FITC |
MIP3 | Glyphosate | AAAPTMS | AAAPTMS-FITC |
NIP3 | / | AAAPTMS | AAAPTMS-FITC |
MIP | IF | Cross-Reactivity Factor | Analysis Time | LOD | Linear Range | Ref. |
---|---|---|---|---|---|---|
Guanidinium dyes-based fluorescent MIP particle | 1.9 | 2.1, 2.1 | 2 min | 4.8/0.6 µM | 7.9–40.8 µM | [41] |
MIP@Au electrochemical sensor | 14.5 | 7.9, 43.5, 14.5 | 30 min | 5.9 × 10−6 nM | 1.8 × 10−3–296 nM | [44] |
MIP@nanotube electrochemical sensor | 8 | 4.1, 5.8, 6.1, 8 | 5 min | 11.4 nM | 14.8–2071 nM | [21] |
MIP nanoparticle-coated electrochemical sensor | / | / | / | 4.0 nM | 0.025–500 mM | [45] |
Fluorescent MIP mesoporous silica particles | 2.9 | 1.4 | 2–3 min | 1.45 µM | 5–55 µM | [42] |
Mn–ZnS QDs-based MIP-modified paper sensor | / | / | 5 min | 11.83 nM | 29.6 nM–296 µM | [15] |
Graphene QDs-based fluorescent MIP nanoparticle | / | / | / | 0.1 nM | 0–800 µM | [43] |
MIP-based microfluidic electrochemical sensor | / | / | 15 s | 247/188 nM | 0–50 µM | [46] |
Inorganic framework MIP-based on Ni nanorod arrays | 2.2 | / | / | 3.1 nM | 0.01–1 µM | [47] |
Polypyrrole MIP electrochemical sensor | 9 | / | 18 min | 1.6 µM | 0.03–4.73 µM | [48] |
MIP@ Au and Prussian Blue electrochemical sensor | 3 | 2, 2.1, 4.3, 4 | 10 min | 0.5 µM | 2.4–7.1 µM | [31] |
Polypyrrole MIP-based gravimetric and electrochemical sensors | / | / | 30 min | 1 pM | 1 pM–1 nM | [49] |
Polypyrrole MIP-based electrochemical surface plasmon resonance sensor | 2.8 | / | 5 min | 1.1/3.4 nM | 0.05–0.5 mM | [50] |
Fluorescent MIP silica particle | 7.6 | 2.0, 8.2, 5.7 | 5 min | 0.41 µM | 0.5–20 μM | This work |
Fluorescent MIP-coated paper sensor | 2.0 | 2.0, 1.5, 2.8 | 5 min | 0.29 µmol | 0.5–10 μmol | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Qiu, J.; Zhu, C.; Hua, Y.; Yu, J.; Jia, L.; Xu, J.; Li, J.; Li, Q. A Fluorescent Molecularly Imprinted Polymer-Coated Paper Sensor for On-Site and Rapid Detection of Glyphosate. Molecules 2023, 28, 2398. https://doi.org/10.3390/molecules28052398
Wang M, Qiu J, Zhu C, Hua Y, Yu J, Jia L, Xu J, Li J, Li Q. A Fluorescent Molecularly Imprinted Polymer-Coated Paper Sensor for On-Site and Rapid Detection of Glyphosate. Molecules. 2023; 28(5):2398. https://doi.org/10.3390/molecules28052398
Chicago/Turabian StyleWang, Meng, Jun Qiu, Chennuo Zhu, Yunyan Hua, Jie Yu, Lulu Jia, Jianhong Xu, Jianlin Li, and Qianjin Li. 2023. "A Fluorescent Molecularly Imprinted Polymer-Coated Paper Sensor for On-Site and Rapid Detection of Glyphosate" Molecules 28, no. 5: 2398. https://doi.org/10.3390/molecules28052398
APA StyleWang, M., Qiu, J., Zhu, C., Hua, Y., Yu, J., Jia, L., Xu, J., Li, J., & Li, Q. (2023). A Fluorescent Molecularly Imprinted Polymer-Coated Paper Sensor for On-Site and Rapid Detection of Glyphosate. Molecules, 28(5), 2398. https://doi.org/10.3390/molecules28052398