Structural Significance of Hydrophobic and Hydrogen Bonding Interaction for Nanoscale Hybridization of Antiseptic Miramistin Molecules with Molybdenum Disulfide Monolayers
Abstract
:1. Introduction
2. Results
2.1. Assembly of Hetero-Layered Compounds
Li+(MoS2)− ----------> [Li+ + (MoS2)x− + (1 − x) OH−]aq
2.2. XPS Analysis
2.3. Structural Modeling of LCs
2.4. Optimized Structures of LCs
2.5. Quantification of Bonding Interactions in LCs
3. Materials and Methods
3.1. Preparation of Layered Compounds
3.2. Material Characterization
3.3. Quantum-Chemical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; Qi, Y.; Xiao, Z.; Wang, K.; Li, D.; Kim, S.-H.; Kingon, A.I.; Rappe, A.M.; Hong, X. Domain wall enabled steep slope switching in MoS2 transistors towards hysteresis-free operation. npj 2D Mater. Appl. 2022, 6, 77. [Google Scholar] [CrossRef]
- Jewel, M.U.; Monne, M.A.; Mishra, B.; Chen, M.Y. Inkjet-Printed Molybdenum Disulfide and Nitrogen-Doped Graphene Active Layer High On/Off Ratio Transistors. Molecules 2020, 25, 1081. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Wang, R.; Wang, Q.; Wang, X. Gold Nanoclusters Grown on MoS2 Nanosheets by Pulsed Laser Deposition: An Enhanced Hydrogen Evolution Reaction. Molecules 2021, 26, 7503. [Google Scholar] [CrossRef] [PubMed]
- Goloveshkin, A.S.; Lenenko, N.D.; Naumkin, A.V.; Pereyaslavtsev, A.Y.; Grigorieva, A.V.; Shapovalov, A.V.; Talanova, V.N.; Polezhaev, A.V.; Zaikovskii, V.I.; Novikov, V.V.; et al. Enhancement of 1T-MoS 2 Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. Chemnanomat 2020, 7, 447–456. [Google Scholar] [CrossRef]
- Jagminas, A.; Gaigalas, P.; Bittencourt, C.; Klimas, V. Cysteine-Induced Hybridization of 2D Molybdenum Disulfide Films for Efficient and Stable Hydrogen Evolution Reaction. Materials 2021, 14, 1165. [Google Scholar] [CrossRef]
- Kudr, J.; Adam, V.; Zitka, O. Fabrication of Graphene/Molybdenum Disulfide Composites and Their Usage as Actuators for Electrochemical Sensors and Biosensors. Molecules 2019, 24, 3374. [Google Scholar] [CrossRef]
- He, H.; Li, X.; Huang, D.; Luan, J.; Liu, S.; Pang, W.K.; Sun, D.; Tang, Y.; Zhou, W.; He, L.; et al. Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS 2 with Extraordinary Sodium Storage Performance. ACS Nano 2021, 15, 8896–8906. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Kim, I.T. Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage. Nanomaterials 2021, 11, 626. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, X.; Yin, W.; Ma, D.; Xie, C.; Zheng, L.; Dong, X.; Mei, L.; Yu, J.; Wang, C.; et al. Functionalized MoS 2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy. Small 2018, 14, 1802290. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS 2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, I.E.; Goloveshkin, A.S.; Lenenko, N.D.; Ezernitskaya, M.G.; Korlyukov, A.A.; Zaikovskii, V.I.; Golub, A.S. Hydrogen Bond-Driven Self-Assembly between Single-Layer MoS2 and Alkyldiamine Molecules. Cryst. Growth Des. 2018, 18, 5116–5123. [Google Scholar] [CrossRef]
- Kwon, I.S.; Kwak, I.H.; Abbas, H.G.; Jung, G.; Lee, Y.; Park, J.; Yoo, S.J.; Kim, J.-G.; Kang, H.S. Intercalation of Aromatic Amine for the 2H–1T′ Phase Transition of MoS2 by Experiments and Calculations. Nanoscale 2018, 10, 11349–11356. [Google Scholar] [CrossRef]
- Yan, E.X.; Cabán-Acevedo, M.; Papadantonakis, K.M.; Brunschwig, B.S.; Lewis, N.S. Reductant-Activated, High-Coverage, Covalent Functionalization of 1T′-MoS2. ACS Mater. Lett. 2019, 2, 133–139. [Google Scholar] [CrossRef]
- Xiao, M.; Chandrasekaran, A.R.; Ji, W.; Li, F.; Man, T.; Zhu, C.; Shen, X.; Pei, H.; Li, Q.; Li, L. Affinity-Modulated Molecular Beacons on MoS2 Nanosheets for MicroRNA Detection. ACS Appl. Mater. Interfaces 2018, 10, 35794–35800. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, P.; Ravavarapu, L.; Dekle, R.; Chowdhury, S. Modulating Electronic and Optical Properties of Monolayer MoS2 Using Nonbonded Phthalocyanine Molecules. J. Phys. Chem. C 2017, 121, 2959–2967. [Google Scholar] [CrossRef]
- Ushakov, I.E.; Lenenko, N.D.; Goloveshkin, A.S.; Buzin, M.I.; Takazova, R.U.; Korlyukov, A.A.; Zaikovskii, V.I.; Golub, A.S. Experimental and Computational Study of the Structure and Bonding Interactions in Layered Compounds of Molybdenum Disulfide with Guanidine Derivatives. J. Struct. Chem. 2022, 63, 1558–1567. [Google Scholar] [CrossRef]
- Ushakov, I.E.; Lenenko, N.D.; Goloveshkin, A.S.; Korlyukov, A.A.; Golub, A.S. Influence of Noncovalent Intramolecular and Host–Guest Interactions on Imatinib Binding to MoS2 Sheets: A PXRD/DFT Study. CrystEngComm 2022, 24, 639–646. [Google Scholar] [CrossRef]
- Goloveshkin, A.S.; Lenenko, N.D.; Korlyukov, A.A.; Golub, A.S. Probing Hydrogen-Bonding Properties of a Negatively Charged MoS2 Monolayer by Powder X-Ray Diffraction and Density Functional Theory Calculations. ACS Omega 2020, 5, 4603–4610. [Google Scholar] [CrossRef]
- Kera, H.; Fuke, C.; Usumoto, Y.; Nasu, A.; Maeda, K.; Mukai, M.; Sato, W.; Tanabe, M.; Kuninaka, H.; Ihama, Y. Kinetics and distribution of benzalkonium compounds with different alkyl chain length following intravenous administration in rats. Leg. Med. 2020, 48, 101821. [Google Scholar] [CrossRef] [PubMed]
- Krivoshein, Y.S.; Rudko, A.P.; Pavljuk, V.G. Pharmaceutical Preparation. Patent PCT/RU92/00138, 21 January 1993. [Google Scholar]
- Chernysheva, M.G.; Shnitko, A.V.; Skrabkova, H.S.; Badun, G.A. Peculiarities of alkylamidopropyldimethylbenzylammonium (Miramistin) in the relationship to lysozyme in comparison with quaternary ammonium surfactants: Coadsorption at the interfaces, enzymatic activity and molecular docking. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127503. [Google Scholar] [CrossRef]
- Vertelov, G.K.; Krutyakov, Y.A.; Efremenkova, O.V.; Olenin, A.Y.; Lisichkin, G.V. A Versatile Synthesis of Highly Bactericidal Myramistin® Stabilized Silver Nanoparticles. Nanotechnology 2008, 19, 355707. [Google Scholar] [CrossRef]
- Osmanov, A.; Wise, A.; Denning, D.W. In vitro and in vivo efficacy of miramistin against drug-resistant fungi. J. Med. Microbiol. 2019, 68, 1047–1052. [Google Scholar] [CrossRef]
- Swingler, S.; Gupta, A.; Gibson, H.; Heaselgrave, W.; Kowalczuk, M.; Adamus, G.; Radecka, I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. Materials 2021, 14, 2654. [Google Scholar] [CrossRef]
- Shtyrlin, N.V.; Pugachev, M.V.; Sapozhnikov, S.V.; Garipov, M.R.; Vafina, R.M.; Grishaev, D.Y.; Pavelyev, R.S.; Kazakova, R.R.; Agafonova, M.N.; Iksanova, A.G.; et al. Novel Bis-Ammonium Salts of Pyridoxine: Synthesis and Antimicrobial Properties. Molecules 2020, 25, 4341. [Google Scholar] [CrossRef]
- Kudinov, V.A.; Artyushev, R.I.; Zurina, I.M.; Lapshin, R.D.; Snopova, L.B.; Mukhina, I.V.; Grinakovskaya, O.S.; Saburina, I.N. Antimicrobial and Regenerative Effects of Placental Multipotent Mesenchymal Stromal Cell Secretome-Based Chitosan Gel on Infected Burns in Rats. Pharmaceuticals 2021, 14, 1263. [Google Scholar] [CrossRef]
- Dolgushin, F.M.; Goloveshkin, A.S.; Ananyev, I.V.; Osintseva, S.V.; Torubaev, Y.; Krylov, S.S.; Golub, A.S. Interplay of noncovalent interactions in antiseptic quaternary ammonium surfactant Miramistin. Acta Crystallogr. Sect. C Struct. Chem. 2019, 75, 402–411. [Google Scholar] [CrossRef]
- Golub, A.S.; Zubavichus, Y.V.; Slovokhotov, Y.L.; Novikov, Y.N.; Danot, M. Layered Compounds Assembled from Molybdenum Disulfide Single-Layers and Alkylammonium Cations. Solid State Ion 2000, 128, 151–160. [Google Scholar] [CrossRef]
- Sánchez, V.; Benavente, E.; Ana, M.A.S.; González, G. High Electronic Conductivity Molybdenum Disulfide-Dialkylamine Nanocomposites. Chem. Mater. 1999, 11, 2296–2298. [Google Scholar] [CrossRef]
- Goloveshkin, A.S.; Lenenko, N.D.; Zaikovskii, V.I.; Golub, A.S.; Korlyukov, A.A.; Bushmarinov, I.S. Ridges and Valleys on Charged 1T-MoS2 Sheets Guiding the Packing of Organic Cations. RSC Adv. 2015, 5, 19206–19212. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: New York, NY, USA, 1992; ISBN1 0471935921. ISBN2 9780471935926. [Google Scholar]
- Leng, K.; Chen, Z.; Zhao, X.; Tang, W.; Tian, B.; Nai, C.T.; Zhou, W.; Loh, K.P. Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano 2016, 10, 9208–9215. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Kumari, S.; Chauhan, S.; Singh, K.; Umar, A.; Fouad, H.; Akhtar, M.S. Study on Volumetric, Compressibility and Viscometric Behavior of Cationic Surfactants (CTAB and DTAB) in Aqueous Glycyl Dipeptide: A Thermo-Acoustic Approach. Molecules 2022, 27, 8767. [Google Scholar] [CrossRef]
- Morzy, D.; Schaich, M.; Keyser, U.F. A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels. Molecules 2022, 27, 578. [Google Scholar] [CrossRef]
- Zhi, L.; Shi, X.; Zhang, E.; Gao, C.; Gai, H.; Wang, H.; Liu, Z.; Zhang, T. Synthesis and Performance of Dou-ble-Chain Quaternary Ammonium Salt Glucosamide Surfactants. Molecules 2022, 27, 2149. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787. [Google Scholar] [CrossRef] [PubMed]
- Gonze, X.; Beuken, J.-M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.-M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 2002, 25, 478–492. [Google Scholar] [CrossRef]
Interaction | LC1 | LC2 |
---|---|---|
Intramolecular | −7.5 | −3.0 |
Intermolecular: | ||
H…H | −12.7 | −12.7 |
CH…O | −9.0 | −2.9 |
Host-guest | −14.4 | −12.7 |
Total | −43.6 | −24.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goloveshkin, A.S.; Lenenko, N.D.; Naumkin, A.V.; Golub, A.S. Structural Significance of Hydrophobic and Hydrogen Bonding Interaction for Nanoscale Hybridization of Antiseptic Miramistin Molecules with Molybdenum Disulfide Monolayers. Molecules 2023, 28, 1702. https://doi.org/10.3390/molecules28041702
Goloveshkin AS, Lenenko ND, Naumkin AV, Golub AS. Structural Significance of Hydrophobic and Hydrogen Bonding Interaction for Nanoscale Hybridization of Antiseptic Miramistin Molecules with Molybdenum Disulfide Monolayers. Molecules. 2023; 28(4):1702. https://doi.org/10.3390/molecules28041702
Chicago/Turabian StyleGoloveshkin, Alexander S., Natalia D. Lenenko, Alexander V. Naumkin, and Alexandre S. Golub. 2023. "Structural Significance of Hydrophobic and Hydrogen Bonding Interaction for Nanoscale Hybridization of Antiseptic Miramistin Molecules with Molybdenum Disulfide Monolayers" Molecules 28, no. 4: 1702. https://doi.org/10.3390/molecules28041702
APA StyleGoloveshkin, A. S., Lenenko, N. D., Naumkin, A. V., & Golub, A. S. (2023). Structural Significance of Hydrophobic and Hydrogen Bonding Interaction for Nanoscale Hybridization of Antiseptic Miramistin Molecules with Molybdenum Disulfide Monolayers. Molecules, 28(4), 1702. https://doi.org/10.3390/molecules28041702