New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of New Compounds and Characterization of Known Compounds
2.2. Inhibition of Formation of AGEs and ONOO− Scavenging Effects
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material and Preparation
3.3. Extraction and Isolation
3.4. Evaluation of AGEs Formation Inhibitory Effects
3.5. Evaluation of ONOO− Scavenging Activities
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef] [PubMed]
- Zálešák, F.; Bon, D.J.Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Rev. 2019, 146, 104284. [Google Scholar] [CrossRef] [PubMed]
- Grougnet, R.; Magiatis, P.; Laborie, H.; Lazarou, D.; Papadopoulos, A.; Skaltsounis, A.L. Sesamolinol glucoside, disaminyl ether, and other lignans from sesame seeds. J. Agric. Food Chem. 2012, 60, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Namiki, M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995, 11, 281–329. [Google Scholar] [CrossRef]
- Suja, K.P.; Jayalekshmy, A.; Arumughan, C. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. J. Agric. Food Chem. 2004, 52, 912–915. [Google Scholar] [CrossRef]
- Dar, A.A.; Arumugam, N. Lignans of sesame: Purification methods, biological activities and biosynthesis—A review. Bioorg. Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. J. Food Sci. 2004, 69, C377–C381. [Google Scholar] [CrossRef]
- Takeuchi, H.; Mooi, L.Y.; Inagaki, Y.; He, P. Hypoglycemic effect of a hot-water extract from defatted sesame (Sesamum indicum L.) seed on the blood glucose level in genetically diabetic KK-Ay mice. Biosci. Biotehcnol. Biochem. 2001, 65, 2318–2321. [Google Scholar] [CrossRef] [Green Version]
- Wikul, A.; Damsud, T.; Kataoka, K.; Phuwapraisirisan, P. (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorg. Med. Chem. Lett. 2012, 22, 5215–5217. [Google Scholar] [CrossRef]
- Lee, K.; Jo, I.Y.; Park, S.H.; Kim, K.S.; Bae, J.; Park, J.W.; Bu, Y. Defatted sesame seed extract reduces brain oedema by regulating aquaporin 4 expression in acute phase of transient focal cerebral ischaemia in rat. Phytother. Res. 2012, 26, 1521–1527. [Google Scholar] [CrossRef]
- Jeon, J.S.; Park, C.L.; Syed, A.S.; Kim, Y.M.; Cho, I.J.; Kim, C.Y. Preparative separation of sesamin and sesamolin from defatted sesame meal via centrifugal partition chromatography with consecutive sample injection. J. Chromatogr. B 2016, 1011, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Jeong, S.M.; Kim, S.Y.; Nam, K.C.; Ahn, D.U. Effect of far-infrared irradiation on the antioxidant activity of defatted sesame meal extracts. J. Agric. Food Chem. 2005, 53, 1495–1498. [Google Scholar] [CrossRef]
- Moazzami, A.A.; Andersson, R.E.; Kamal-Eldin, A. HPLC analysis of sesaminol glucosides in sesame seeds. J. Agric. Food Chem. 2006, 54, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.C.; Ho, C.T. Inhibitory activity of sesaminol and sesaminol triglycoside on cytochrome P450 enzymes and their pharmacokinetics in rats. J. Funct. Foods 2014, 7, 142–149. [Google Scholar] [CrossRef]
- Shyu, Y.S.; Hwang, L.S. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 2002, 35, 357–365. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Massri, M.; Nasrallah, G.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur. J. Pharmacol. 2017, 815, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Ryu, S.N.; Bu, Y.; Kim, H.; Simon, J.E.; Kim, K.S. Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum L.). Food Rev. Int. 2010, 26, 103–121. [Google Scholar] [CrossRef]
- Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015, 58, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef]
- Negre-Salvayre, A.; Salvayre, R.; Augé, N.; Pamplona, R.; Portero-Otin, M. Hyperglycemia and glycation in diabetic complications. Antioxid. Redox Sign. 2009, 11, 3071–3109. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiem, P.V.; Cuong, L.C.V.; Tai, B.H.; Nhiem, N.X.; Anh, H.L.T.; Quang, T.H.; Ngan, N.T.T.; Oh, H.; Kim, Y.C. New lignans from Antidesma hainanensis inhibit NO production in BV2 microglial cells. Chem. Pharm. Bull. 2016, 64, 1707–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, Y.N.; Liu, Z.Z.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Lignans from the root of Rhodiola crenulata. J. Agric. Food. Chem. 2012, 60, 964–972. [Google Scholar]
- Yoshikawa, K.; Tani, S.; Baba, C.; Hashimoto, T. Phenylpropanoid, sapnol A, lignan and neolignan sophorosides, saposides A and B, isolated from Canadian sugar maple sap. Molecules 2013, 18, 9641–9649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latté, K.P.; Kaloga, M.; Schäfer, A.; Kolodziej, H. An ellagitannin, n-butyl gallate, two aryltetralin lignans, and an unprecedented diterpene ester from Pelargonium reniforme. Phytochemistry 2008, 69, 820–826. [Google Scholar] [CrossRef]
- Suh, W.S.; Kim, K.H.; Kim, H.K.; Choi, S.U.; Lee, K.R. Three new lignan derivatives from Lindera glauca (Siebold et Zucc.) Blume. Helv. Chim. Acta 2015, 98, 1087–1094. [Google Scholar] [CrossRef]
- Zhong, X.N.; Ide, T.; Otsuka, H.; Hirata, E.; Takeda, Y. (+)-Isolarisiresinol 3a-O-sulphate from leaves of Myrsine seguinii. Phytochemistry 1998, 49, 1777–1778. [Google Scholar] [CrossRef]
- Li, N.; Wu, J.L.; Hasegawa, T.; Sakai, J.I.; Bai, L.M.; Wang, L.Y.; Tomida, A. Bioactive lignans from Peperomia duclouxii. J. Nat. Prod. 2007, 70, 544–548. [Google Scholar] [CrossRef]
- Jakupovic, J.; Pathak, V.P.; Bohlmann, F.; King, R.M.; Robinson, H. Obliquin derivatives and other constituents from Australian Helichrysum species. Phytochemistry 1987, 26, 803–807. [Google Scholar] [CrossRef]
- Nhiem, N.X.; Lee, H.Y.; Kim, N.Y.; Park, S.J.; Kim, E.S.; Han, J.E.; Kim, S.H. Stereochemical assignment of five new lignan glycosides from Viscum album by NMR study combined with CD spectroscopy. Magn. Reson. Chem. 2012, 50, 772–777. [Google Scholar] [CrossRef]
- Ullah, N.; Ahmad, S.; Anis, E.; Mohammad, P.; Rabnawaz, H.; Malik, A. A lignan from Daphne oleoides. Phytochemistry 1999, 50, 147–149. [Google Scholar] [CrossRef]
- Xie, L.H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 2003, 51, 508–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Saarinen, N.M.; Thompson, L.U. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J. Nutr. 2006, 136, 906–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuzaki, H.; Kawakishi, S.; Osawa, T. Sesaminol glucosides in sesame seeds. Phytochemistry 1994, 35, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, A.; Fukui, Y.; Iuchi-Okada, A.; Kakutani, S.; Satake, H.; Iwashita, T.; Nakao, M.; Umezawa, T.; Ono, E. Sequential glucosylation of a furofuran lignan,(+)-sesaminol, by Sesamum indicum UGT71A9 and UGT94D1 glucosyltransferases. Plant J. 2008, 54, 415–427. [Google Scholar] [CrossRef]
- Nagata, M.; Osawa, T.; Namiki, M.; Fukuda, Y.; Ozaki, T. Stereochemical structures of antioxidative bisepoxylignans, sesaminol and its isomers, transformed from sesamolin. Agric. Biol. Chem. 1987, 51, 1285–1289. [Google Scholar]
- Rahman, M.M.; Dewick, P.M.; Jackson, D.E.; Lucas, J.A. Lignans of Forsythia intermedia. Phytochemistry 1990, 29, 1971–1980. [Google Scholar] [CrossRef]
- Nishibe, S.; Tsukamoto, H.; Hisada, S. Effects of O-methylation and O-glucosylation on carbon-13 nuclear magnetic resonance chemical shifts of matairesinol,(+)-pinoresinol and (+)-epipinoresinol. Chem. Pharm. Bull. 1984, 32, 4653–4657. [Google Scholar] [CrossRef]
- Finnemore, H. CXLVI—The constituents of Canadian hemp. part I. apocynin. J. Chem. Soc. Trans. 1908, 93, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Kooy, N.W.; Royall, J.A.; Ischiropoulos, H.; Beckman, J.S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 1994, 6, 149–156. [Google Scholar] [CrossRef]
- Kang, K.S.; Tanaka, T.; Cho, E.J.; Yokozawa, T. Evaluation of the peroxynitrite scavenging activity of heat-processed ginseng. J. Med. Food 2009, 12, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug. Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinson, J.A.; Howard, T.B., III. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 1996, 7, 659–663. [Google Scholar] [CrossRef]
1 | 2 | |||
---|---|---|---|---|
Positions | δH (J in Hz) 2 | δC, Type | δH (J in Hz) | δC, Type |
1 | ― | 132.1, C | ― | 133.5, C |
2 | 6.52 (s) | 115.7, CH | 6.62 (d, 2.4) | 108.8, CH |
3 | ― | 144.2, C | ― | 144.6, C |
4 | ― | 144.3, C | ― | 146.3, C |
5 | 6.18 (s) | 117.2, CH | 6.67 (d, 8.4) | 116.4, CH |
6 | ― | 129.4, C | 6.51 (dd, 8.4, 2.4) | 120.3, CH |
7 | 2.69 (d, 7.8) | 33.4, CH2 | 2.81 (dd, 13.8, 5.4) 2.42 (dd, 13.8, 10.2) | 33.3, CH2 |
8 | 1.94 (m) | 40.8, CH | 2.68 (m) | 43.7, CH |
9 | 3.64 (m) 3.62 (m) | 66.2, CH2 | 3.97 (dd, 8.4, 6.6) 3.69 (dd, 8.4, 6.6) | 73.7, CH2 |
1′ | ― | 125.3, C | ― | 138.6, C |
2′ | ― | 151.2, C | 6.82 (d, 2.4) | 107.2, CH |
3′ | 6.40 (s) | 98.4, CH | ― | 148.4, C |
4′ | ― | 142.4, C | ― | 149.3, C |
5′ | ― | 147.5, C | 6.74 (d, 7.8) | 116.7, CH |
6′ | 6.29 (s) | 109.9, CH | 6.77 (dd, 7.8, 2.4) | 121.0, CH |
7′ | 4.17 (d, 10.2) | 40.9, CH | 4.76 (d, 6.6) | 84.0, CH |
8′ | 1.73 (m) | 47.8, CH | 2.29 (m) | 54.1, CH |
9′ | 3.69 (m) 3.42 (dd, 11.4, 4.8) | 63.3, CH2 | 3.81 (dd, 10.8, 7.2) 3.61 (dd, 10.8, 7.2) | 60.4, CH2 |
10′ | 5.78 (s) | 102.0, CH2 | 5.90 (s) | 102.3, CH2 |
Compounds | IC50 Value (μM) 1 | |
---|---|---|
Inhibition of AGEs Formation 2 | ONOO− Scavenging Activity 2 | |
1 | 7.5 ± 0.3 e | 8.1 ± 0.5 e |
2 | 9.8 ± 0.5 d | 20.8 ± 0.6 c |
3 | 17.8 ± 0.9 c | 35.1 ± 0.8 c |
4 | 41.7 ± 1.3 b | 52.2 ± 1.5 b |
5 | 65.8 ± 2.9 b | 82.1 ± 2.2 a |
6 | 29.0 ± 1.7 c | 51.9 ± 1.7 b |
7 | 52.4 ± 2.7 b | 75.9 ± 2.0 a |
8 | >300 a | 59.2 ± 1.2 b |
9 | >300 a | 15.5 ± 0.5 d |
Aminoguanidine 3 | 995.3 ± 3.6 a | ― |
L-Penicillamine 3 | ― | 15.0 ± 1.0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, G.H.; Kim, T.H. New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum. Molecules 2023, 28, 2255. https://doi.org/10.3390/molecules28052255
Jeong GH, Kim TH. New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum. Molecules. 2023; 28(5):2255. https://doi.org/10.3390/molecules28052255
Chicago/Turabian StyleJeong, Gyeong Han, and Tae Hoon Kim. 2023. "New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum" Molecules 28, no. 5: 2255. https://doi.org/10.3390/molecules28052255
APA StyleJeong, G. H., & Kim, T. H. (2023). New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum. Molecules, 28(5), 2255. https://doi.org/10.3390/molecules28052255