Synthesis of 4-Amino-N-[2 (diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Electronic Absorption Spectra
2.3. Antimicrobial Activities
2.4. Computational Study
2.4.1. DFT Optimization Investigation
2.4.2. Interaction Energies (IE)
2.4.3. Electronic Absorption Spectrum Analysis (UV-Vis Spectroscopy Analysis)
2.4.4. Vibrational Frequencies in IR-Spectrum
2.4.5. Benchmark of 1H NMR Chemical Shifts
2.4.6. Non-Covalent Interaction (NCI) Index
2.4.7. Quantum Theory of Atoms in Molecules (QTAIM)
2.4.8. MESP Analysis
2.5. Reactivity Descriptors
3. Experimental Section
3.1. Materials and Instrument
3.2. Synthesis of 4-Amino-N-[2-(Diethylamino) Ethyl] Benzamide Tetraphenylborate
3.3. Antifungal and Antibacterial Screening
3.3.1. Cup-Plate Diffusion Method
3.3.2. Minimum Inhibitory Concentration (MIC)
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.D.; Seddon, K.R. Ionic liquids—Solvents of the future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.D.; Seddon, K.R.; Division of Industrial and Engineering Chemistry Staff American Chemical Society; Meeting Staff American Chemical Society. Ionic Liquids as Green Solvents; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Seddon, K.R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275–2287. [Google Scholar] [CrossRef]
- Ficke, L.E.; Brennecke, J.F. Interactions of ionic liquids and water. J. Phys. Chem. B 2010, 114, 10496–10501. [Google Scholar] [CrossRef]
- Masaki, T.; Nishikawa, K.; Shirota, H. Microscopic study of ionic Liquid—H2O Systems: Alkyl-Group dependence of 1-Alkyl-3-Methylimidazolium cation. J. Phys. Chem. B 2010, 114, 6323–6331. [Google Scholar] [CrossRef]
- Sun, B.; Wu, P. Trace of the thermally induced evolution mechanism of interactions between water and ionic liquids. J. Phys. Chem. B 2010, 114, 9209–9219. [Google Scholar] [CrossRef]
- Singh, T.; Kumar, A. Cation–anion–water interactions in aqueous mixtures of imidazolium based ionic liquids. Vib. Spectrosc. 2011, 55, 119–125. [Google Scholar] [CrossRef]
- Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin− echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 2001, 105, 4603–4610. [Google Scholar] [CrossRef]
- Tokuda, H.; Ishii, K.; Susan, M.A.B.H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 2006, 110, 2833–2839. [Google Scholar] [CrossRef]
- Tokuda, H.; Tsuzuki, S.; Susan, M.A.B.H.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 2006, 110, 19593–19600. [Google Scholar] [CrossRef]
- Hunt, P.A.; Gould, I.R.; Kirchner, B. The structure of imidazolium-based ionic liquids: Insights from ion-pair interactions. Aust. J. Chem. 2007, 60, 9–14. [Google Scholar] [CrossRef]
- Maiti, A.; Rogers, R.D. A correlation-based predictor for pair-association in ionic liquids. Phys. Chem. Chem. Phys. 2011, 13, 12138–12145. [Google Scholar] [CrossRef]
- Sofian, Z.M.; Harun, N.; Mahat, M.M.; Hashim, N.A.N.; Jones, S.A. Investigating how amine structure influences drug-amine ion-pair formation and uptake via the polyamine transporter in A549 lung cells. Eur. J. Pharm. Biopharm. 2021, 168, 53–61. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Q.; Quan, P.; Liu, C.; Fang, L. Probing the role of ion-pair strategy in controlling dexmedetomidine penetrate through drug-in-adhesive patch: Mechanistic insights based on release and percutaneous absorption process. AAPS PharmSciTech 2020, 21, 4. [Google Scholar] [CrossRef]
- Skvarnavičius, G.; Matulis, D.; Petrauskas, V. Thermodynamics of Ion Pair Formation Between Charged Poly (Amino Acid) s and Linear Chain Surfactants. Eur. Biophys. J. Biophys. Lett. 2019, 48, 12164–12171. [Google Scholar]
- He, Q.; Vargas-Zúñiga, G.I.; Kim, S.H.; Kim, S.K.; Sessler, J.L. Macrocycles as ion pair receptors. Chem. Rev. 2019, 119, 9753–9835. [Google Scholar] [CrossRef]
- Florea, M.; Ilie, M. Ion-pair spectrophotometry in pharmaceutical and biomedical analysis: Challenges and perspectives. Spectrosc. Anal. Appl. 2017, 173–192. [Google Scholar]
- Miroliaee, A.; Salehirad, A.; Rezvani, A.R. Ion-pair complex precursor approach to fabricate high surface area nanopowders of MgAl2O4 spinel. Mater. Chem. Phys. 2015, 151, 312–317. [Google Scholar] [CrossRef]
- Hefnawy, M.M.; Homoda, A.M.; Abounassif, M.A.; Alanazi, A.M.; Al-Majed, A.; Mostafa, G.A. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors. Chem. Cent. J. 2014, 8, 59. [Google Scholar] [CrossRef]
- Mostafa, G.A.E.; Al-Majed, A. Characteristics of new composite- and classical potentiometric sensors for the determination of pioglitazone in some pharmaceutical formulations. J. Pharm. Biomed. Anal. 2008, 48, 57–61. [Google Scholar] [CrossRef]
- Mostafa, G.A.E. s-Benzylthiuronium PVC matrix membrane sensor for potentiometric determination of cationic surfactants in some pharmaceutical formulation. J. Pharm. Biomed. Anal. 2006, 41, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Nassiba, B.; Lahcene, T.; Brahim, B.; Kouider, M.; Abdelkader, H. Ion Pair [NaCMC-CAPB] Complex Formed via Interaction of Carboxymethylcellulose Sodium Salt (NaCMC) with Cocamidopropyl Betaine (CAPB). Phys. Chem. Res. 2023, 11, 549–558. [Google Scholar]
- Gad, H.A.; Ishak, R.A.H.; Labib, R.M.; Kamel, A.O. Ethyl lauroyl arginate-based hydrophobic ion pair complex in lipid nanocapsules: A novel oral delivery approach of rosmarinic acid for enhanced permeability and bioavailability. Int. J. Pharm. 2023, 630, 122388. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, M.E.A.; Salem, Y.A.; El-Ashry, S.M.; El-Enin, M.A.A. Isocratic ion pair chromatography for estimation of novel combined inhalation therapy that blocks coronavirus replication in chronic asthmatic patients. Sci. Rep. 2023, 13, 305. [Google Scholar] [CrossRef]
- Haseeb, A.; Rova, M.; Samuelsson, J. Method development for the acquisition of adsorption isotherm of ion pair reagents Tributylamine and Triethylamine in ion pair chromatography. J. Chromatogr. A 2023, 1687, 463687. [Google Scholar] [CrossRef]
- Alrabiah, H.; Homoda, A.M.A.; Radowan, A.A.; Ezzeldin, E.; Mostafa, G.A.E. Polymeric Membrane Sensors for Batch and Flow Injection Potentiometric Determination of Procainamide. IEEE Sens. J. 2020, 21, 4198–4208. [Google Scholar] [CrossRef]
- Prakash, K.; Sahoo, P.R.; Kumar, S. A fast, highly selective and sensitive anion probe stemmed from anthracene-oxazine conjugation with CN− induced FRET. Dye. Pigment. 2017, 143, 393–400. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, P.R.; Arora, P.; Kumar, S. A light controlled, sensitive, selective and portable spiropyran based receptor for mercury ions in aqueous solution. J. Photochem. Photobiol. A Chem. 2019, 384, 112061. [Google Scholar] [CrossRef]
- Romero, E.L.; Soto-Monsalve, M.; Gutierrez, G.; Zuluaga, F.; D’Vries, R.; Chaur, M.N. Structural, spectroscopic, and theoretical analysis of a molecular system based on 2-((2-(4-chlorophenylhydrazone) methyl) quinolone. Rev. Colomb. Química 2018, 47, 63–72. [Google Scholar]
- Bakheit, A.H.; Al-Salahi, R.; Al-Majed, A.A. Thermodynamic and Computational (DFT) Study of Non-Covalent Interaction Mechanisms of Charge Transfer Complex of Linagliptin with 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) and Chloranilic acid (CHA). Molecules 2022, 27, 6320. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Kumar, S. Synthesis of an optically switchable salicylaldimine substituted naphthopyran for selective and reversible Cu 2+ recognition in aqueous solution. RSC Adv. 2016, 6, 20145–20154. [Google Scholar] [CrossRef]
- Sahoo, P.; Prakash, K.; Kumar, S. Experimental and theoretical investigations of cyanide detection using a photochromic naphthopyran. Supramol. Chem. 2017, 29, 183–192. [Google Scholar] [CrossRef]
- Jamroz, M.H. Vibrational Energy Distribution Analysis VEDA 4; Publisher: Warsaw Poland, 2004. [Google Scholar]
- Jamróz, M.H. Vibrational energy distribution analysis (VEDA): Scopes and limitations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 220–230. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of CHO hydrogen bonds on the basis of the charge density. J. Phys. Chem. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Popelier, P.L.A. Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A 1998, 102, 1873–1878. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Ghabbour, H.A.; Hussain, H.; Al-Salahi, R.; Ali, E.A.; Mostafa, G.A.E. Synthesis and Computational and X-ray Structure of 2, 3, 5-Triphenyl Tetrazolium, 5-Ethyl-5-phenylbarbituric Acid Salt. Crystals 2022, 12, 1706. [Google Scholar] [CrossRef]
- Mostafa, G.A.E.; Bakheit, A.; AlMasoud, N.; AlRabiah, H. Charge Transfer Complexes of Ketotifen with 2, 3-Dichloro-5, 6-dicyano-p-benzoquinone and 7, 7, 8, 8-Tetracyanoquodimethane: Spectroscopic Characterization Studies. Molecules 2021, 26, 2039. [Google Scholar] [CrossRef]
- Abuelizz, H.A.; Taie, H.A.A.; Bakheit, A.H.; Marzouk, M.; Abdellatif, M.M.; Al-Salahi, R. Biological Evaluation of 4-(1H-triazol-1-yl) benzoic Acid Hybrids as Antioxidant Agents: In Vitro Screening and DFT Study. Appl. Sci. 2021, 11, 11642. [Google Scholar] [CrossRef]
- Pérez, P.; Domingo, L.R.; Aizman, A.; Contreras, R. The electrophilicity index in organic chemistry. In Theoretical and Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2007; pp. 139–201. [Google Scholar]
- Yousef, T.A.; Ezzeldin, E.; Abdel-Aziz, H.A.; Al-Agamy, M.H.; Mostafa, G.A.E. Charge transfer complex of neostigmine with 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone: Synthesis, spectroscopic characterization, antimicrobial activity, and theoretical study. Drug Des. Dev. Ther. 2020, 14, 4115. [Google Scholar] [CrossRef] [PubMed]
- Kahlmeter, G.; Brown, D.F.J.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Odenholt, I.; Rodloff, A.; Soussy, C.-J.; Steinbakk, M.; Soriano, F.; et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2006, 12, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, J.R.G.; Barone, V.; Petersson, G.A.; Takatsuki, H.; et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford, CT, USA, 2009; Available online: http://www.gaussian.com (accessed on 1 November 2016).
- Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J. Chem. Phys. 1992, 97, 9173–9177. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Ghabbour, H.A.; Bakheit, A.H.; Ezzeldin, E.; Mostafa, G.A.E. Synthesis Characterization and X-ray Structure of 2-(2, 6-Dichlorophenylamino)-2-imidazoline Tetraphenylborate: Computational Study. Appl. Sci. 2022, 12, 3568. [Google Scholar] [CrossRef]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Gauss, J. GIAO-MBPT (3) and GIAO-SDQ-MBPT (4) calculations of nuclear magnetic shielding constants. Chem. Phys. Lett. 1994, 229, 198–203. [Google Scholar] [CrossRef]
- Solovyov, S.A. Categorical foundations of variety-based topology and topological systems. Fuzzy Sets Syst. 2012, 192, 176–200. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Pakiari, A.H.; Fakhraee, S. Electron density analysis of weak van der Waals complexes. J. Theor. Comput. Chem. 2006, 5, 621–631. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Contreras, R.; Andrés, J.; Domingo, L.R.; Castillo, R.; Pérez, P. Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons. Tetrahedron 2005, 61, 417–422. [Google Scholar] [CrossRef]
- Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161–4163. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView; Version 6.1; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
PR-TPB Compound | Imipenem | Fluconazole | ||||
---|---|---|---|---|---|---|
Inhibition Zone (mm) | MIC (µg/mL) | Inhibition Zone (mm) | MIC (µg/mL) | Inhibition Zone (mm) | MIC (µg/mL) | |
E. coli | 8 | 1024 | 30 | ≤0.25 | ND | ND |
Ps. aeruginosa | 8 | 1024 | 28 | 0.5 | ND | ND |
S. aureus | 14 | 64 | 29 | ≤0.25 | ND | ND |
B. subtilis | 16 | 32 | 35 | ≤0.25 | ND | ND |
Candida albicans | 15 | 64 | ND | ND | 26 | 2 |
Structure No. | Complexes | (∆E) Corrected (kcal/mol) | ∆EBSSE | |
---|---|---|---|---|
D | PR─TPB | –104.92 | –99.13 | 0.00922 |
C | PR─TPB | –98.68 | –94.64 | 0.00645 |
Structure | Solvent | Parameters | ||||||
---|---|---|---|---|---|---|---|---|
ETotal (a.u) | Dipole Moment | λmax | f | Transition Energy (eV) | Electronic Transition | Major % Contribution | ||
S1 | Gas phase | –1699.89 | 21.08 | 312.51 | 0.006 | 3.9674 | H-6 → L H-7 → L | 96% 3% |
Water | –1699.87 | 25.06 | 278.20 | 0.5491 | 4.4566 | H-2 → L H-1 → L H → L | 15% 67% 14% | |
237.11 | 0.0302 | 5.2290 | H → L + 3 H → L + 4 H-4 → L + 2 H-2 → L + 3 H-1 → L + 4 | 26% 48% 3% 6% 2% | ||||
S2 | Gas phase | –1699.89 | 19.56 | 297.35 | 0.0282 | 4.1695 | H-7 → L H-6 → L H-5 → L | 14% 24% 61% |
Water | –1699.88 | 23.45 | 283.10 | 0.537 | 4.3795 | H-2 → L | 94% | |
248.41 | 0.102 | 4.9911 | H-1→ L + 1 H-1→ L + 2 H-1→ L + 3 | 10% 48% 29% |
Assignments | Experiment (cm−1) | Calculated (cm−1) | |||
---|---|---|---|---|---|
S1 | Relative Error | S2 | Relative Error | ||
υNH2 | 3230–3469 | 3589.56 | 120.56 | 3552.23 | 83.23 |
υNH | 2753 | 2954.52 | 201.52 | 2673.21 | –79.79 |
υC=N | 1629 | 1672.26 | 43.26 | 1620.46 | –8.54 |
υC=O | 1633 | 1657.54 | 24.54 | 1618.76 | –14.24 |
Atoms | Experimental Chemical Shift (ppm) | Calculated Chemical Shift (ppm) | ||
---|---|---|---|---|
Type | Label Numbers | S1 | S2 | |
CH3 | 71,74,78,72,77,70 | 1.16 | 1.012 | 1.089 |
CH2 | 63,61,67,64,75,60,79,68 | 3.13 | 2.60899 | 2.22 |
NH2 | 82,83 | 3.53 | 3.79 | 3.42 |
NH | 58 | 6.6 | 5.8 | 5.76 |
O-ArH | 42,55,54 | 6.8 | 6.692 | 6.49 |
p-m-ArH | 34,44,23,32,21,43,41,45,17 | 6.92 | 7.10783 | 6.96 |
ArH | 8,19,11,22,33,10,28,12,53 | 7.15 | 7.43665 | 7.66 |
ArH | 6,52,30 | 7.54 | 7.8617 | 8.26 |
H+ | 84 | 8.37 | 8.9439 | ─ |
BCP | Bond | ρ(r) (a.u.) | K(r) (a.u.) | V(r) (a.u.) | H(r) (a.u.) | ∇2ρ(r) (a.u.) | G(r) (a.u.) | ||
---|---|---|---|---|---|---|---|---|---|
Complex 1 (S1) | |||||||||
1 | C2-H64 | 0.0049 | –0.0006 | –0.0022 | 0.0006 | 0.0139 | 0.0029 | 0.787 | 0.1241 |
19 | H19-H64 | 0.0053 | –0.0008 | –0.0028 | 0.0008 | 0.0178 | 0.0036 | 0.7748 | 0.154 |
30 | C25-H64 | 0.0076 | –0.0008 | –0.0032 | 0.0008 | 0.0194 | 0.004 | 0.7962 | 0.108 |
72 | C4-H60 | 0.0073 | –0.0007 | –0.0034 | 0.0007 | 0.0195 | 0.0041 | 0.8212 | 0.1017 |
73 | C5-H61 | 0.0061 | –0.0007 | –0.0028 | 0.0007 | 0.0172 | 0.0036 | 0.7945 | 0.1205 |
76 | C3-H75 | 0.004 | –0.0005 | –0.0018 | 0.0005 | 0.0113 | 0.0023 | 0.7751 | 0.1298 |
77 | C27-H67 | 0.0067 | –0.0006 | –0.0029 | 0.0006 | 0.0166 | 0.0035 | 0.8185 | 0.0955 |
90 | C31-H74 | 0.0066 | –0.0006 | –0.003 | 0.0006 | 0.0169 | 0.0036 | 0.8323 | 0.0917 |
Complex 2 (S2) | |||||||||
14 | N12-C41 | 0.0037 | –0.0005 | –0.0019 | 0.0005 | 0.0114 | 0.0024 | 0.6565 | 0.1313 |
44 | H8-H44 | 0.0038 | –0.0009 | –0.0015 | 0.0009 | 0.0129 | 0.0024 | 0.4565 | 0.2308 |
45 | H18-C47 | 0.0093 | –0.0011 | –0.0047 | 0.0011 | 0.0279 | 0.0058 | 0.6728 | 0.1231 |
48 | H26-C43 | 0.0059 | –0.0009 | –0.0025 | 0.0009 | 0.0175 | 0.0035 | 0.5819 | 0.1545 |
58 | H15-C52 | 0.0087 | –0.0011 | –0.0043 | 0.0011 | 0.0262 | 0.0054 | 0.6591 | 0.1288 |
61 | H8-H57 | 0.0043 | –0.0009 | –0.0017 | 0.0009 | 0.0141 | 0.0026 | 0.4827 | 0.2145 |
62 | H13-C53 | 0.0129 | –0.001 | –0.0076 | 0.001 | 0.0384 | 0.0086 | 0.7912 | 0.0781 |
Compounds | HOMO (N) | HOMO (N+1) | HOMO (N-1) | Vertical EA | Vertical IP | 𝜒 | 𝜇 | 𝜂 | 𝑆 | 𝜔 | N |
---|---|---|---|---|---|---|---|---|---|---|---|
PR | –4.972 | 2.324 | –8.708 | 6.928 | –0.633 | 3.148 | –3.148 | 7.562 | 0.132 | 0.655 | 4.15 |
TPB | –5.72 | –2.428 | –9.468 | 7.505 | 3.731 | 5.618 | –5.618 | 3.774 | 0.265 | 4.182 | 3.401 |
S1 | –4.792 | 1.741 | –7.947 | 6.195 | –0.084 | 3.056 | –3.056 | 6.279 | 0.159 | 0.744 | 4.329 |
S2 | –4.547 | 1.861 | –7.871 | 5.972 | –0.293 | 2.84 | –2.84 | 6.265 | 0.160 | 0.644 | 4.574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, G.A.E.; Bakheit, A.H.; Al-Agamy, M.H.; Al-Salahi, R.; Ali, E.A.; Alrabiah, H. Synthesis of 4-Amino-N-[2 (diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study. Molecules 2023, 28, 2256. https://doi.org/10.3390/molecules28052256
Mostafa GAE, Bakheit AH, Al-Agamy MH, Al-Salahi R, Ali EA, Alrabiah H. Synthesis of 4-Amino-N-[2 (diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study. Molecules. 2023; 28(5):2256. https://doi.org/10.3390/molecules28052256
Chicago/Turabian StyleMostafa, Gamal A. E., Ahmed H. Bakheit, Mohamed H. Al-Agamy, Rashad Al-Salahi, Essam A. Ali, and Haitham Alrabiah. 2023. "Synthesis of 4-Amino-N-[2 (diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study" Molecules 28, no. 5: 2256. https://doi.org/10.3390/molecules28052256
APA StyleMostafa, G. A. E., Bakheit, A. H., Al-Agamy, M. H., Al-Salahi, R., Ali, E. A., & Alrabiah, H. (2023). Synthesis of 4-Amino-N-[2 (diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study. Molecules, 28(5), 2256. https://doi.org/10.3390/molecules28052256