Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Choi, S.; Lee, C.-H.; Choi, J.-H.; Choi, S.-H.; Kang, B.; Lee, G.-D. Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows. Int. J. Mol. Sci. 2023, 24, 1097. [Google Scholar] [CrossRef]
- Cambridge Display Technology Ltd. Available online: http://www.cdtltd.co.uk (accessed on 11 January 2023).
- Samsung. Available online: http://www.samsung.com/us (accessed on 11 January 2023).
- Shinar, J.R.; Shinar, J. Light extraction from organic light emitting diodes (OLEDs). J. Phys. Photonics 2022, 4, 032002. [Google Scholar] [CrossRef]
- Bizzarri, C.; Hundemer, F.; Busch, J.; Bräse, S. Triplet emitters versus TADF emitters in OLEDs: A comparative study. Polyhedron 2018, 140, 51–66. [Google Scholar] [CrossRef]
- Xue, C.; Lin, H.; Zhang, G.; Hu, Y.; Jiang, W.; Lang, J.; Wang, D.; Xing, G. Recent advances in thermally activated delayed fluorescence for white OLEDs applications. J. Mater. Sci. Mater. Electron. 2020, 31, 4444–4462. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.-M.; Wang, Y.-F.; Chen, C.-F. Recent progress of narrowband TADF emitters and their applications in OLEDs. J. Mater. Chem. C 2020, 8, 11340–11353. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-Color Realization of Micro-LED Displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, S.; Swayamprabha, S.S.; Nagar, M.R.; Yadav, R.A.K.; Gull, S.; Dubey, D.K.; Jou, J.-H. Hole-transporting materials for organic light-emitting diodes: An overview. J. Mater. Chem. C 2019, 7, 7144–7158. [Google Scholar] [CrossRef]
- Kumar, S.A.; Shankar, J.S.; Periyasamy, B.K.; Nayak, S.K. Device engineering aspects of organic light-emitting diodes (OLEDs). Polym.-Plast. Technol. Mater. 2019, 58, 1597–1624. [Google Scholar]
- Krucaite, G.; Grigalevicius, S. 2,7(3,6)-Diaryl(arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade. Materials 2021, 14, 6754. [Google Scholar] [CrossRef] [PubMed]
- Braveenth, R.; Kim, K.; Bae, I.-J.; Raagulan, K.; Kim, B.M.; Kim, M.; Chai, K.Y. Acridine Based Small Molecular Hole Transport Type Materials for Phosphorescent OLED Application. Molecules 2021, 26, 7680. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, S.U.; Tak, S.H.; Joung, K.S.; Yu, J.-W. Effect of arylamino-carbazole containing hole transport materials on the device performance and lifetime of OLED. Org. Electron. 2022, 100, 106394. [Google Scholar] [CrossRef]
- Jhulki, S.; Moorthy, J. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): Structural diversity and classification. J. Mater. Chem. C 2018, 6, 8280. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, S.; Jin, X.; Cao, J.; Cui, J.; Zhao, Z.; Huang, J.; Su, J. Novel hole transport materials based on triphenylvinyl substituted triarylamine with excellent thermal stability for green OLEDs. Dye. Pigment. 2021, 195, 109641. [Google Scholar] [CrossRef]
- Nhari, L.; El-Shishtawy, R.; Asiri, A.M. Recent progress in organic hole transport materials for energy applications. Dye. Pigment. 2021, 193, 109465. [Google Scholar] [CrossRef]
- Sasabe, H.; Kido, J. Multifunctional Materials in High-Performance OLEDs: Challenges for Solid-State Lighting. Chem. Mater. 2011, 23, 621–630. [Google Scholar] [CrossRef]
- Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J.; Rutkaite, R.; Kazlauskas, K.; Jursenas, S.; Jankauskas, V.; Sidaravicius, J. Synthesis, photophysical and photoelectrical properties of glass-forming phenothiazinyl- and carbazolyl-substituted ethylenes. J. Optoelectron. Adv. Mater. 2006, 8, 876–882. [Google Scholar]
- Sun, D.; Ren, Z.; Bryce, M.R.; Yan, S. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). J. Mater. Chem. C 2015, 3, 9496. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhang, H.; Gu, C.; Ma, Y. Electrochemical polymerization: An emerging approach for fabricating high-quality luminescent films and super-resolution OLEDs. J. Mater. Chem. C 2020, 8, 5310–5320. [Google Scholar] [CrossRef]
- Vaitkeviciene, V.; Grigalevicius, S.; Grazulevicius, J.; Jankauskas, V.; Syromyatnikov, V.G. Hole-transporting [3,3′]bicarbazolyl-based polymers and well-defined model compounds. Eur. Polym. J. 2006, 42, 2254–2260. [Google Scholar] [CrossRef]
- Lo, D.; Chang, C.-H.; Krucaite, G.; Volyniuk, D.; Grazulevicius, J.V.; Grigalevicius, S. Sky-blue aggregation-induced emission molecules for non-doped organic light-emitting diodes. J. Mater. Chem. C 2017, 5, 6054–6060. [Google Scholar] [CrossRef]
- Blazevicius, D.; Tavgeniene, D.; Sutkuviene, S.; Zaleckas, E.; Jiang, M.-R.; Swayamprabha, S.; Yadav, R.; Jou, J.-H.; Grigalevicius, S. Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules 2021, 26, 4615. [Google Scholar] [CrossRef] [PubMed]
- Blazevicius, D.; Krucaite, G.; Shahnawaz, S.; Swayamprabha, S.S.; Zaleckas, E.; Jou, J.-H.; Grigalevicius, S. Easily synthesized and cheap carbazole- or phenoxazine-based hosts for efficient yellow phosphorescent OLEDs. Opt. Mater. 2021, 118, 111251. [Google Scholar] [CrossRef]
- Balionyte, A.; Lideikis, E.; Grigalevicius, S.; Ostrauskaite, J.; Burbulis, E.; Jankauskas, V.; Montrimas, E.; Grazulevicius, J.V. Photoconductive, photoluminescent and glass-forming 6,6′-di(N-diphenylamino)-9,9′-dialkyl-3,3′-bicarbazoles. J. Photochem. Photobiol. A Chem. 2004, 162, 187–191. [Google Scholar] [CrossRef]
- Braveenth, R.; Bae, H.W.; Ko, I.J.; Qiong, W.; Nguyen, Q.P.B.; Jayashantha, P.G.S.; Kwon, J.H.; Chai, K.Y. Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs. Org. Electron. 2017, 51, 463–470. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, Y.; Lu, P.; Tian, W. Fluorene-Centered, Ethynylene-Linked Carbazole Oligomers: Synthesis, Photoluminescence, and Electroluminescence. J. Phys. Chem. C 2007, 111, 6883–6888. [Google Scholar] [CrossRef]
- Krucaite, G.; Tavgeniene, D.; Grazulevicius, J.; Wang, Y.; Hsieh, C.; Jou, J.; Garsva, G.; Grigalevicius, S. 3,6-Diaryl substituted 9-alkylcarbazoles as hole transporting materials for various organic light emitting devices. Dye. Pigment. 2014, 106, 1–6. [Google Scholar] [CrossRef]
- Tucker, S.H. Iodination in the carbazole series. J. Chem. Soc. 1926, 1, 546. [Google Scholar] [CrossRef]
- Korzec, M.; Tavgeniene, D.; Samuel, N.S.; Beresneviciute, R.; Krucaite, G.; Pająk, A.K.; Kotowicz, S.; Vasylieva, M.; Gnida, P.; Malecki, J.G.; et al. Synthesis and Thermal, Photophysical, Electrochemical Properties of 3,3-di[3-Arylcarbazol-9-ylmethyl]oxetane Derivatives. Materials 2021, 14, 5569. [Google Scholar] [CrossRef]
- Griniene, R.; Grazulevicius, J.; Tseng, K.; Wang, W.; Jou, J.; Grigalevicius, S. Aryl substituted 9-(2,2-diphenylvinyl)carbazoles as efficient materials for hole transporting layers of OLEDs. Synth. Met. 2011, 161, 2466–2470. [Google Scholar] [CrossRef]
- Lin, W.-C.; Lin, Y.-C.; Wang, W.-B.; Yu, B.-Y.; Iida, S.-I.; Tozu, M.; Hsu, M.-F.; Jou, J.-H.; Shyue, J.-J. Effect of fabrication process on the microstructure and the efficiency of organic light-emitting diode. Org. Electron. 2009, 10, 459–464. [Google Scholar] [CrossRef]
- Grigalevicius, S.; Ma, L.; Qian, G.; Xie, Z.; Forster, M.; Scherf, U. New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes. Macromol. Chem. Phys. 2007, 208, 349–355. [Google Scholar] [CrossRef]
HTLs | Von [V] | Lmax [cd/m2] | LE [cd/A] | PE [lm/W] | |
---|---|---|---|---|---|
4 | 40 nm | 4.1 | 6426 | 3.8 | 2.3 |
60 nm | 4.9 | 6609 | 3.7 | 1.9 | |
80 nm | 6.7 | 6239 | 3.7 | 1.4 | |
PEDOT | 3.8 | 15,035 | 2.4 | 0.8 | |
5 | 40 nm | 3.7 | 11,672 | 4.2 | 2.6 |
60 nm | 4.3 | 10,203 | 4.1 | 2.2 | |
80 nm | 5.7 | 5230 | 3.6 | 1.9 | |
PEDOT | 3.6 | 14,040 | 2.3 | 0.8 | |
6 | 40 nm | 3.4 | 13,193 | 3.8 | 2.6 |
60 nm | 3.7 | 12,819 | 3.7 | 2.3 | |
80 nm | 4.7 | 4663 | 3.3 | 1.8 | |
PEDOT | 3.7 | 13,370 | 2.1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavgeniene, D.; Zhang, B.; Grigalevicius, S. Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules 2023, 28, 2282. https://doi.org/10.3390/molecules28052282
Tavgeniene D, Zhang B, Grigalevicius S. Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules. 2023; 28(5):2282. https://doi.org/10.3390/molecules28052282
Chicago/Turabian StyleTavgeniene, Daiva, Baohua Zhang, and Saulius Grigalevicius. 2023. "Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs" Molecules 28, no. 5: 2282. https://doi.org/10.3390/molecules28052282
APA StyleTavgeniene, D., Zhang, B., & Grigalevicius, S. (2023). Di(arylcarbazole) Substituted Oxetanes as Efficient Hole Transporting Materials with High Thermal and Morphological Stability for OLEDs. Molecules, 28(5), 2282. https://doi.org/10.3390/molecules28052282