Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia
Abstract
:1. Introduction
2. Structural Elucidation
3. Anti-Inflammatory Activity
4. Discussion
5. Experimental Section
5.1. General Experimental Procedures
5.2. Plant Material
5.3. Extraction and Bioactivity-Directed Isolation
5.4. X-ray Crystallographic Analysis of 2
5.5. Crystal Data for 2
5.6. Maintenance of RAW 264.7 Macrophages
5.7. Pro-Inflammatory Activation of Cells
5.8. Determination of Nitrite by the Griess Assay
5.9. Determination of TNF-α by ELISA
5.10. Determination of Cell Viability by the Alamar Blue Assay
5.11. Statistical Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajapakse, N.; Kim, M.M.; Mendis, E.; Kim, S.K. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW264.7 cells by carboxybutyrylated glucosamine takes place via down-regulation of mitogen-activated protein kinase-mediated nuclear factor-kappaB signaling. Immunology 2008, 123, 348–357. [Google Scholar]
- Barrett, D.J.; Ash, J.E. Growth and carbon partitioning in rainforest and eucalypt forest species of south coastal New South Wales, Australia. Aust. J. Bot. 1992, 40, 13. [Google Scholar] [CrossRef]
- Sarana, S. Physiological and biochemical changes during heat stress induced browning of detached Backhousia myrtifolia (cinnamon myrtle) tissues. Trop. Plant Biol. 2015, 33, 31–39. [Google Scholar]
- Sinclair, R.J.; Hughes, L. Leaf mining in the Myrtaceae. Ecol. Entomol. 2008, 33, 623–630. [Google Scholar] [CrossRef]
- Hornsby Shire Council. Backhousia Myrtifolia; Hornsby Shire Council: Hornsby, NSW, Australia, 2005.
- Malan, E.; Roux, G.D. (+)-2,3-Trans-pubeschin, the first catechin analogue of peltogynoids from Peltogyne pubescens and P. venosa. Phytochemsitry 1973, 13, 1575–1579. [Google Scholar] [CrossRef]
- Drewes, S.E.; Mashimbye, M.J.; Field, J.S.; Ramesar, N. 11, 11-dimethyl-1, 3, 8, 10-tetrahydroxy-9-methoxypeltogynan and three pentacyclic triterpenes from Cassine transvaalensis. Phytochemistry 1991, 30, 3490–3493. [Google Scholar] [CrossRef]
- Pieters, L.; De Bruyne, T.; Claeys, M.; Vlietinck, A.; Calomme, M.; vanden Berghe, D. Isolation of a dihydrobenzofuran lignan from South American Dragon’s Blood (Croton spp.) as an inhibitor of cell proliferation. J. Nat. Prod. 1993, 56, 899–906. [Google Scholar] [CrossRef]
- Pieters, L.; De Bruyne, T.; De Groot, A.; Mei, G.; Dommisse, R.; Lemière, G.; Vlietinck, A. NMR study of some dihydrobenzofuran lignans. Magn. Reson. Chem. 1993, 31, 692–693. [Google Scholar] [CrossRef]
- In, S.J.; Seo, K.H.; Song, N.Y.; Lee, D.S.; Kim, Y.C.; Baek, N.I. Lignans and neolignans from the stems of Vibrunum erosum and their neuroprotective and anti-inflammatory activity. Arch. Pharm. Res. 2015, 38, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Cardona, M.L.; Seoan, E. Flavonoids and xanthonolignoids of Hypericum ericoides. Phytochemistry 1982, 21, 2759–2760. [Google Scholar] [CrossRef]
- Roux, D.G.; Ferreira, D. α-Hydroxychalcones as intermediates in flavonoid biogenesis: The significance of recent chemical analogies. Phytochemsitry 1974, 13, 2039–2048. [Google Scholar] [CrossRef]
- Robinson, G.M.; Robinson, R. Leuco-anthocyanins and leuco-anthocyanidins. Part I. The isolation of peltogynol and its molecular structure. J. Chem. Soc. 1935, 744–752. [Google Scholar] [CrossRef]
- Brandt, E.V.; Ferreira, D.; Roux, D.G. Metabolites from the Purple Heartwood of Mimosoideae. Part 2. Acacia carnei Maiden: Isolation, Synthesis, and Reactions of Crombeone. J. Chem. Soc. Perkin Trans. 1981, 1, 514–521. [Google Scholar] [CrossRef]
- Gottlieb, O.R.; De Sousa, J.R.D. Peltogynoids of Goniorrhachis marginata. Phytochemistry 1972, 11, 2841–2846. [Google Scholar] [CrossRef]
- De Almeida, M.E.; Gottlieb, O.R.; Teixeira, M.A. New peltogynoids from three Peltogyne species. Phytochemistry 1974, 13, 1225–1228. [Google Scholar] [CrossRef]
- McPherson, D.D.; Cordell, G.A.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H. Peltogynoids and homoisoflavonoids from Caesalpinia pulcherrima. Phytochemistry 1983, 22, 2835–2838. [Google Scholar] [CrossRef]
- Ahmadu, A.; Abdulkarim, A.; Grougnet, R.; Myrianthopoulos, V.; Tillequin, F.; Magiatis, P.; Skaltsounis, A.L. Two new peltogynoids from Acacia nilotica Delile with kinase inhibitory activity. Planta Med. 2010, 76, 458–460. [Google Scholar] [CrossRef]
- Galarraga Montes, E.; Amaro-Luis, J.M. Icosandrin, a novel peltogynoid from the fruits of Phytolacca icosandra (Phytolaccaceae). Nat. Prod. Res. 2016, 30, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Do, L.T.; Aree, T.; Siripong, P.; Pham, T.N.; Nguyen, P.K.; Tip-Pyang, S.; Bougainvinones, A.-H. Peltogynoids from the Stem Bark of Purple Bougainvillea spectabilis and Their Cytotoxic Activity. J. Nat. Prod. 2016, 79, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Ngnokam, D.; Massiot, G.; Nuzillard, J.M.; Tsamo, E. (+)-7′, 7′-Dimethyl-5-hydroxy-2R, 3S-trans-pubeschin from Entandrophragma cylindricum. Phytochemistry 1994, 37, 529–531. [Google Scholar] [CrossRef]
- Cowieson, N.P.; Aragao, D.; Clift, M.; Ericsson, D.J.; Gee, C.; Harrop, S.J.; Mudie, N.; Panjikar, S.; Price, J.R.; Riboldi-Tunnicliffe, A.; et al. MX1: A bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Rad. 2015, 22, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W.X. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- SADABS, Version 2014/5; Bruker AXS Inc.: Madison, WI, USA, 2001.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta. Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Raju, R.; Mathew, S.; Reddell, P.; Munch, G. Ternstroenol F: A new pentacyclic triterpenoid saponin isolated from the Australian rainforest plant Ternstroemia cherryi. Nat. Prod. Res. 2022; Online ahead of print. [Google Scholar]
- Zhou, X.; Razmovski-Naumovski, V.; Chang, D.; Li, C.; Kam, A.; Low, M.; Bensoussan, A.; Chan, K. Synergistic Effects of Danshen (Salvia Miltiorrhiza Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) Combination in Inhibiting Inflammation Mediators in RAW264.7 Cells. Medicines 2017, 4, 85. [Google Scholar] [CrossRef] [Green Version]
Position | δH (J in Hz) 1 a | δH (J in Hz) 2 a | δH (J in Hz) 3 a | δH (J in Hz) 4 a | δH (J in Hz) 5 a | δH (J in Hz) 6 b |
---|---|---|---|---|---|---|
2 | 4.53, d (9.0) | 4.57, d (9.5) | 4.74, d (9.9) | 4.56, d (9.6) | 4.58, d (9.1) | 4.67, d (9.5) |
3 | 3.64, m | 3.67, ddd (10.7, 9.5, 6.1) | 3.67, dd (9.9, 8.3) | 3.71, ddd (10.5, 9.6, 6.1) | 3.67, ddd (10.6, 9.1, 5.9) | 3.74, m |
4a 4b | 3.11, dd (15.5, 6.0) 2.63, dd (15.3, 10.7) | 3.15, dd (15.4, 6.1) 2.66, dd (15.4, 10.7) | 5.01, d (8.3) | 3.10, dd (15.4, 6.1) 2.57, dd (15.4, 10.5) | 3.14, dd (15.4, 5.9) 2.65, dd (15.4, 10.6) | 3.23, dd (15.3, 6.0) 2.71, dd (15.3, 10.6) |
8 | 6.21, s | 6.23, s | 6.15, s | 6.19, s | 6.36, s | 6.36, s |
5-OMe | 3.71, s | 3.72, s | 3.73, s | 3.73, s | ||
6-Me | 2.05, s | 2.07, s | 1.98, s | 2.02, s | 2.06, s | 2.09, s |
7-OMe | 3.77, s | 3.76, s | 3.80, s | 3.80, s | ||
2′ | 6.66, s | 6.78, s | 6.79, s | 6.83, s | 6.72, s | 6.84, s |
7′a | 4.89, d (15.2) | 4.88, (15.3) | 4.92, d (15.1) | 4.89, d (15.1) | 4.91, d (15.2) | 4.96, d (15.4) |
7′b | 4.73, d (15.2) | 4.73, (15.3) | 4.72, d (15.1) | 4.74, d (15.1) | 4.76, d (15.2) | 4.81, d (15.4) |
8′ | 5.92, dd (15.3) | 5.93, d (14.0) | ||||
3′-OMe | 3.88, s | 3.89, s | 3.89, s | 3.95, s | ||
4′-OMe | 3.79, s | 3.81, s | 3.79, s | 3.91, s |
Position | * δC 1 a | * δC 2 a | * δC 3 a | * δC 4 a | * δC 5 a | * δC 6 b |
---|---|---|---|---|---|---|
2 | 74.6 | 74.4 | 72.7 | 74.2 | 74.6 | 74.3 |
3 | 73.1 | 72.9 | 78.3 | 73.3 | 72.7 | 72.8 |
4 | 28.2 | 28.1 | 70.6 | 28.6 | 28.0 | 28.4 |
5 | 157.6 | 158.8 | 156.8 | 158.8 | 158.3 | 157.4 |
6 | 110.5 | 111.6 | 106.8 | 106.5 | 112.8 | 112.6 |
7 | 155.2 | 156.2 | 160.0 | 158.5 | 158.8 | 157.8 |
8 | 99.7 | 99.4 | 92.1 | 92.4 | 101.9 | 99.6 |
9 | 152.9 | 154.0 | 154.0 | 154.2 | 154.8 | 153.1 |
10 | 105.1 | 106.8 | 103.8 | 102.8 | 108.0 | 106.8 |
5-OMe | 60.3 | 60.2 | 60.1 | 61.1 | ||
6-Me | 8.6 | 8.4 | 7.7 | 8.1 | 8.7 | 9.4 |
7-OMe | 60.8 | 55.8 | 55.7 | 56.7 | ||
1′ | 117.7 | 116.0 | 116.1 | 116.3 | 118.4 | 114.2 |
2′ | 98.4 | 101.3 | 101.4 | 101.0 | 98.6 | 102.4 |
3′ | 133.4 | 136.2 | 135.5 | 136.2 | 134.9 | 134.4 |
4′ | 147.6 | 153.2 | 153.2 | 153.3 | 148.8 | 147.7 |
5′ | 135.7 | 146.4 | 147.0 | 147.1 | 137.5 | |
6′ | 126.9 | 129.7 | 129.4 | 130.1 | 128.4 | 128.7 |
7′ | 65.8 | 65.5 | 65.6 | 65.5 | 65.8 | 65.7 |
8′ | 101.9 | 101.3 | 101.9 | |||
3′-OMe | 56.3 | 56.2 | 56.2 | 57.1 | ||
4′-OMe | 60.9 | 60.8 | 60.9 | 62.2 |
Compounds | Inhibition of NO Production (µg/mL), N = 6 | Cell Viability (µg/mL), N = 6 | Inhibition of TNF-α Production (µg/mL), N = 6 |
---|---|---|---|
1 | 11.47 ± 0.14 | 18.76 ± 0.39 | 24.54 ± 0.28 |
2 | 16.25 ± 0.77 | 37.22 ± 2.09 | 52.35 ± 7.47 |
3 | >100 | >100 | >100 |
4 | 29.31 ± 10.95 | 71.46 ± 14.74 | 91.26 ± 7.14 |
5 | 8.51 ± 0.47 | 15.52 ± 0.42 | 17.21 ± 0.22 |
6 | 12.62 ± 0.26 | 19.79 ± 0.86 | 30.55 ± 5.01 |
7 | 44.11 ± 13.39 | >100 | >100 |
8 | >100 | >100 | >100 |
9 | 8.30 ± 0.96 | 20.45 | 46.79 ± 5.87 |
curcumin (+ve control)_ | 4.64 ± 1.5 | 10.86 ± 1.3 | 4.19 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew, S.; Zhang, K.; Zhou, X.; Münch, G.; Bodkin, F.; Li, F.; Raju, R. Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia. Molecules 2023, 28, 2160. https://doi.org/10.3390/molecules28052160
Mathew S, Zhang K, Zhou X, Münch G, Bodkin F, Li F, Raju R. Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia. Molecules. 2023; 28(5):2160. https://doi.org/10.3390/molecules28052160
Chicago/Turabian StyleMathew, Shintu, Kenneth Zhang, Xian Zhou, Gerald Münch, Francis Bodkin, Feng Li, and Ritesh Raju. 2023. "Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia" Molecules 28, no. 5: 2160. https://doi.org/10.3390/molecules28052160
APA StyleMathew, S., Zhang, K., Zhou, X., Münch, G., Bodkin, F., Li, F., & Raju, R. (2023). Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia. Molecules, 28(5), 2160. https://doi.org/10.3390/molecules28052160