Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Relationships between Molecular Descriptors
2.2. Relationships between Sulfur Compounds
2.3. Relationships between Descriptors (F_TpleB, HBAch) and Sulfur Compounds
2.4. Relationships between Descriptors N_Carbon and N_Hydrgn and Sulfur Compounds
2.5. Relationships between Descriptors (N_Oxygen, HBAo) and Sulfur Compounds
2.6. Other Implications of PLS Model
2.7. General Remarks
3. Materials and Methods
3.1. Biofortification Process and Extract Preparation
3.2. Identification of Sulfur and Selenium Compounds in Kale Sprouts after Biofortification Process
3.3. Input Data of Molecular Characteristics and Sulfur Compounds
3.4. Chemometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALLYL ITC | allyl isothiocyanate |
APS kinase | adenosine 5′-phosphosulfate kinase |
BAoch | the sum of estimated NPA partial atomic charges on oxygen-based hydrogen bond acceptors |
BUTYL ITC | butyl isothiocyanate |
Carbonyl_C=O | number of carbonyl (ketone or aldehyde) groups |
F_AromB | aromatic bonds as fraction of total bonds |
F_DbleB | double bonds as fraction of total bonds |
F_SgleB | single bonds as fraction of total bonds |
F_TpleB | triple bonds as fraction of total bonds |
GLS | Glucosinolates |
HBAch | the sum of estimated NPA partial atomic charges on hydrogen bond acceptors |
HBAn | number of nitrogen-based hydrogen bond acceptors |
HBAnch | sum of estimated NPA partial atomic charges on nitrogen-based HB Acceptors |
HBAo | number of oxygen-based hydrogen bond acceptors |
I3C | indol-3-carbinol |
IPMDH | 3-isopropyl malate dehydrogenase |
ITC | Isothiocyanates |
MlogP | Moriguchi octanol-water partition coefficient |
MolVol | liquid molar volume |
MWt | molecular weight |
N_Atoms | number of atoms |
N_Bonds | number of bonds |
N_Carbon | number of carbon atoms |
N_Hydrgn | number of hydrogen atoms |
N_Ntrgen | number of nitrogen atoms |
N_Oxygen | number of oxygen atoms |
Nitrile C#N | number of nitrile groups |
NPA (Partial Atomic Charge) | Natural population analysis of partial atomic charge |
NSP | nitrile specifier protein |
PHENYL ITC | phenyl isothiocyanate |
PHENYLETHYL ITC | phenethyl isothiocyanate |
PLS | partial least square |
Se-GSL | selenium-containing glucosinolates |
SeMet | Selenomethionine |
SeMetSeCys | Se-methylselenocysteine |
T_PSA | topological polar surface area |
References
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Zagrodzki, P.; Paśko, P.; Galanty, A.; Tyszka-Czochara, M.; Wietecha-Posłuszny, R.; Rubió, P.S.; Bartoń, H.; Prochownik, E.; Muszyńska, B.; Sułkowska-Ziaja, K.; et al. Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? J. Trace Elem. Med. Biol. 2020, 59, 126466. [Google Scholar] [CrossRef] [PubMed]
- Pasko, P.; Gdula-Argasinska, J.; Podporska-Carroll, J.; Quilty, B.; Wietecha-Posluszny, R.; Tyszka-Czochara, M.; Zagrodzki, P. Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. J. Food Sci. Technol. 2015, 52, 4724–4736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodnar, M.; Szczyglowska, M.; Konieczka, P.; Namiesnik, J. Methods of selenium supplementation: Bioavailability and determination of selenium compounds. Crit. Rev. Food Sci. Nutr. 2016, 56, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Zagrodzki, P.; Paśko, P.; Domínguez-Álvarez, E.; Salardón-Jiménez, N.; Sevilla-Hernández, C.; Sanmartín, C.; Bierła, K.; Łobiński, R.; Szpunar, J.; Handzlik, J.; et al. Synthesis of novel organic selenium compounds and speciation of their metabolites in biofortified kale sprouts. Microchem. J. 2022, 172, 106962. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Żmudzki, P.; Bieniek, U.; Prochownik, E.; Domínguez-Álvarez, E.; Bierła, K.; Łobiński, R.; Szpunar, J.; et al. Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchem. J. 2022, 179, 107509. [Google Scholar] [CrossRef]
- Gajdács, M.; Spengler, G.; Sanmartín, C.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorg. Med. Chem. Lett. 2017, 27, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Marć, M.A.; Domínguez-Álvarez, E.; Latacz, G.; Doroz-Płonka, A.; Sanmartín, C.; Spengler, G.; Handzlik, J. Pharmaceutical and safety profile evaluation of novel selenocompounds with noteworthy anticancer activity. Pharmaceutics. 2022, 14, 367. [Google Scholar] [CrossRef]
- Grisoni, F.; Ballabio, D.; Todeschini, R.; Consonni, V. Molecular descriptors for structure–Activity applications: A hands-on approach. In Computational Toxicology in Methods in Molecular Biology; Nicolotti, O., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1800. [Google Scholar]
- Boulesteix, A.L.; Strimmer, K. Partial Least Squares: A versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 2007, 8, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef]
- Kopriva, S.; Gigolashvili, T. Glucosinolate synthesis in the context of plant metabolism. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2016; Volume 80, pp. 99–124. [Google Scholar]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Grubb, D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Feduraev, P.; Golovin, A.; Maslennikov, P.; Styran, T.; Antipina, M.; Riabova, A.; Katserov, D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. Plants 2022, 11, 3432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L). J. Sci. Food Agric. 1994, 64, 295–304. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Barickman, T.C.; Sams, C.E.; McElroy, J.S. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 2007, 55, 10628–10634. [Google Scholar] [CrossRef]
- Omirou, M.D.; Papadopoulou, K.K.; Papastylianou, I.; Constantinou, M.; Karpouzas, D.G.; Asimakopoulos, I.; Ehaliotis, C. Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem. 2009, 57, 9408–9417. [Google Scholar] [CrossRef]
- De Maria, S.; Agneta, R.; Lelario, F.; Möllers, C.; Rivelli, A.R. Influence of nitrogen and sulfur fertilization on glucosinolate content and composition of horseradish plants harvested at different developmental stages. Acta Physiol. Plant 2016, 38, 91. [Google Scholar] [CrossRef]
- McKenzie, M.; Matich, A.; Hunter, D.; Esfandiari, A.; Trolove, S.; Chen, R.; Lill, R. Selenium application during radish (Raphanus sativus) plant development alters glucosinolate metabolic gene expression and results in the production of 4-(methylseleno) but-3-enyl glucosinolate. Plants 2019, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Yang, Y.; Ávila, F.W.; Fish, T.; Yuan, H.; Hui, M.; Pan, S.; Thannhauser, T.W.; Li, L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. J. Agric. Food Chem. 2018, 66, 8036–8044. [Google Scholar] [CrossRef] [PubMed]
- Wiesner-Reinhold, M.; Schreiner, M.; Baldermann, S.; Schwarz, D.; Hanschen, F.S.; Kipp, A.P.; Rowan, D.D.; Bentley-Hewitt, K.; McKenzie, M.J. Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front. Plant Sci. 2017, 8, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matich, A.J.; McKenzie, M.J.; Lill, R.E.; McGhie, T.K.; Chen, R.K.Y.; Rowan, D.D. Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J. Agric. Food Chem. 2015, 63, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Vaishnav, A.; Kumar, R.; Singh, H.B.; Sarma, B.K. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. Sci. Total. Environ. 2022, 826, 154170. [Google Scholar] [CrossRef]
Pairs of Correlated Parameters | Correlation Coefficients | Type of Interaction * | |
---|---|---|---|
N_Oxygen | HBAo | 1.000 | 1 |
I3C | PROGOITRIN | 1.000 | 2 |
PHENETHYL ITC | BUTYL ITC | 1.000 | 2 |
F_TpleB | HBAch | 1.000 | 2 |
I3C | SINIGRIN | 1.000 | 2 |
SINIGRIN | PROGOITRIN | 1.000 | 2 |
SINIGRIN | GLUCOERUCIN | 1.000 | 2 |
BUTYL ITC | PHENYL ITC | 0.999 | 2 |
GLUCOIBERIN | GLUCOERUCIN | 0.999 | 2 |
PHENETHYL ITC | PHENYL ITC | 0.999 | 2 |
I3C | GLUCOERUCIN | 0.999 | 2 |
PROGOITRIN | GLUCOERUCIN | 0.998 | 2 |
SINIGRIN | GLUCOIBERIN | 0.998 | 2 |
N_Carbon | N_Hydrgn | 0.996 | 1 |
I3C | GLUCOIBERIN | 0.996 | 2 |
PROGOITRIN | GLUCOIBERIN | 0.995 | 2 |
F_TpleB | GLUCOIBERIN | 0.979 | 3 |
HBAch | GLUCOIBERIN | 0.974 | 3 |
F_TpleB | GLUCOERUCIN | 0.970 | 3 |
HBAch | GLUCOERUCIN | 0.965 | 3 |
F_TpleB | SINIGRIN | 0.962 | 3 |
HBAch | SINIGRIN | 0.957 | 3 |
F_TpleB | I3C | 0.956 | 3 |
F_TpleB | PROGOITRIN | 0.953 | 3 |
HBAch | I3C | 0.950 | 3 |
N_Carbon | PHENETHYL ITC | 0.949 | 4 |
HBAch | PROGOITRIN | 0.947 | 3 |
N_Carbon | BUTYL ITC | 0.945 | 4 |
N_Carbon | PHENYL ITC | 0.934 | 4 |
N_Hydrgn | PHENETHYL ITC | 0.918 | 5 |
N_Hydrgn | BUTYL ITC | 0.913 | 5 |
N_Hydrgn | PHENYL ITC | 0.899 | 5 |
N_Oxygen | PROGOITRIN | −0.767 | 6 |
HBAo | PROGOITRIN | −0.767 | 6 |
N_Oxygen | I3C | −0.762 | 6 |
HBAo | I3C | −0.762 | 6 |
N_Oxygen | SINIGRIN | −0.747 | 6 |
HBAo | SINIGRIN | −0.747 | 6 |
N_Oxygen | GLUCOERUCIN | −0.727 | 6 |
HBAo | GLUCOERUCIN | −0.727 | 6 |
N_Oxygen | GLUCOIBERIN | −0.699 | 6 |
HBAo | GLUCOIBERIN | −0.699 | 6 |
N_Oxygen | F_TpleB | −0.537 | 1 |
F_TpleB | HBAo | −0.537 | 1 |
N_Oxygen | HBAch | −0.521 | 1 |
HBAo | HBAch | −0.521 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagrodzki, P.; Wiesner, A.; Marcinkowska, M.; Jamrozik, M.; Domínguez-Álvarez, E.; Bierła, K.; Łobiński, R.; Szpunar, J.; Handzlik, J.; Galanty, A.; et al. Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts. Molecules 2023, 28, 2062. https://doi.org/10.3390/molecules28052062
Zagrodzki P, Wiesner A, Marcinkowska M, Jamrozik M, Domínguez-Álvarez E, Bierła K, Łobiński R, Szpunar J, Handzlik J, Galanty A, et al. Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts. Molecules. 2023; 28(5):2062. https://doi.org/10.3390/molecules28052062
Chicago/Turabian StyleZagrodzki, Paweł, Agnieszka Wiesner, Monika Marcinkowska, Marek Jamrozik, Enrique Domínguez-Álvarez, Katarzyna Bierła, Ryszard Łobiński, Joanna Szpunar, Jadwiga Handzlik, Agnieszka Galanty, and et al. 2023. "Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts" Molecules 28, no. 5: 2062. https://doi.org/10.3390/molecules28052062
APA StyleZagrodzki, P., Wiesner, A., Marcinkowska, M., Jamrozik, M., Domínguez-Álvarez, E., Bierła, K., Łobiński, R., Szpunar, J., Handzlik, J., Galanty, A., Gorinstein, S., & Paśko, P. (2023). Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts. Molecules, 28(5), 2062. https://doi.org/10.3390/molecules28052062