Development of a Rapid LC-MS/MS Method for Simultaneous Quantification of Donepezil and Tadalafil in Rat Plasma: Its Application in a Pharmacokinetic Interaction Study after Oral Administration in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.1.1. Mass Spectrometric Analysis
2.1.2. Chromatographic Conditions
2.1.3. Plasma Sample Preparation
2.2. Analytical Method Validation
2.2.1. Specificity and Lower Limit of Quantitation
2.2.2. Linearity
2.2.3. Precision and Accuracy
2.2.4. Stability
2.2.5. Recovery and Matrix Effect
2.3. Analytical Method Implementation to DDI PK Study in Rats
3. Materials and Methods
3.1. Materials
3.2. Liquid Chromatographic Conditions
3.3. Mass Spectrometric Conditions
3.4. Preparation of Calibration Standards and Plasma Samples
3.5. Preparation of Plasma Samples
3.6. Protocol Validation
3.6.1. Specificity and Lower Limit of Quantitation (LLOQ)
3.6.2. Linearity
3.6.3. Precision and Accuracy
3.6.4. Stability
3.6.5. Recovery and Matrix Effect
3.7. Application to a Pharmacokinetic Study
3.8. Statistical Analysis of the Pharmacokinetic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, D.M. The Molecular Basis of Neuropathology; Edward Arnold: London, UK, 1981. [Google Scholar]
- Rogers, S.L.; Yamanishi, Y.; Yamatsu, K. E2020—The pharmacology of a piperidine cholinesterase inhibitor. In Cholinergic Basis for Alzheimer Therapy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 314–320. [Google Scholar]
- Banks, W.A. Drug delivery to the brain in Alzheimer’s disease: Consideration of the blood–brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 629–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasir, M.; Zafar, A.; Noorulla, K.M.; Tura, A.J.; Sara, U.V.S.; Panjwani, D.; Khalid, M.; Haji, M.J.; Gobena, W.G.; Gebissa, T. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study. J. Drug Deliv. Sci. Technol. 2022, 75, 103631. [Google Scholar] [CrossRef]
- Hussain, B.; Fang, C.; Chang, J. Blood–brain barrier breakdown: An emerging biomarker of cognitive impairment in normal aging and dementia. Front. Neurosci. 2021, 15, 688090. [Google Scholar] [CrossRef] [PubMed]
- Neurorive Inc. Combination Therapy of Donepezil and Tadalafil for the Treatment of Alzheimer’s Disease or Cognitive Impairment; Neurorive Inc.: Seoul, Republic of Korea, 2021. [Google Scholar]
- Padma-Nathan, H.; McMurray, J.G.; Pullman, W.E.; Whitaker, J.S.; Saoud, J.B.; Ferguson, K.M.; Rosen, R.C. On-demand IC351 (Cialis™) enhances erectile function in patients with erectile dysfunction. Int. J. Impot. Res. 2001, 13, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Kloner, R.A.; Mitchell, M.; Emmick, J.T. Cardiovascular effects of tadalafil in patients on common antihypertensive therapies. Am. J. Cardiol. 2003, 92, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Blount, M.A.; Beasley, A.; Zoraghi, R.; Sekhar, K.R.; Bessay, E.P.; Francis, S.H.; Corbin, J.D. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol. Pharmacol. 2004, 66, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccia, M.M.; Blake, M.G.; Krawczyk, M.C.; Baratti, C.M. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav. Brain Res. 2011, 220, 319–324. [Google Scholar] [CrossRef]
- Hosseini-Sharifabad, A.; Ghahremani, M.H.; Sabzevari, O.; Naghdi, N.; Abdollahi, M.; Beyer, C.; Bollen, E.; Prickaerts, J.; Roghani, A.; Sharifzadeh, M. Effects of protein kinase A and G inhibitors on hippocampal cholinergic markers expressions in rolipram-and sildenafil-induced spatial memory improvement. Pharmacol. Biochem. Behav. 2012, 101, 311–319. [Google Scholar] [CrossRef]
- Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: Targets for drug development. Nat. Rev. Drug Discov. 2006, 5, 660–670. [Google Scholar] [CrossRef]
- Schmidt, C.J. Phosphodiesterase inhibitors as potential cognition enhancing agents. Curr. Top. Med. Chem. 2010, 10, 222–230. [Google Scholar] [CrossRef]
- Zhang, H.T. Phosphodiesterase Targets for Cognitive Dysfunction and Schizophrenia—A New York Academy of Sciences Meeting. IDrugs Investig. Drugs J. 2010, 13, 166–168. [Google Scholar]
- Al-Amin, M.M.; Hasan, S.M.N.; Alam, T.; Hasan, A.T.; Hossain, I.; Didar, R.R.; Alam, M.A.; Rahman, M.M. Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice. Eur. J. Pharmacol. 2014, 745, 84–90. [Google Scholar] [CrossRef] [PubMed]
- García-Barroso, C.; Ricobaraza, A.; Pascual-Lucas, M.; Unceta, N.; Rico, A.J.; Goicolea, M.A.; Sallés, J.; Lanciego, J.L.; Oyarzabal, J.; Franco, R. Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 2013, 64, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Budzyńska, B.; Kowalczyk, J.; El Sayed, N.S.; Mansour, S.M. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer’s disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways. Toxicol. Appl. Pharmacol. 2021, 429, 115697. [Google Scholar] [CrossRef] [PubMed]
- Liebenberg, N.; Harvey, B.H.; Brand, L.; Wegener, G.; Brink, C.B. Chronic treatment with the phosphodiesterase type 5 inhibitors sildenafil and tadalafil display anxiolytic effects in Flinders Sensitive Line rats. Metab. Brain Dis. 2012, 27, 337–340. [Google Scholar] [CrossRef]
- Baek, S.-B.; Bahn, G.; Moon, S.-J.; Lee, J.; Kim, K.-H.; Ko, I.-G.; Kim, S.-E.; Sung, Y.-H.; Kim, B.-K.; Kim, T.-S. The phosphodiesterase type-5 inhibitor, tadalafil, improves depressive symptoms, ameliorates memory impairment, as well as suppresses apoptosis and enhances cell proliferation in the hippocampus of maternal-separated rat pups. Neurosci. Lett. 2011, 488, 26–30. [Google Scholar] [CrossRef]
- Pauls, M.M.H.; Clarke, N.; Trippier, S.; Betteridge, S.; Howe, F.A.; Khan, U.; Kruuse, C.; Madigan, J.B.; Moynihan, B.; Pereira, A.C.; et al. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS): Study protocol for a randomised controlled trial. Trials 2017, 18, 229. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.; Ham, R.J.; Wilkinson, D. The safety and tolerability of donepezil in patients with Alzheimer’s disease. Br. J. Clin. Pharmacol. 2004, 58, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wrishko, R.E.; Dingemanse, J.; Yu, A.; Darstein, C.; Phillips, D.L.; Mitchell, M.I. Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. J. Clin. Pharmacol. 2008, 48, 610–618. [Google Scholar] [CrossRef]
- Steinberg, P.; Fischer, T.; Kiulies, S.; Biefang, K.; Platt, K.-L.; Oesch, F.; Böttger, T.; Bulitta, C.; Kempf, P.; Hengstler, J. Drug metabolizing capacity of cryopreserved human, rat, and mouse liver parenchymal cells in suspension. Drug Metab. Dispos. 1999, 27, 1415–1422. [Google Scholar]
- Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Pre-clinical pharmacokinetic-pharmacodynamic modelling and biodistribution studies of donepezil hydrochloride by a validated HPLC method. RSC Adv. 2018, 8, 24740–24749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-L.; Chou, C.-H. Determination of tadalafil in small volumes of plasma by high-performance liquid chromatography with UV detection. J. Chromatogr. B 2005, 822, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Itoh, K.; Kono, M.; Nakashima, M.N.; Wada, M. Determination of donepezil hydrochloride in human and rat plasma, blood and brain microdialysates by HPLC with a short C30 column. J. Pharm. Biomed. Anal. 2006, 41, 201–206. [Google Scholar] [CrossRef]
- Bhateria, M.; Ramakrishna, R.; Pakala, D.B.; Bhatta, R.S. Development of an LC–MS/MS method for simultaneous determination of memantine and donepezil in rat plasma and its application to pharmacokinetic study. J. Chromatogr. B 2015, 1001, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Abu El-Enin, M.A.B.; Al-Ghaffar Hammouda, M.E.-S.A.; El-Sherbiny, D.; El-Wasseef, D.; El-Ashry, S. Validated spectrofluorimetric method for determination of two phosphodiesterase inhibitors tadalafil and vardenafil in pharmaceutical preparations and spiked human plasma. Luminescence 2016, 31, 173–178. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, J.-H.; Lee, Y.-J. Effects of experimental hyperlipidemia on the pharmacokinetics of tadalafil in rats. J. Pharm. Pharm. Sci. 2012, 15, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.B.; Min, J.S.; Chae, S.U.; Kim, H.M.; Jang, J.H.; Jung, I.H.; Zheng, Y.F.; Ryu, J.H.; Bae, S.K. Simultaneous determination of donepezil, 6-O-desmethyl donepezil and spinosin in beagle dog plasma using liquid chromatography-tandem mass spectrometry and its application to a drug-drug interaction study. J. Pharm. Biomed. Anal. 2020, 178, 112919. [Google Scholar] [CrossRef]
- Pilli, N.R.; Inamadugu, J.K.; Kondreddy, N.; Karra, V.K.; Damaramadugu, R.; Rao, J.V.L.N.S. A rapid and sensitive LC-MS/MS method for quantification of donepezil and its active metabolite, 6-o-desmethyl donepezil in human plasma and its pharmacokinetic application. Biomed. Chromatogr. 2011, 25, 943–951. [Google Scholar] [CrossRef]
- Matsui, K.; Oda, Y.; Nakata, H.; Yoshimura, T. Simultaneous determination of donepezil (aricept®) enantiomers in human plasma by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 147–155. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sarkar, P.; Khanam, J.; Pal, T.K. Simultaneous determination of paclitaxel and lansoprazole in rat plasma by LC–MS/MS method and its application to a preclinical pharmacokinetic study of investigational PTX-LAN-PLGA nanoformulation. J. Chromatogr. B 2019, 1124, 331–339. [Google Scholar] [CrossRef]
- Hishinuma, T.; Suzuki, K.; Yamaguchi, H.; Yamagishi, H.; Koike, T.; Ohara, S.; Shimosegawa, T.; Mano, N.; Goto, J. Simple quantification of lansoprazole and rabeprazole concentrations in human serum by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 2008, 870, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liao, Q.; Xu, X.; Yao, M.; Wan, J.; Liu, D. Rapid and sensitive determination of donepezil in human plasma by liquid chromatography/tandem mass spectrometry: Application to a pharmacokinetic study. Rapid Commun. Mass Spectrom. 2006, 20, 3193–3198. [Google Scholar] [CrossRef]
- Shah, H.J.; Kundlik, M.L.; Pandya, A.; Prajapati, S.; Subbaiah, G.; Patel, C.N.; Patel, D.M.; Suhagiya, B.N. A rapid and specific approach for direct measurement of donepezil concentration in human plasma by LC-MS/MS employing solid-phase extraction. Biomed. Chromatogr. 2009, 23, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, C.; Dotsikas, Y.; Kousoulos, C.; Loukas, Y.L. Quantitative determination of donepezil in human plasma by liquid chromatography/tandem mass spectrometry employing an automated liquid–liquid extraction based on 96-well format plates: Application to a bioequivalence study. J. Chromatogr. B 2007, 848, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2003, 785, 263–275. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef]
- Xu, R.N.; Fan, L.; Rieser, M.J.; El-Shourbagy, T.A. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 342–355. [Google Scholar] [CrossRef]
- Food and Drug Administration. Bioanalytical Method Validationguidance for Industry. US Department of Health and Human Services. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 3 November 2022).
- Ministry of Food and Drug Safety. Guideline on Bioanalytical Method Validation. 2013. Available online: https://www.mfds.go.kr/brd/m210/down.do?brd_id=data0010&seq=13054data_tp=A&file_seq=1 (accessed on 3 November 2022).
- Zhang, L.; Zhang, Y.; Zhao, P.; Huang, S.-M. Predicting drug–drug interactions: An FDA perspective. AAPS J. 2009, 11, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Noetzli, M.; Eap, C.B. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet. 2013, 52, 225–241. [Google Scholar] [CrossRef]
- Defilippi, J.L.; Crismon, M.L. Drug Interactions with Cholinesterase Inhibitors. Drugs Aging 2003, 20, 437–444. [Google Scholar] [CrossRef]
- Bhadoriya, A.; Dasandi, B.; Parmar, D.; Shah, P.A.; Shrivastav, P.S. Quantitation of tadalafil in human plasma using a sensitive and rapid LC-MS/MS method for a bioequivalence study. J. Pharm. Anal. 2018, 8, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Er, E.Ö.; Akkaya, E.; Özbek, B.; Bakırdere, S. Development of an analytical method based on citric acid coated magnetite nanoparticles assisted dispersive magnetic solid-phase extraction for the enrichment and extraction of sildenafil, tadalafil, vardenafil and avanafil in human plasma and urine prior to determination by LC-MS/MS. Microchem. J. 2019, 147, 269–276. [Google Scholar]
- Yokoyama, Y.; Tomatsuri, M.; Hayashi, H.; Hirai, K.; Ono, Y.; Yamada, Y.; Todoroki, K.; Toyo’oka, T.; Yamada, H.; Itoh, K. Simultaneous microdetermination of bosentan, ambrisentan, sildenafil, and tadalafil in plasma using liquid chromatography/tandem mass spectrometry for pediatric patients with pulmonary arterial hypertension. J. Pharm. Biomed. Anal. 2014, 89, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, N.V.S.; Vishwottam, K.N.; Puran, S.; Koteshwara, M.; Manoj, S.; Santosh, M.; Chidambara, J.; Wishu, S.; Sumatha, B. Quantitation of tadalafil in human plasma by liquid chromatography–tandem mass spectrometry with electrospray ionization. J. Chromatogr. B 2004, 809, 243–249. [Google Scholar] [CrossRef]
- Rust, K.Y.; Wilkens, H.; Kaiser, R.; Bregel, D.; Wilske, J.; Kraemer, T. Detection and Validated Quantification of the Phosphodiesterase Type 5 Inhibitors Sildenafil, Vardenafil, Tadalafil, and 2 of Their Metabolites in Human Blood Plasma by LC-MS/MS—Application to Forensic and Therapeutic Drug Monitoring Cases. Ther. Drug Monit. 2012, 34, 729–735. [Google Scholar] [CrossRef] [PubMed]
Compound | Nominal Concentration (ng/mL) | Intra-Day (n = 5) | Inter-Day (n = 5) | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (ng/mL) | Precision (CV, %) a | Accuracy (%) b | Mean ± SD (ng/mL) | Precision (CV, %) | Accuracy (%) | ||
Donepezil | 1 | 0.93 ± 0.02 | 2.15 | 93.10 | 0.94 ± 0.04 | 3.84 | 93.80 |
2 | 1.99 ± 0.02 | 1.06 | 99.30 | 2.01 ± 0.07 | 3.33 | 100.65 | |
16 | 16.35 ± 0.25 | 1.55 | 102.17 | 16.40 ± 0.52 | 3.14 | 102.53 | |
160 | 139.08 ± 3.15 | 2.26 | 86.93 | 142.53 ± 6.77 | 4.75 | 89.08 | |
Tadalafil | 1 | 0.96 ± 0.05 | 5.52 | 96.10 | 0.97 ± 0.08 | 8.19 | 96.50 |
2 | 1.92 ± 0.06 | 3.18 | 96.05 | 1.94 ± 0.11 | 5.51 | 97.05 | |
16 | 15.95 ± 0.50 | 3.10 | 99.66 | 15.92 ± 0.54 | 3.42 | 99.48 | |
160 | 153.29 ± 2.91 | 1.90 | 95.80 | 155.40 ± 10.44 | 6.72 | 97.12 |
Stability Storage Condition | Donepezil | Tadalafil | ||
---|---|---|---|---|
Nominal Concentration (ng/mL) | (Mean ± SD, %) | Nominal Concentration (ng/mL) | (Mean ± SD, %) | |
Stock Solution Stability | ||||
Room temperature (3 h) | 103.43 ± 0.58 | 107.75 ± 10.32 | ||
Refrigeration (4 °C, 14 days) | 103.53 ± 1.71 | 106.30 ± 5.99 | ||
Plasma Sample Stability | ||||
Room temperature (5 h) | 2 | 98.05 ± 4.42 | 2 | 95.75 ± 4.54 |
160 | 89.84 ± 1.95 | 160 | 95.18 ± 0.41 | |
Refrigeration (4 °C, 14 days) | 2 | 93.33 ± 4.72 | 2 | 93.52 ± 3.03 |
160 | 97.29 ± 2.34 | 160 | 107.44 ± 5.73 | |
Freeze-thaw stability (4 cycles) | 2 | 98.05 ± 0.40 | 2 | 95.15 ± 2.69 |
160 | 92.54 ± 1.34 | 160 | 103.60 ± 1.55 | |
Autosampler (10 °C, 20 h) | 2 | 98.60 ± 2.46 | 2 | 99.63 ± 6.03 |
160 | 98.19 ± 4.87 | 160 | 102.18 ± 3.98 | |
−70 °C (28 days) | 2 | 107.57 ± 3.61 | 2 | 99.17 ± 3.88 |
160 | 93.41 ± 3.90 | 160 | 104.42 ± 4.78 |
Compound | Nominal Concentration (ng/mL) | Recovery (%) a | Matrix Effect (%) b | ||
---|---|---|---|---|---|
Mean ± SD (%) | Precision (CV, %) | Mean ± SD (%) | Precision (CV, %) | ||
Donepezil | 2 | 95.11 ± 2.59 | 2.72 | 97.05 ± 1.67 | 1.72 |
16 | 90.86 ± 4.33 | 4.77 | |||
160 | 95.99 ± 1.80 | 1.88 | 108.78 ± 2.87 | 2.64 | |
Tadalafil | 2 | 97.74 ± 11.05 | 11.31 | 58.46 ± 3.58 | 6.13 |
16 | 96.17 ± 5.34 | 5.55 | |||
160 | 98.59 ± 3.93 | 3.99 | 56.16 ± 6.48 | 11.55 | |
IS | 20 | 97.96 ± 3.40 | 3.47 | 90.90 ± 4.55 | 5.01 |
Parameter | Donepezil (3 mg/kg) | Tadalafil (0.3 mg/kg) | ||
---|---|---|---|---|
Alone | with TAD | Alone | with DPZ | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Cmax (ng/mL) | 59.776 ± 15.502 | 39.235 ± 16.562 | 17.795 ± 5.998 | 13.750 ± 9.160 |
AUClast (h·ng/mL) | 129.583 ± 38.090 | 100.500 ± 29.467 | 46.987 ± 24.384 | 34.419 ± 27.372 |
AUCinf (h·ng/mL) | 133.901 ± 37.878 | 106.379 ± 32.097 | 50.362 ± 23.612 | 38.931 ± 26.821 |
Tmax (h) | 0.500 ± 0.000 | 0.500 ± 0.000 | 0.500 ± 0.000 | 0.500 ± 0.000 |
CL/F (L/h) | 2.382 ± 0.759 | 2.980 ± 0.888 | 7.355 ± 4.516 | 11.819 ± 9.852 |
T1/2 (h) | 2.630 ± 1.302 | 3.793 ± 2.032 | 1.517 ± 0.120 | 1.962 ± 0.212 |
MRTlast (h) | 2.617 ± 0.923 | 3.735 ± 1.602 | 2.532 ± 0.214 | 3.079 ± 0.444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Choi, D.; Shim, W.-S.; Choi, S.; Choi, Y.J.; Paik, S.-H.; Lee, K.-T. Development of a Rapid LC-MS/MS Method for Simultaneous Quantification of Donepezil and Tadalafil in Rat Plasma: Its Application in a Pharmacokinetic Interaction Study after Oral Administration in Rats. Molecules 2023, 28, 2352. https://doi.org/10.3390/molecules28052352
Yoon J, Choi D, Shim W-S, Choi S, Choi YJ, Paik S-H, Lee K-T. Development of a Rapid LC-MS/MS Method for Simultaneous Quantification of Donepezil and Tadalafil in Rat Plasma: Its Application in a Pharmacokinetic Interaction Study after Oral Administration in Rats. Molecules. 2023; 28(5):2352. https://doi.org/10.3390/molecules28052352
Chicago/Turabian StyleYoon, Jiyoung, Doowon Choi, Wang-Seob Shim, Sanghee Choi, Yeo Jin Choi, Soo-Heui Paik, and Kyung-Tae Lee. 2023. "Development of a Rapid LC-MS/MS Method for Simultaneous Quantification of Donepezil and Tadalafil in Rat Plasma: Its Application in a Pharmacokinetic Interaction Study after Oral Administration in Rats" Molecules 28, no. 5: 2352. https://doi.org/10.3390/molecules28052352
APA StyleYoon, J., Choi, D., Shim, W. -S., Choi, S., Choi, Y. J., Paik, S. -H., & Lee, K. -T. (2023). Development of a Rapid LC-MS/MS Method for Simultaneous Quantification of Donepezil and Tadalafil in Rat Plasma: Its Application in a Pharmacokinetic Interaction Study after Oral Administration in Rats. Molecules, 28(5), 2352. https://doi.org/10.3390/molecules28052352