Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs
Abstract
1. Introduction
2. Results and Discussion
3. Materials
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Choi, S.; Lee, C.-H.; Choi, J.-H.; Choi, S.-H.; Kang, B.; Lee, G.-D. Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows. Int. J. Mol. Sci. 2023, 24, 1097. [Google Scholar] [CrossRef]
- Cambridge Display Technology Ltd. Available online: http://www.cdtltd.co.uk (accessed on 11 January 2023).
- Samsung. Available online: http://www.samsung.com/us (accessed on 11 January 2023).
- Shinar, J.R.; Shinar, J. Light extraction from organic light emitting diodes (OLEDs). J. Phys. Photonics 2022, 4, 032002. [Google Scholar] [CrossRef]
- Bizzarri, C.; Hundemer, F.; Busch, J.; Bräse, S. Triplet emitters versus TADF emitters in OLEDs: A comparative study. Polyhedron 2018, 140, 51–66. [Google Scholar] [CrossRef]
- Xue, C.; Lin, H.; Zhang, G.; Hu, Y.; Jiang, W.; Lang, J.; Wang, D.; Xing, G. Recent advances in thermally activated delayed fluorescence for white OLEDs applications. J. Mater. Sci. Mater. Electron. 2020, 31, 4444–4462. [Google Scholar] [CrossRef]
- Teng, J.-M.; Wang, Y.-F.; Chen, C.-F. Recent progress of narrowband TADF emitters and their applications in OLEDs. J. Mater. Chem. C 2020, 8, 11340–11353. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-Color Realization of Micro-LED Displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, S.; Swayamprabha, S.S.; Nagar, M.R.; Yadav, R.A.K.; Gull, S.; Dubey, D.K.; Jou, J.-H. Hole-transporting materials for organic light-emitting diodes: An overview. J. Mater. Chem. C 2019, 7, 7144–7158. [Google Scholar] [CrossRef]
- Kumar, S.A.; Shankar, J.S.; Periyasamy, B.K.; Nayak, S.K. Device engineering aspects of organic light-emitting diodes (OLEDs). Polym.-Plast. Technol. Mater. 2019, 58, 1597–1624. [Google Scholar]
- Krucaite, G.; Grigalevicius, S. 2,7(3,6)-Diaryl(arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade. Materials 2021, 14, 6754. [Google Scholar] [CrossRef] [PubMed]
- Braveenth, R.; Kim, K.; Bae, I.-J.; Raagulan, K.; Kim, B.M.; Kim, M.; Chai, K.Y. Acridine Based Small Molecular Hole Transport Type Materials for Phosphorescent OLED Application. Molecules 2021, 26, 7680. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, S.U.; Tak, S.H.; Joung, K.S.; Yu, J.-W. Effect of arylamino-carbazole containing hole transport materials on the device performance and lifetime of OLED. Org. Electron. 2022, 100, 106394. [Google Scholar] [CrossRef]
- Jhulki, S.; Moorthy, J. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): Structural diversity and classification. J. Mater. Chem. C 2018, 6, 8280. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, S.; Jin, X.; Cao, J.; Cui, J.; Zhao, Z.; Huang, J.; Su, J. Novel hole transport materials based on triphenylvinyl substituted triarylamine with excellent thermal stability for green OLEDs. Dye. Pigment. 2021, 195, 109641. [Google Scholar] [CrossRef]
- Nhari, L.; El-Shishtawy, R.; Asiri, A.M. Recent progress in organic hole transport materials for energy applications. Dye. Pigment. 2021, 193, 109465. [Google Scholar] [CrossRef]
- Sasabe, H.; Kido, J. Multifunctional Materials in High-Performance OLEDs: Challenges for Solid-State Lighting. Chem. Mater. 2011, 23, 621–630. [Google Scholar] [CrossRef]
- Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J.; Rutkaite, R.; Kazlauskas, K.; Jursenas, S.; Jankauskas, V.; Sidaravicius, J. Synthesis, photophysical and photoelectrical properties of glass-forming phenothiazinyl- and carbazolyl-substituted ethylenes. J. Optoelectron. Adv. Mater. 2006, 8, 876–882. [Google Scholar]
- Sun, D.; Ren, Z.; Bryce, M.R.; Yan, S. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). J. Mater. Chem. C 2015, 3, 9496. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Gu, C.; Ma, Y. Electrochemical polymerization: An emerging approach for fabricating high-quality luminescent films and super-resolution OLEDs. J. Mater. Chem. C 2020, 8, 5310–5320. [Google Scholar] [CrossRef]
- Vaitkeviciene, V.; Grigalevicius, S.; Grazulevicius, J.; Jankauskas, V.; Syromyatnikov, V.G. Hole-transporting [3,3′]bicarbazolyl-based polymers and well-defined model compounds. Eur. Polym. J. 2006, 42, 2254–2260. [Google Scholar] [CrossRef]
- Lo, D.; Chang, C.-H.; Krucaite, G.; Volyniuk, D.; Grazulevicius, J.V.; Grigalevicius, S. Sky-blue aggregation-induced emission molecules for non-doped organic light-emitting diodes. J. Mater. Chem. C 2017, 5, 6054–6060. [Google Scholar] [CrossRef]
- Blazevicius, D.; Tavgeniene, D.; Sutkuviene, S.; Zaleckas, E.; Jiang, M.-R.; Swayamprabha, S.; Yadav, R.; Jou, J.-H.; Grigalevicius, S. Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules 2021, 26, 4615. [Google Scholar] [CrossRef] [PubMed]
- Blazevicius, D.; Krucaite, G.; Shahnawaz, S.; Swayamprabha, S.S.; Zaleckas, E.; Jou, J.-H.; Grigalevicius, S. Easily synthesized and cheap carbazole- or phenoxazine-based hosts for efficient yellow phosphorescent OLEDs. Opt. Mater. 2021, 118, 111251. [Google Scholar] [CrossRef]
- Balionyte, A.; Lideikis, E.; Grigalevicius, S.; Ostrauskaite, J.; Burbulis, E.; Jankauskas, V.; Montrimas, E.; Grazulevicius, J.V. Photoconductive, photoluminescent and glass-forming 6,6′-di(N-diphenylamino)-9,9′-dialkyl-3,3′-bicarbazoles. J. Photochem. Photobiol. A Chem. 2004, 162, 187–191. [Google Scholar] [CrossRef]
- Braveenth, R.; Bae, H.W.; Ko, I.J.; Qiong, W.; Nguyen, Q.P.B.; Jayashantha, P.G.S.; Kwon, J.H.; Chai, K.Y. Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs. Org. Electron. 2017, 51, 463–470. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, Y.; Lu, P.; Tian, W. Fluorene-Centered, Ethynylene-Linked Carbazole Oligomers: Synthesis, Photoluminescence, and Electroluminescence. J. Phys. Chem. C 2007, 111, 6883–6888. [Google Scholar] [CrossRef]
- Krucaite, G.; Tavgeniene, D.; Grazulevicius, J.; Wang, Y.; Hsieh, C.; Jou, J.; Garsva, G.; Grigalevicius, S. 3,6-Diaryl substituted 9-alkylcarbazoles as hole transporting materials for various organic light emitting devices. Dye. Pigment. 2014, 106, 1–6. [Google Scholar] [CrossRef]
- Tucker, S.H. Iodination in the carbazole series. J. Chem. Soc. 1926, 1, 546. [Google Scholar] [CrossRef]
- Korzec, M.; Tavgeniene, D.; Samuel, N.S.; Beresneviciute, R.; Krucaite, G.; Pająk, A.K.; Kotowicz, S.; Vasylieva, M.; Gnida, P.; Malecki, J.G.; et al. Synthesis and Thermal, Photophysical, Electrochemical Properties of 3,3-di[3-Arylcarbazol-9-ylmethyl]oxetane Derivatives. Materials 2021, 14, 5569. [Google Scholar] [CrossRef]
- Griniene, R.; Grazulevicius, J.; Tseng, K.; Wang, W.; Jou, J.; Grigalevicius, S. Aryl substituted 9-(2,2-diphenylvinyl)carbazoles as efficient materials for hole transporting layers of OLEDs. Synth. Met. 2011, 161, 2466–2470. [Google Scholar] [CrossRef]
- Lin, W.-C.; Lin, Y.-C.; Wang, W.-B.; Yu, B.-Y.; Iida, S.-I.; Tozu, M.; Hsu, M.-F.; Jou, J.-H.; Shyue, J.-J. Effect of fabrication process on the microstructure and the efficiency of organic light-emitting diode. Org. Electron. 2009, 10, 459–464. [Google Scholar] [CrossRef]
- Grigalevicius, S.; Ma, L.; Qian, G.; Xie, Z.; Forster, M.; Scherf, U. New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes. Macromol. Chem. Phys. 2007, 208, 349–355. [Google Scholar] [CrossRef]
HTLs | Von [V] | Lmax [cd/m2] | LE [cd/A] | PE [lm/W] | |
---|---|---|---|---|---|
4 | 40 nm | 4.1 | 6426 | 3.8 | 2.3 |
60 nm | 4.9 | 6609 | 3.7 | 1.9 | |
80 nm | 6.7 | 6239 | 3.7 | 1.4 | |
PEDOT | 3.8 | 15,035 | 2.4 | 0.8 | |
5 | 40 nm | 3.7 | 11,672 | 4.2 | 2.6 |
60 nm | 4.3 | 10,203 | 4.1 | 2.2 | |
80 nm | 5.7 | 5230 | 3.6 | 1.9 | |
PEDOT | 3.6 | 14,040 | 2.3 | 0.8 | |
6 | 40 nm | 3.4 | 13,193 | 3.8 | 2.6 |
60 nm | 3.7 | 12,819 | 3.7 | 2.3 | |
80 nm | 4.7 | 4663 | 3.3 | 1.8 | |
PEDOT | 3.7 | 13,370 | 2.1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavgeniene, D.; Zhang, B.; Grigalevicius, S. Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules 2023, 28, 2282. https://doi.org/10.3390/molecules28052282
Tavgeniene D, Zhang B, Grigalevicius S. Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules. 2023; 28(5):2282. https://doi.org/10.3390/molecules28052282
Chicago/Turabian StyleTavgeniene, Daiva, Baohua Zhang, and Saulius Grigalevicius. 2023. "Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs" Molecules 28, no. 5: 2282. https://doi.org/10.3390/molecules28052282
APA StyleTavgeniene, D., Zhang, B., & Grigalevicius, S. (2023). Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules, 28(5), 2282. https://doi.org/10.3390/molecules28052282