Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Descriptions
2.2. Hirshfeld Surface Analyses
2.3. PXRD and Thermal Stability Analyses
2.4. Optical Property
2.5. Photoluminescence
2.6. Potential for Application to Temperature Sensing
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cong, H.-P.; Yu, S.-H. Self-assembly of functionalized inorganic-organic hybrids. Curr. Opin. Colloid Interface Sci. 2009, 14, 71–80. [Google Scholar] [CrossRef]
- Jin, J.-C.; Lin, Y.-P.; Wu, Y.-H.; Gong, L.-K.; Shen, N.-N.; Song, Y.; Ma, W.; Zhang, Z.-Z.; Du, K.-Z.; Huang, X.-Y. Long lifetime phosphorescence and X-Ray scintillation of chlorobismuthate hybrids incorporating ionic liquid cations. J. Mater. Chem. C 2021, 9, 1814–1821. [Google Scholar] [CrossRef]
- Hei, X.Z.; Li, J. All-in-one: A new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chem. Sci. 2021, 12, 3805–3817. [Google Scholar] [CrossRef]
- Hua, X.N.; Liao, W.Q.; Tang, Y.Y.; Li, P.F.; Shi, P.P.; Zhao, D.W.; Xiong, R.G. A room-temperature hybrid lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 2018, 140, 12296–12302. [Google Scholar] [CrossRef]
- Shi, C.; Ye, L.; Gong, Z.X.; Ma, J.J.; Wang, Q.W.; Jiang, J.Y.; Hua, M.M.; Wang, C.F.; Yu, H.; Zhang, Y.; et al. Two-dimensional organic-inorganic hybrid rare-earth double perovskite ferroelectrics. J. Am. Chem. Soc. 2020, 142, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.M.; Chen, X.; Wang, J. Metal-free hybrid organic-inorganic perovskites for photovoltaics. J. Phys. Chem. Lett. 2020, 11, 5938–5947. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.K.; Du, K.Z.; Huang, X.Y. PbX2(OOCMMIm) (X = Cl, Br): Photoluminescent organic-inorganic hybrid lead halide compounds with high proton conductivity. Dalton Trans. 2019, 48, 6690–6694. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, T.; Yuvakkumar, R.; Kumar, P.S.; Vo, D.V.N.; Xu, X.Q.; Xu, G. Two-dimensional hybrid perovskite solar cells: A review. Environ. Chem. Lett. 2022, 20, 189–210. [Google Scholar] [CrossRef]
- Yang, H.; Dai, K.; Zhang, J.F.; Dawson, G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chin. J. Catal. 2022, 43, 2111–2140. [Google Scholar] [CrossRef]
- Jin, J.-C.; Lin, Y.-P.; Chen, D.-Y.; Lin, B.-Y.; Zhuang, T.-H.; Ma, W.; Gong, L.-K.; Du, K.-Z.; Jiang, J.; Huang, X.-Y. X-ray scintillation and photoluminescence of isomorphic ionic bismuth halides with [Amim]+ or [Ammim]+ Cations. Inorg. Chem. Front. 2021, 8, 4474–4481. [Google Scholar] [CrossRef]
- Shen, N.N.; Li, J.; Li, G.; Hu, B.; Li, J.R.; Liu, T.Q.; Gong, L.K.; Huang, F.Q.; Wang, Z.P.; Huang, X.Y. Designing polymorphic Bi3+-containing ionic liquids for stimuli-responsive luminescent materials. Inorg. Chem. 2019, 58, 8079–8085. [Google Scholar] [CrossRef]
- Shen, N.N.; Wang, Z.P.; Jin, J.C.; Gong, L.K.; Zhang, Z.Z.; Huang, X.Y. Phase transitions and photoluminescence switching in hybrid antimony(III) and bismuth(III) halides. CrystEngComm 2020, 22, 3395–3405. [Google Scholar] [CrossRef]
- Jin, J.-C.; Shen, N.-N.; Wang, Z.-P.; Peng, Y.-C.; Huang, X.-Y. Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord. Chem. Rev. 2021, 448, 214185. [Google Scholar] [CrossRef]
- Wang, Z.P.; Huang, X.Y. Luminescent organic-inorganic hybrid metal halides: An emerging class of stimuli-responsive materials. Chem.-Eur. J. 2022, 28, e202200609. [Google Scholar] [PubMed]
- Su, B.B.; Jin, J.; Peng, Y.H.; Molokeev, M.S.; Yang, X.B.; Xia, Z.G. Zero-dimensional organic copper(I) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting. Adv. Opt. Mater. 2022, 10, 2102619. [Google Scholar] [CrossRef]
- Su, B.B.; Song, G.M.; Molokeev, M.S.; Golovnev, N.N.; Lesnikov, M.K.; Lin, Z.S.; Xia, Z.G. Role of metal-chloride anions in photoluminescence regulations for hybrid metal halides. J. Phys. Chem. Lett. 2021, 12, 1918–1925. [Google Scholar] [CrossRef]
- Yue, C.-Y.; Lin, N.; Gao, L.; Jin, Y.-X.; Liu, Z.-Y.; Cao, Y.-Y.; Han, S.-S.; Lian, X.-K.; Hu, B.; Lei, X.-W. Organic cation directed one-dimensional cuprous halide compounds: Syntheses, crystal structures and photoluminescence properties. Dalton Trans. 2019, 48, 10151–10159. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.-K.; Hu, Q.-Q.; Huang, F.-Q.; Zhang, Z.-Z.; Shen, N.-N.; Hu, B.; Song, Y.; Wang, Z.-P.; Du, K.-Z.; Huang, X.-Y. Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr4]2- anions and organic cations. Chem. Commun. 2019, 55, 7303–7306. [Google Scholar] [CrossRef]
- Forsyth, S.A.; Pringle, J.M.; MacFarlane, D.R. Ionic liquids—An overview. Aust. J. Chem. 2004, 57, 113–119. [Google Scholar] [CrossRef]
- Davis, J.H. Task-specific ionic liquids. Chem. Lett. 2004, 33, 1072–1077. [Google Scholar] [CrossRef]
- Gong, L.K.; Huang, F.Q.; Zhang, Z.Z.; Zhong, Y.; Jin, J.; Du, K.Z.; Huang, X.Y. Multimode dynamic luminescent switching of lead halide hybrids for anti-counterfeiting and encryption. Chem. Eng. J. 2021, 424, 130544. [Google Scholar] [CrossRef]
- Reddy, S.H.; Sumukam, R.R.; Murali, B. Can Perovskite inspired bismuth halide nanocrystals outperform their lead counterparts? J. Mater. Chem. A 2020, 8, 12951–12963. [Google Scholar] [CrossRef]
- Ghasemi, M.; Hao, M.M.; Xiao, M.; Chen, P.; He, D.X.; Zhang, Y.R.; Chen, W.J.; Fan, J.D.; Yun, J.H.; Jia, B.H.; et al. Lead-free metal-halide double perovskites: From optoelectronic properties to applications. Nanophotonics 2021, 10, 2181–2219. [Google Scholar] [CrossRef]
- Parke, S.M.; Rivard, E. Aggregation induced phosphorescence in the main group. Isr. J. Chem. 2018, 58, 915–926. [Google Scholar] [CrossRef]
- Jin, J.-C.; Lin, Y.-P.; Lin, L.-F.; Xiao, C.; Song, Y.; Shen, N.-N.; Gong, L.-K.; Zhang, Z.-Z.; Du, K.-Z.; Huang, X.-Y. 2,2′-Bipyridyl-1,1′-dioxide based bismuth(III) bromide hybrids: Studies on crystal structure and luminescence. CrystEngComm 2021, 23, 3744–3752. [Google Scholar] [CrossRef]
- Li, R.; Xu, F.-F.; Gong, Z.-L.; Zhong, Y.-W. Thermo-responsive light-emitting metal complexes and related materials. Inorg. Chem. Front. 2020, 7, 3258–3281. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Junk, P.C.; Lee, A.M.; Skelton, B.W.; White, A.H. Synthetic, structural and vibrational spectroscopic studies in bismuth(III) halide N,N’-aromatic bidentate base systems. III. some novel bismuth(III) halide N,N ’-bidentate ligand (1:1) dimethyl sulfoxide solvates. Aust. J. Chem. 1998, 51, 317–324. [Google Scholar] [CrossRef]
- Shen, N.N.; Li, J.R.; Wu, Z.F.; Hu, B.; Cheng, C.C.; Wang, Z.P.; Gong, L.K.; Huang, X.Y. α- and β-[Bmim][BiCl4(2,2-bpy)]: Two polymorphic bismuth-containing ionic liquids with crystallization-induced phosphorescence. Chem.-Eur. J. 2017, 23, 15795–15804. [Google Scholar] [CrossRef]
- Toma, O.; Mercier, N.; Allain, M.; Meinardi, F.; Forni, A.; Botta, C. Mechanochromic luminescence of N,N’-Dioxide-4,4′-bipyridine bismuth coordination polymers. Cryst. Growth Des. 2020, 20, 7658–7666. [Google Scholar] [CrossRef]
- Marwitz, A.C.; Nicholas, A.D.; Breuer, L.M.; Bertke, J.A.; Knope, K.E. Harnessing bismuth coordination chemistry to achieve bright, long-lived organic phosphorescence. Inorg. Chem. 2021, 60, 16840–16851. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef] [PubMed]
- Hamzehpoor, E.; Perepichka, D.F. Crystal engineering of room temperature phosphorescence in organic solids. Angew. Chem.-Int. Ed. 2020, 59, 9977–9981. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liao, M.; Lin, Q.M.; Xiong, M.X.; Mu, Z.F.; Wu, F.G. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloy. Compd. 2021, 850, 14. [Google Scholar] [CrossRef]
- Yue, C.-Y.; Liu, F.-L.; Deng, W.-T.; Tao, J.; Hong, M.-C. Iodide-centered cuprous octatomic ring: A luminescent molecular thermometer exhibiting dual-emission character. Cryst. Growth Des. 2018, 18, 22–26. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C-Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Wendlandt, W.M.; Hecht, H.G. Reflectance Spectroscopy; Interscience: New York, NY, USA, 1966. [Google Scholar]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B-Struct. Sci. Cryst. Eng. Mat. 2004, 60, 627–668. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; McKinnon, J.J.; Jayatilaka, D. Electrostatic potentials mapped on hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377–388. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. Cryst. Eng. Comm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and characterisation of voids in crystalline materials. CrystEngComm 2011, 13, 1804–1813. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, T.-H.; Lin, Y.-M.; Lin, H.-W.; Guo, Y.-L.; Li, Z.-W.; Du, K.-Z.; Wang, Z.-P.; Huang, X.-Y. Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations. Molecules 2023, 28, 2380. https://doi.org/10.3390/molecules28052380
Zhuang T-H, Lin Y-M, Lin H-W, Guo Y-L, Li Z-W, Du K-Z, Wang Z-P, Huang X-Y. Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations. Molecules. 2023; 28(5):2380. https://doi.org/10.3390/molecules28052380
Chicago/Turabian StyleZhuang, Ting-Hui, Yi-Min Lin, Hao-Wei Lin, Yan-Ling Guo, Zi-Wei Li, Ke-Zhao Du, Ze-Ping Wang, and Xiao-Ying Huang. 2023. "Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations" Molecules 28, no. 5: 2380. https://doi.org/10.3390/molecules28052380
APA StyleZhuang, T. -H., Lin, Y. -M., Lin, H. -W., Guo, Y. -L., Li, Z. -W., Du, K. -Z., Wang, Z. -P., & Huang, X. -Y. (2023). Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations. Molecules, 28(5), 2380. https://doi.org/10.3390/molecules28052380