Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of AA on Clusteroluminescence of BSA
2.2. Condition Optimization and Selectivity Assay
2.3. Mechanism Study of Fluorescence Quenching of BSA by AA
2.4. Fluorescent AA Assay Based on BSA
2.5. AA Analysis in Real Samples
3. Materials and Methods
3.1. Reagents and Materials
3.2. Apparatus
3.3. Fluorescent Spectra and Ultraviolet-Visible Absorption Spectra Measurements
3.4. Surface Tension Measurement
3.5. Fluorescent Detection of AA
3.6. AA Detection in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fujii, J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J. Clin. Biochem. Nutr. 2021, 69, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, N.; Creagan, E.; Witzig, T.; Levine, M. Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly. Cancer Cell. 2018, 34, 700–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janani, N.; Zare, E.N.; Salimi, F.; Makvandi, P. Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr. Polym. 2020, 247, 116678. [Google Scholar] [CrossRef] [PubMed]
- Kressin, C.; Pandya, K.; Woodward, B.M.; Donaldson, C.; Flannery, A.H. Ascorbic acid in the acute care setting. JPEN J. Parenter. Enter. Nutr. 2021, 45, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.R.; Vitorino, C.; Fortuna, A. From antioxidant to neuromodulator: The role of ascorbate in the management of major depression disorder. Biochem. Pharmacol. 2022, 206, 115300. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef]
- Chanphai, P.; Tajmir-Riahi, H.A. Conjugation of vitamin C with serum proteins: A potential application for vitamin delivery. Int. J. Biol. Macromol. 2019, 137, 966–972. [Google Scholar] [CrossRef]
- Boo, Y.C. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. [Google Scholar] [CrossRef]
- Lykkesfeldt, J. Ascorbate and dehydroascorbic acid as biomarkers of oxidative stress: Validity of clinical data depends on vacutainer system used. Nutr. Res. 2012, 32, 66–69. [Google Scholar] [CrossRef]
- Pandey, I.; Jha, S.S. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia. Electrochim. Acta 2015, 182, 917–928. [Google Scholar] [CrossRef]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef]
- Bowman, G.L. Ascorbic acid, cognitive function, and Alzheimer’s disease: A current review and future direction. BioFactors 2022, 38, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Wimalasiri, P.; Wills, R.B.H. Simultaneous analysis of ascorbic acid and dehydroascorbic acid in fruit and vegetables by high-performance liquid chromatography. J. Chromatogr. 1983, 256, 368–371. [Google Scholar] [CrossRef]
- Oliveira, E.J.; Watson, D.G. Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. J. Chromatogr. B 2001, 764, 3–25. [Google Scholar] [CrossRef]
- Lenghor, N. Sequential injection redox or acid–base titration for determination of ascorbic acid or acetic acid. Talanta 2002, 58, 1139–1144. [Google Scholar] [CrossRef]
- Han, L.; Liu, P.; Zhang, H.; Li, F.; Liu, A. Phage capsid protein-directed MnO2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chem. Commun. 2017, 53, 5216–5219. [Google Scholar] [CrossRef]
- Nguyen, T.H.A.; Nguyen, V.T.M.; Le, V.T.; Doan, V.D.; Chau, T.P.; Nguyen, V.C.; Nguyen, A.T.; Vasseghian, Y. A novel gold nanoparticle-based colorimetric assay for highly sensitive detection of ascorbic acid. Mater. Lett. 2022, 309, 131307. [Google Scholar] [CrossRef]
- Han, Y.R.; Luo, L.P.; Zhang, L.; Kang, Y.; Sun, H.; Dan, J.; Sun, J.; Zhang, W.T.; Yue, T.L.; Wang, J.L. Oxidase-like Fe–Mn bimetallic nanozymes for colorimetric detection of ascorbic acid in kiwi fruit. LWT-Food Sci. Technol. 2022, 154, 112821. [Google Scholar] [CrossRef]
- Siraprapa, P.; Kornkamon, M.; Gasidit, P.; Oratai, J. MWCNT/Ti-doped ZnO nanocomposite as electro-chemical sensor for detecting glutamate and ascorbic acid. Int. J. Appl. Ceram. Technol. 2022, 19, 467–479. [Google Scholar]
- Fernandes, D.S.; Carmo, D.R. Silsesquioxane Modified with PAMAM Dendrimer and a Bimetallic Complex for Electrochemical Detection of Ascorbic Acid. Electroanalysis 2021, 33, 365–374. [Google Scholar] [CrossRef]
- Murugan, N.; Jerome, R.; Murugan, P.; Sundaramurthy, A.; Sundramoorthy, A.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J. Mater. Sci. Technol. 2021, 72, 122–131. [Google Scholar] [CrossRef]
- Virginia, M.V.; Benjamín, N.V.; Alejandro, T.; Griselda, A.E.; Gustavo, A.R.; Pablo, R.D. Ultrasensitive multiwall carbon nanotube-mesoporous MCM-41 hybrid-based platform for the electrochemical detection of ascorbic acid. Analyst 2022, 147, 2130–2140. [Google Scholar]
- Malik, M.; Narwal, V.; Pundir, V. Ascorbic acid biosensing methods: A review. Process Biochem. 2022, 118, 11–23. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Zhang, Y.; Chen, Y.; Yang, X.; Duan, L.; Dharmarajan, R.; Wang, X.; Li, L. Simultaneous determination of 20 disperse dyes in foodstuffs by ultra high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 300, 125183. [Google Scholar] [CrossRef] [PubMed]
- Buriánek, J.D.; Kvicala, J.; Sekerova, L.; Müller, B.H.; Francke, R.; Bystron, T. Determination of Diaryliodonium Species by Reverse Iodometric Titration with Ascorbic Acid. Electroanalysis 2023. [Google Scholar] [CrossRef]
- Songtham, R.; Pattraporn, S.; Chutima, P.; Amornrat, K.; Thawatchai, T. Poly(methacrylic acid)-Stabilized Silver Nanoclusters as Colorimetric Sensors for the Rapid and Sensitive Detection of Ascorbic Acid. ChemistrySelect 2021, 6, 1248–1254. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Serban, A.I.; Cornelia, F. Electrochemical methods for ascorbic acid determination. Electrochim. Acta 2014, 121, 443–460. [Google Scholar] [CrossRef]
- Wu, A.; Ding, H.; Zhang, W.; Rao, H.; Wang, L.; Chen, Y.; Lu, C.; Wang, X. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages. Food Chem. 2021, 363, 130325. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, Z.T.; Sheng, M.S.; Xiao, H.Y.; Zhang, F.; Meng, J.; Lai, M.M.; Wu, X.M.; Li, Y. Luminescent carbon nanoclusters for sensitive detection of ascorbic acid and fluorescent printing. ACS Appl. Nano Mater. 2022, 5, 5234–5243. [Google Scholar] [CrossRef]
- Pan, W.; Han, L.; Cao, X.; Shen, S.; Pang, X.; Zhu, Y. Dual-response near-infrared fluorescent probe for detecting cyanide and mitochondrial viscosity and its application in bioimaging. Food Chem. 2023, 407, 135163. [Google Scholar] [CrossRef]
- Mehta, V.N.; Kailasa, S.K.; Wu, H.F. Surface modified quantum dots as fluorescent probes for biomolecule recognition. J. Nanosci. Nanotechnol. 2014, 14, 447–459. [Google Scholar] [CrossRef]
- Huang, L.Y.; Yang, Z.T.; Zhou, Z.L.; Li, Y.Q.; Tang, S.P.; Xiao, W.P.; Hu, M.; Peng, C.; Chen, Y.X.; Gu, B.; et al. A dual colorimetric and near-infrared fluorescent turn-on probe for Hg2+ detection and its applications. Dye. Pigment. 2019, 163, 118–125. [Google Scholar] [CrossRef]
- Liu, R.; Yang, R.; Qu, C.J.; Mao, H.C.; Hu, Y.; Li, J.J.; Qu, L.B. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens. Actuators B Chem. 2017, 241, 644–651. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.; Zhang, S.; Xu, P.; Song, B. Turn-on fluorescence probe for BSA detection and selective cell imaging. Dye. Pigment. 2022, 202, 110267. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; McGonigal, P.R.; Ye, R.; Liu, S.; Lam, J.W.Y.; Kwok, R.T.K.; Yuan, W.Z.; Xie, J.; Rogach, A.L.; et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292. [Google Scholar] [CrossRef]
- Zhang, J.; Alam, P.; Zhang, S.; Shen, H.; Hu, L.; Sung, H.H.Y.; Williams, I.D.; Sun, J.; Lam, J.W.Y.; Zhang, H.; et al. Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nat. Commun. 2022, 13, 3492. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, Z.; Chu, B.; Zhang, Z.; Xie, Y.; Wang, L.; Sun, J.Z.; Zhang, H.; Zhang, X.H.; Tang, B.Z. Manipulation of clusteroluminescence in carbonyl-based aliphatic polymers. Aggregate 2022, 3, e278. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Non-traditional intrinsic luminescence: Inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog. Polym. Sci. 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Du, L.; Ma, C.; Leung, N.L.C.; Niu, Y.; Qin, A.; Sun, J.; Peng, Q.; Sung, H.H.Y.; et al. Drawing a clear mechanistic picture for the aggregation-induced emission process. Mater. Chem. Front. 2019, 3, 1143–1150. [Google Scholar] [CrossRef]
- Kang, C.; Tao, S.; Yang, F.; Yang, B. Aggregation and luminescence in carbonized polymer dots. Aggregate 2022, 3, e169. [Google Scholar] [CrossRef]
- Kang, M.; Zhang, Z.; Song, N.; Li, M.; Sun, P.; Chen, X.; Wang, D.; Tang, B.Z. Aggregation-enhanced theranostics: AIE sparkles in biomedical field. Aggregate 2020, 1, 80–106. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Tavakoli, J.; Shan, G.; Zhang, J.; Peng, C.; Xiong, Y.; Zhang, X.; Cheung, T.S.; Tang, Y.; et al. Revisiting an ancient inorganic aggregation-induced emission system: An enlightenment to clusteroluminescence. Aggregate 2021, 2, e36. [Google Scholar] [CrossRef]
- Liang, J.J.; Li, Y.; Yuan, Y.; Li, S.H.; Zhu, X.D.; Barlow, S.; Fung, M.K.; Jiang, Z.Q.; Marder, S.R.; Liao, L.-S. A blue thermally activated delayed fluorescence emitter developed by appending a fluorene moiety to a carbazole donor with meta-linkage for high-efficiency OLEDs. Mater. Chem. Front. 2018, 2, 917–922. [Google Scholar] [CrossRef]
- Zeng, J.; Guo, J.; Liu, H.; Lam, J.W.Y.; Zhao, Z.; Chen, S.; Tang, B.Z. Aggregation-Induced Delayed Fluorescence Luminogens for Efficient Organic Light-Emitting Diodes. Chem. Asian J. 2019, 14, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Yuan, C.; Bai, Y.; He, C.; Long, J.; Tan, H.; Wang, H. Effects of Through-Bond and Through-Space Conjugations on the Photoluminescence of Small Aromatic and Aliphatic Aldimines. Molecules 2022, 27, 8046. [Google Scholar] [CrossRef]
- Song, F.; Xue, Y.; Wang, X.; Wang, J.; Xiong, X.; Peng, X. Ratiometric fluorescent probe based on novel red-emission BODIPY for determination of bovine serum albumin. Chem. Res. Chin. Univ. 2014, 30, 738–742. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.; Chen, D.; Bian, X.; Liu, W.; Han, L. Denatured proteins show new vitality: Green synthesis of germanium oxide hollow microspheres with versatile functions by denaturing proteins around bubbles. Aggregate 2023, 4, e204. [Google Scholar] [CrossRef]
- Liu, K.W.; Han, L.; Zhuang, J.Y.; Yang, D.P. Protein-directed gold nanoparticles with excellent catalytic activity for 4-nitrophenol reduction. Mater. Sci. Eng. C 2017, 78, 429–434. [Google Scholar] [CrossRef]
- Gan, S.; Zhou, J.; Smith, T.A.; Su, H.; Luo, W.; Hong, Y.; Zhao, Z.; Tang, B.Z. New AIEgens with delayed fluorescence for fluorescence imaging and fluorescence lifetime imaging of living cells. Mater. Chem. Front. 2017, 1, 2554–2558. [Google Scholar] [CrossRef]
- Han, L.; Wang, D.; Yan, L.; Petrenko, V.A.; Liu, A.H. Specific phages-based electrochemical impedimetric immunosensors for label-free and ultrasensitive detection of dual prostate-specific antigen. Sens. Actuators B Chem. 2019, 297, 126727. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, T.W.; Xu, F.; Li, W.; Tao, S.; Chu, L.Q.; He, Y.; Li, Y.; Iyer, S.S.; Yu, P. Fluorescent Neomannosyl Bovine Serum Albumin as Efficient Probe for Mannose Receptor Imaging and MCF-7 Cancer Cell Targeting. ACS Appl. Nano Mater. 2018, 1, 1058–1065. [Google Scholar] [CrossRef]
- Wang, Q.; Dou, X.; Chen, X.; Zhao, Z.; Chen, X.; Wang, S.; Wang, Y.; Sui, K.; Tan, Y.; Gong, Y.; et al. Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angew. Chem. 2019, 58, 12667–12673. [Google Scholar] [CrossRef]
- Niu, Y.; Ding, T.; Liu, J.; Zhang, G.; Tong, L.; Cheng, X.; Yang, Y.; Chen, Z.; Tang, B. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer’s disease. Talanta 2021, 223, 121745. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Q.H.; Li, C.R.; Wang, Z.; Ma, J.J.; Zang, X.H.; Qin, N.X. Interaction of tetrandrine with human serum albumin: A fluorescence quenching study. Anal. Sci. 2007, 23, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.G.; Zen, B.R.; Kang, Q.L.; Dai, L.Z. Study on the binding of chloroamphenicol with bovine serum albumin by fluorescence and UV–vis spectroscopy. Spectrochim. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 105, 74–79. [Google Scholar] [CrossRef]
- Wang, N.; Ye, L.; Yan, F.F.; Xu, R. Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin. Int. J. Pharm. 2008, 351, 55–60. [Google Scholar] [CrossRef]
- Qi, C.L.; Fu, C.X. Interaction of folic acid and amino acid by fluorescence spectrometry. Chem. Res. 2014, 25, 148–151. [Google Scholar]
- Ross, P.; Subramanian, S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Zhao, P.; Kong, J.; Li, L. Elucidation of Binding Mechanism of Dibutyl Phthalate on Bovine Serum Albumin by Spectroscopic Analysis and Molecular Docking Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118044. [Google Scholar]
- Li, G.; Huang, J.; Chen, T.; Wang, X.; Zhang, H.; Chen, Q. Insight into the Interaction between Chitosan and Bovine Serum Albumin. Carbohydr. Polym. 2017, 176, 75–82. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.J.; Jin, J. Study on the interaction of puerarin with lysozyme by spectroscopic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 70, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liang, Q.; Li, Y.; Liu, X.; Zhang, D.; Li, X. Study of the Binding Mechanism between Hydroxytyrosol and Bo-vine Serum Albumin Using Multispectral and Molecular Docking. Food Hydrocoll. 2022, 122, 107072. [Google Scholar] [CrossRef]
- Hussain, I.; Fatima, S.; Ahmed, S.; Tabish, M. Biophysical and Molecular Modelling Analysis of the Binding of β-Resorcylic Acid with Bovine Serum Albumin. Food Hydrocoll. 2023, 135, 108175. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Zhang, K.; Liu, J.; Li, X.; Wang, H.; Wang, Z.; Sung, H.H.Y.; Williams, I.D.; Zeng, Z.; et al. How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AIEgens with Isolated Phenyl Rings. J. Am. Chem. Soc. 2021, 143, 9565–9574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Han, L.; Li, F. A universal one-pot assay strategy based on bio-inorganic cascade catalysts for different analytes by changing pH-dependent activity of enzymes on enzyme mimics. Sens. Actuators B Chem. 2019, 286, 460–467. [Google Scholar] [CrossRef]
- Manivel, P.; Dhakshnamoorthy, M.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, D. Conducting polyaniline-graphene oxide fibrous nanocomposites: Preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2013, 3, 14428–14437. [Google Scholar] [CrossRef]
- Cai, S.F.; Xiao, W.; Duan, H.H.; Liang, X.X.; Wang, C.; Yang, R.; Li, Y.D. Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Res. 2018, 11, 6304–6315. [Google Scholar] [CrossRef]
- He, J.; He, D.X.; Yang, L.; Wu, G.L.; Tian, J.M.; Liu, Y.; Wang, W.G. Preparation of urchin-like Pd-Pt-Ir nanozymes and their application for the detection of ascorbic acid and hydrogen peroxide. Mater. Lett. 2022, 314, 131851. [Google Scholar] [CrossRef]
- Zhao, T.; Zhu, C.; Xu, S.; Wu, X.; Zhang, X.; Zheng, Y.; Zhang, K. Fluorescent color analysis of ascorbic acid by ratiometric fluorescent paper utilizing hybrid carbon dots-silica coated quantum dots. Dye. Pigment. 2020, 186, 108995. [Google Scholar] [CrossRef]
- Fan, P.F.; Liu, C.; Hu, C.C.; Li, F.F.; Xi, L.N.; Yang, S.Y.; Xiao, F.B. Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid. New J. Chem. 2022, 46, 2526–2533. [Google Scholar] [CrossRef]
Analytical Methods | Material 1 | Real Samples | Detection Time (min) | Linear Range (μmoL L−1) | LOD (μmoL L−1) | References |
---|---|---|---|---|---|---|
Electrochemistry | Cu HC | drugs | - | 5–40 | 1.66 | [20] |
Electrochemistry | PANI/rGO | - | - | 25–200 | 20 | [66] |
Colorimetry | Rh NSs | - | - | 20–200 | 6.63 | [67] |
Colorimetry | Pd-Pt-Ir | - | - | 25–800 | 11.7 | [68] |
Fluorescence | CD-QD@SiO2 | fruit juice | - | 0–70 | 3.17 | [69] |
Fluorescence | BSA | vegetable | 5 | 10–500 | 6 | This work |
Analytes | Concentration (μmoL L−1) | Added (mg/100 g) | Found (μmoL L−1) | Recovery (%) | Average Recovery (%) | RSD (%, n = 5) |
---|---|---|---|---|---|---|
Chinese cabbage | 16.3 | 5.0 | 20.8 | 90.0 | 95.0 | 4.35 |
15.0 | 30.3 | 93.3 | 4.09 | |||
50.0 | 67.1 | 101.6 | 4.73 | |||
Turnip | 9.7 | 3.5 | 12.9 | 91.4 | 92.5 | 4.49 |
9.0 | 18.0 | 92.2 | 4.32 | |||
30.0 | 37.9 | 94.0 | 4.81 | |||
Zizania latifolia | 3.8 | 1.5 | 5.2 | 93.3 | 91.9 | 5.03 |
4.0 | 7.5 | 92.5 | 4.79 | |||
12.0 | 14.6 | 90.0 | 4.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Guo, X.; Chen, H.; Tang, Y.; Han, L. Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables. Molecules 2023, 28, 2162. https://doi.org/10.3390/molecules28052162
Song J, Guo X, Chen H, Tang Y, Han L. Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables. Molecules. 2023; 28(5):2162. https://doi.org/10.3390/molecules28052162
Chicago/Turabian StyleSong, Jiying, Xinyan Guo, Haiying Chen, Yunge Tang, and Lei Han. 2023. "Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables" Molecules 28, no. 5: 2162. https://doi.org/10.3390/molecules28052162
APA StyleSong, J., Guo, X., Chen, H., Tang, Y., & Han, L. (2023). Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables. Molecules, 28(5), 2162. https://doi.org/10.3390/molecules28052162