Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Backhousia myrtifolia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1620 KiB  
Article
LC-ESI-QTOF-MS/MS Identification and Characterization of Phenolic Compounds from Leaves of Australian Myrtles and Their Antioxidant Activities
by Akhtar Ali, Abdul Mueed, Jeremy J. Cottrell and Frank R. Dunshea
Molecules 2024, 29(10), 2259; https://doi.org/10.3390/molecules29102259 - 11 May 2024
Cited by 4 | Viewed by 3008
Abstract
Phenolic compounds, present in plants, provide substantial health advantages, such as antioxidant and anti-inflammatory properties, which enhance cardiovascular and cognitive well-being. Australia is enriched with a wide range of plants with phytopharmacological potential, which needs to be fully elucidated. In this context, we [...] Read more.
Phenolic compounds, present in plants, provide substantial health advantages, such as antioxidant and anti-inflammatory properties, which enhance cardiovascular and cognitive well-being. Australia is enriched with a wide range of plants with phytopharmacological potential, which needs to be fully elucidated. In this context, we analyzed leaves of aniseed myrtle (Syzygium anisatum), lemon myrtle (Backhousia citriodora), and cinnamon myrtle (Backhousia myrtifolia) for their complex phytochemical profile and antioxidant potential. LC-ESI-QTOF-MS/MS was applied for screening and characterizing these Australian myrtles’ phenolic compounds and the structure–function relation of phenolic compounds. This study identified 145 and quantified/semi-quantified 27 phenolic compounds in these Australian myrtles. Furthermore, phenolic contents (total phenolic content (TPC), total condensed tannins (TCT), and total flavonoids (TFC)) and antioxidant potential of phenolic extracts from the leaves of Australian myrtles were quantified. Aniseed myrtle was quantified with the highest TPC (52.49 ± 3.55 mg GAE/g) and total antioxidant potential than other selected myrtles. Catechin, epicatechin, isovitexin, cinnamic acid, and quercetin were quantified as Australian myrtles’ most abundant phenolic compounds. Moreover, chemometric analysis further validated the results. This study provides a new insight into the novel potent bioactive phenolic compounds from Australian myrtles that could be potentially useful for functional, nutraceutical, and therapeutic applications. Full article
Show Figures

Graphical abstract

9 pages, 233 KiB  
Communication
A Method and Formula for the Quantitative Analysis of the Total Bioactivity of Natural Products
by Shintu Mathew, Ritesh Raju, Xian Zhou, Francis Bodkin, Suresh Govindaraghavan and Gerald Münch
Int. J. Mol. Sci. 2023, 24(7), 6850; https://doi.org/10.3390/ijms24076850 - 6 Apr 2023
Cited by 7 | Viewed by 3211
Abstract
Identification of bioactive natural products from plants starts with the screening of extracts for a desired bioactivity such as antimicrobial, antifungal, anti-cancer, anti-inflammatory, or neuroprotective. When the bioactivity shows sufficient potency, the plant material is subjected to bio-activity-guided fractionation, which involves, e.g., sequential [...] Read more.
Identification of bioactive natural products from plants starts with the screening of extracts for a desired bioactivity such as antimicrobial, antifungal, anti-cancer, anti-inflammatory, or neuroprotective. When the bioactivity shows sufficient potency, the plant material is subjected to bio-activity-guided fractionation, which involves, e.g., sequential extraction followed by chromatographic separation, including HPLC. The bioactive compounds are then structurally identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR). One of the questions that come up during the purification process is how much of the bioactivity originally present in the crude extract is preserved during the purification process. If this is the case, it is interesting to investigate if the loss of total bioactivity is caused by the loss of material during purification or by the degradation or evaporation of potent compounds. A further possibility would be the loss of synergy between compounds present in the mixture, which disappears when the compounds are separated. In this publication, a novel formula is introduced that allows researchers to calculate total bioactivity in biological samples using experimental data from our research into the discovery of anti-inflammatory compounds from Backhousia myrtifolia (Grey Myrtle). The results presented show that a raw ethanolic extract retains slightly more bioactivity than the sum of all sequential extracts per gram of starting material and that—despite a large loss of material during HPLC purification—the total bioactivity in all purified fractions is retained, which is indicative of rather an additive than a synergistic principle. Full article
11 pages, 1669 KiB  
Article
Myrtinols A–F: New Anti-Inflammatory Peltogynoid Flavonoid Derivatives from the Leaves of Australian Indigenous Plant Backhousia myrtifolia
by Shintu Mathew, Kenneth Zhang, Xian Zhou, Gerald Münch, Francis Bodkin, Feng Li and Ritesh Raju
Molecules 2023, 28(5), 2160; https://doi.org/10.3390/molecules28052160 - 25 Feb 2023
Cited by 6 | Viewed by 2568
Abstract
Our in-house ethnopharmacological knowledge directed our anti-inflammatory investigation into the leaves of Backhousia mytifolia. Bioassay guided isolation of the Australian indigenous plant Backhousia myrtifolia led to the isolation of six new rare peltogynoid derivatives named myrtinols A–F (16) [...] Read more.
Our in-house ethnopharmacological knowledge directed our anti-inflammatory investigation into the leaves of Backhousia mytifolia. Bioassay guided isolation of the Australian indigenous plant Backhousia myrtifolia led to the isolation of six new rare peltogynoid derivatives named myrtinols A–F (16) along with three known compounds 4-O-methylcedrusin (7), 7-O-methylcedrusin (8) and 8-demethylsideroxylin (9). The chemical structures of all the compounds were elucidated by detailed spectroscopic data analysis, and absolute configuration was established using X-ray crystallography analysis. All compounds were evaluated for their anti-inflammatory activity by assessing the inhibition of nitric oxide (NO) production and tumor necrosis factor- α (TNF-α) in lipopolysaccharide (LPS) and interferon (IFN)-γ activated RAW 264.7 macrophages. A structure activity relationship was also established between compounds (16), noting promising anti-inflammatory potential by compounds 5 and 9 with an IC50 value of 8.51 ± 0.47 and 8.30 ± 0.96 µg/mL for NO inhibition and 17.21 ± 0.22 and 46.79 ± 5.87 µg/mL for TNF-α inhibition, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 2233 KiB  
Article
A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns
by Emmanuel Janaka Rochana Rupesinghe, Andrew Jones, Ross Andrew Shalliker and Sercan Pravadali-Cekic
Molecules 2016, 21(1), 118; https://doi.org/10.3390/molecules21010118 - 20 Jan 2016
Cited by 15 | Viewed by 5722
Abstract
Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) [...] Read more.
Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop