Iodine-Modified Ag NPs for Highly Sensitive SERS Detection of Deltamethrin Residues on Surfaces
Abstract
:1. Introduction
2. Results and Discussion
2.1. SERS Substrate
2.2. SERS Sensitivity Optimization
2.3. Analytical Merits of the SERS Method
2.4. Verification of the FSM SERS Method for DM Pesticide Detection
2.5. Comparison of the SERS Method with Other Reported Methods
2.6. Monitoring DM Insecticide Residues on the Glass Surface
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Preparation of Ag NPs
3.4. Preparation of FSM SERS Substrate
3.5. The DM Solution Phase Sample Treatment
3.6. HPLC Analysis
3.7. Surface Residue Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Leidy, R.B.; Wright, C.G.; Dupree, H.E., Jr. Exposure Levels to Indoor Pesticides. In Pesticides in Urban Environments; American Chemical Society: Washinton, DC, USA, 1993; Volume 522, pp. 282–296. [Google Scholar]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Home Page. Available online: https://www.epa.gov/indoor-air-quality-iaq/pesticides-impact-indoor-air-quality. (accessed on 24 April 2022).
- Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Wang, X.; Martínez, M.-A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef]
- Obendorf, S.K.; Lemley, A.T.; Hedge, A.; Kline, A.A.; Tan, K.; Dokuchayeva, T. Distribution of Pesticide Residues Within Homes in Central New York State. Arch. Environ. Contam. Toxicol. 2005, 50, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Eiden, A.; Cooper, R.; Zha, C.; Wang, D.; Reilly, E. Changes in Indoor Insecticide Residue Levels after Adopting an Integrated Pest Management Program to Control German Cockroach Infestations in an Apartment Building. Insects 2019, 10, 304. [Google Scholar] [CrossRef]
- Wang, N.; Huang, M.; Guo, X.; Lin, P. Urinary Metabolites of Organophosphate and Pyrethroid Pesticides and Neurobehavioral Effects in Chinese Children. Environ. Sci. Technol. 2016, 50, 9627–9635. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.R.; Karr, C.J.; Council on environmental health; Paulson, J.A.; Brock-Utne, A.C.; Brumberg, H.L.; Campbell, C.C.; Lanphear, B.P.; Osterhoudt, K.C.; Sandel, M.T. Pesticide exposure in children. Pediatrics 2012, 130, e1765–e1788. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Ranft, U.; Sugiri, D.; Hadnagy, W.; Berger-Preiß, E.; Idel, H. Pyrethroids used indoors–Biological monitoring of exposure to pyrethroids following an indoor pest control operation. Int. J. Hydrogen Environ. Health 2003, 206, 85–92. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Jha, S.; Singhal, R.K.; Murthy, Z.; Kailasa, S.K. Amylase protected gold nanoclusters as chemo- and bio- sensor for nanomolar detection of deltamethrin and glutathione. Sens. Actuators B Chem. 2018, 281, 812–820. [Google Scholar] [CrossRef]
- Albadri, A.E.A.E.; Elbashir, A.A.; Ahmed, H.E.-O.; Mihaina, I.A.M.; Aboul-Enein, H.Y. A Gas Chromatographic Method with Electron-Capture Detector (GC-ECD) for Simultaneous Determination of Fenpropathrin, λ-Cyhalothrin, and Deltamethrin Residues in Tomato and Its Applications to Kinetic Studies After Field Treatment. Food Anal. Methods 2012, 5, 1296–1302. [Google Scholar] [CrossRef]
- Shirani, M.; Akbari-Adergani, B.; Jazi, M.B.; Akbari, A. Green ultrasound assisted magnetic nanofluid-based liquid phase microextraction coupled with gas chromatography-mass spectrometry for determination of permethrin, deltamethrin, and cypermethrin residues. Microchim. Acta 2019, 186, 674. [Google Scholar] [CrossRef]
- Melo, M.G.; Carqueijo, A.; Freitas, A.; Barbosa, J.; Silva, A.S. Modified QuEChERS Extraction and HPLC-MS/MS for Simultaneous Determination of 155 Pesticide Residues in Rice (Oryza sativa L.). Foods 2019, 9, 18. [Google Scholar] [CrossRef]
- Michael, A.M. The first validated HPLC method for separation and quantification of imiprothrin and deltamethrin in insecticide spray formulation. Int. J. Environ. Anal. Chem. 2019, 99, 928–935. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, L.; Zhang, W.; Chen, M.; Feng, D.; Zhao, Y.; Zhu, Y. Colorimetric Measurement of Deltamethrin Pesticide Using a Paper Sensor Based on Aggregation of Gold Nanoparticles. Coatings 2021, 12, 38. [Google Scholar] [CrossRef]
- Al Yahyai, I.; Hassanzadeh, J.; Al-Lawati, H.A. A novel and selective multi-emission chemiluminescence system for the quantification of deltamethrin in food samples. Sens. Actuators B Chem. 2021, 327, 128927. [Google Scholar] [CrossRef]
- Pang, S.; Yang, T.; He, L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82. [Google Scholar] [CrossRef]
- Sun, J.; Gong, L.; Wang, W.; Gong, Z.; Wang, D.; Fan, M. Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence 2020, 35, 808–820. [Google Scholar] [CrossRef]
- Fan, M.; Andrade, G.F.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2019, 1097, 1–29. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2020, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, Y.; Xiao, X.; Zhang, T.; Yang, H.; Zhao, Y.; Wang, J.; Jiang, K.; Fan, S.; Li, Q. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10, 15195–15204. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Lu, H.; Zhang, Z. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. Molecules 2020, 25, 4662. [Google Scholar] [CrossRef]
- Peng, D.; Hu, Z.; Zheng, W.; Pang, X.; Wang, D.; Fan, M. Ameliorating SERS Sensitivity for Pesticide Malathion Detection with Synergistic Boosting Effect by Hydrogen Cations and Chloride Anions. Langmuir 2022, 38, 15656–15661. [Google Scholar] [CrossRef]
- Xie, L.; Lu, J.; Liu, T.; Chen, G.; Liu, G.; Ren, B.; Tian, Z. Key Role of Direct Ad-sorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Sub-strate. J. Phys. Chem. Lett. 2020, 11, 1022–1029. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, J.; Hui, B.; Gong, Z.; Fan, M. Halogen ion-modified silver nano-particles for ultrasensitive surface-enhanced Raman spectroscopy detection of polycy-clic aromatic hydrocarbons. Luminescence 2022, 37, 1541–1546. [Google Scholar] [CrossRef]
- Fan, W.; Yang, S.; Gao, W.; Wang, D.; Fan, M. Highly sensitive bromide aided SERS detection of furazolidone and 3-amino-2-oxazolidinone residual in aquaculture products. Microchem. J. 2021, 169, 106532. [Google Scholar] [CrossRef]
- Turzhitsky, V.; Zhang, L.; Horowitz, G.L.; Vitkin, E.; Khan, U.; Zakharov, Y.; Qiu, L.; Itzkan, I.; Perelman, L.T. Picoanalysis of Drugs in Biofluids with Quantitative Label-Free Surface-Enhanced Raman Spectroscopy. Small 2018, 14, e1802392. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, Y.; Liu, J.; Chao, S.; Liu, X.; Wang, D.; Gong, Z.; Li, C.; Fan, M.; Huang, C. Self-Healing 3D Liquid Freestanding Plasmonic Nanoparticle Membrane for Reproducible Surface-Enhanced Raman Spectroscopy Sensing. ACS Appl. Nano Mater. 2020, 3, 10014–10021. [Google Scholar] [CrossRef]
- Fan, M.; Thompson, M.; Andrade, M.L.; Brolo, A.G. Silver Nanoparticles on a Plastic Platform for Localized Surface Plasmon Resonance Biosensing. Anal. Chem. 2010, 82, 6350–6352. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-J.; Lei, Z.-C.; Li, J.; Zong, C.; Yang, C.J.; Ren, B. Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. J. Am. Chem. Soc. 2015, 137, 5149–5154. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.M.; Sreekanth, A. Zn2+ ion responsive fluorescent chemosensor probe of Thiophene-diocarbohydrazide derivatives. Inorganica Chim. Acta 2020, 516, 120149. [Google Scholar] [CrossRef]
- Hou, J.; Jia, P.; Yang, K.; Bu, T.; Zhao, S.; Li, L.; Wang, L. Fluorescence and Color-imetric Dual-Mode Ratiometric Sensor Based on Zr–Tetraphenylporphyrin Tetrasul-fonic Acid Hydrate Metal–Organic Frameworks for Visual Detection of Copper Ions. ACS Appl. Mater. Interfaces 2022, 14, 13848–13857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Nie, P.; Xia, Z.; Feng, X.; Liu, X.; He, Y. Rapid Quantitative Detection of Deltamethrin in Corydalis yanhusuo by SERS Coupled with Multi-Walled Carbon Nanotubes. Molecules 2020, 25, 4081. [Google Scholar] [CrossRef] [PubMed]
- Hidayah, A.N.; Triyono, D.; Herbani, Y.; Saleh, R. Liquid Surface-Enhanced Ra-man Spectroscopy (SERS) Sensor-Based Au-Ag Colloidal Nanoparticles for Easy and Rapid Detection of Deltamethrin Pesticide in Brewed Tea. Crystals 2022, 12, 24. [Google Scholar] [CrossRef]
- Megat Nabil Mohsin, S. Influence of surfactant structure in physical stability and physiochemical properties of insecticide emulsions. J. Oil Palm Res. 2019, 31, 670–680. [Google Scholar]
- Liu, J.; Liu, W.; Huang, Y.; Zhao, X.; Feng, Z.; Wang, D.; Gong, Z.; Fan, M. Self-supporting liquid film as reproducible SERS platform for therapeutic drug mon-itoring of berberine hydrochloride in human urine. Microchem. J. 2021, 165, 106122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Peng, D.; Xing, F.; Wen, X.; Xie, K.; Xu, X.; Zhang, H.; Wei, F.; Zheng, X.; Fan, M. Iodine-Modified Ag NPs for Highly Sensitive SERS Detection of Deltamethrin Residues on Surfaces. Molecules 2023, 28, 1700. https://doi.org/10.3390/molecules28041700
Hu Z, Peng D, Xing F, Wen X, Xie K, Xu X, Zhang H, Wei F, Zheng X, Fan M. Iodine-Modified Ag NPs for Highly Sensitive SERS Detection of Deltamethrin Residues on Surfaces. Molecules. 2023; 28(4):1700. https://doi.org/10.3390/molecules28041700
Chicago/Turabian StyleHu, Zhangmei, Dandan Peng, Feiyue Xing, Xiang Wen, Kun Xie, Xuemei Xu, Hui Zhang, Feifei Wei, Xiaoke Zheng, and Meikun Fan. 2023. "Iodine-Modified Ag NPs for Highly Sensitive SERS Detection of Deltamethrin Residues on Surfaces" Molecules 28, no. 4: 1700. https://doi.org/10.3390/molecules28041700
APA StyleHu, Z., Peng, D., Xing, F., Wen, X., Xie, K., Xu, X., Zhang, H., Wei, F., Zheng, X., & Fan, M. (2023). Iodine-Modified Ag NPs for Highly Sensitive SERS Detection of Deltamethrin Residues on Surfaces. Molecules, 28(4), 1700. https://doi.org/10.3390/molecules28041700