Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review
Abstract
:1. Introduction
- Increase the number of biotechnological products available on the market;
- Save natural resources (raw materials and microbial biomass);
- Reduce energy consumption, and the technological and labor power costs of production.
- The intensification of microbial fermentation processes;
- An increase in stress resistance and the viability of probiotic microorganisms introduced into the human body as functional nutrients.
- Poly- and oligosaccharides;
- Poly- and oligopeptides, individual amino acids;
- Miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements.
2. Poly-Oligosaccharide Supplements
2.1. Fructans and Fructooligosaccharides
2.2. Lactulose and Galactooligosaccharides
2.3. Xylan and Xylooligosaccharides
2.4. Glucans and Glucooligosaccharides
2.5. Other Poly-Oligosaccharides and Combinative Prebiotic Effects
3. Amino Acid Supplements
3.1. Protein Hydrolysates
3.2. Protein Isolates and Concentrates
3.3. Other Peptide Supplements
4. Other Supplements
4.1. Vitamins and Some Organic Compounds
4.2. Mineral Supplements
4.3. Multicomponent Supplements
4.3.1. Plant Extracts
4.3.2. Plants, Their Components, and By-Products
4.3.3. Others
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, W.L.; Zhao, H. Industrial Biotechnology: Tools and Applications. Biotechnol. J. 2009, 4, 1725–1739. [Google Scholar] [CrossRef] [PubMed]
- Tramper, J.; Zhu, Y.; Tramper, J.; Zhu, Y. Cheese: Biotechnology through the Ages. In Modern Biotechnology; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- German, J.B. The Future of Yogurt: Scientific and Regulatory Needs. Am. J. Clin. Nutr. 2014, 99, 1271S–1278S. [Google Scholar] [CrossRef] [PubMed]
- Linko, Y.-Y.; Javanainen, P.; Linko, S. Biotechnology of Bread Baking. Trends Food Sci. Technol. 1997, 8, 339–344. [Google Scholar] [CrossRef]
- Butnariu, M.; Butu, A. Biotechnology of Flavored or Special Wines. In Biotechnological Progress and Beverage Consumption; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Yildiz, F. (Ed.) Advances in Food Biochemistry; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9780429129544. [Google Scholar]
- Vasiljevic, T.; Shah, N.P. Probiotics—From Metchnikoff to Bioactives. Int. Dairy J. 2008, 18, 714–728. [Google Scholar] [CrossRef]
- Mallikarjuna, N.; Yellamma, K. Genetic and Metabolic Engineering of Microorganisms for the Production of Various Food Products. In Recent Developments in Applied Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Deckers, M.; Deforce, D.; Fraiture, M.-A.; Roosens, N.H.C. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods 2020, 9, 326. [Google Scholar] [CrossRef]
- Steidler, L. Genetically Engineered Probiotics. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 861–876. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.; Kachrimanidou, V.; Bosnea, L.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Ledeboer, N.A. Emerging Technologies for the Clinical Microbiology Laboratory. Clin. Microbiol. Rev. 2014, 27, 783–822. [Google Scholar] [CrossRef]
- Atlas, R.M.; Atlas, R.M. Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429129032. [Google Scholar]
- Atlas, R.M. Handbook of Media for Environmental Microbiology; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9780429124143. [Google Scholar]
- Ashwini, A.; Ramya, H.N.; Ramkumar, C.; Reddy, K.R.; Kulkarni, R.V.; Abinaya, V.; Naveen, S.; Raghu, A.V. Reactive Mechanism and the Applications of Bioactive Prebiotics for Human Health: Review. J. Microbiol. Methods 2019, 159, 128–137. [Google Scholar] [CrossRef]
- Su, P.; Henriksson, A.; Mitchell, H. Selected Prebiotics Support the Growth of Probiotic Mono-Cultures in Vitro. Anaerobe 2007, 13, 134–139. [Google Scholar] [CrossRef]
- Mohanty, D.; Misra, S.; Mohapatra, S.; Sahu, P.S. Prebiotics and Synbiotics: Recent Concepts in Nutrition. Food Biosci. 2018, 26, 152–160. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, R.L. Carbohydrate Metabolism. In Avian Physiology; Springer: New York, NY, USA, 1986. [Google Scholar]
- González-Herrera, S.M.; Herrera, R.R.; López, M.G.; Rutiaga, O.M.; Aguilar, C.N.; Esquivel, J.C.C.; Martínez, L.A.O. Inulin in Food Products: Prebiotic and Functional Ingredient. Br. Food J. 2015, 117, 371–387. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S.; Akal, H.C.; Buran, İ.; Yetişemiyen, A. Effect of Inulin Polymerization Degree on Various Properties of Synbiotic Fermented Milk Including Lactobacillus Acidophilus La-5 and Bifidobacterium Animalis Bb-12. J. Dairy Sci. 2019, 102, 6901–6913. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Silva, H.L.A.; Esmerino, E.A.; Rocha, R.S.; Moraes, J.; Carmo, M.A.V.; Azevedo, L.; Camps, I.; Abud, Y.K.D.; Sant’Anna, C.; et al. The Addition of Inulin and Lactobacillus Casei 01 in Sheep Milk Ice Cream. Food Chem. 2018, 246, 464–472. [Google Scholar] [CrossRef]
- Mohaddese Mahboubi, N.K. The Effects of Inulin on Characteristics of Lactobacillus Paracasei TD3 (IBRC-M 10784) as Probiotic Bacteria in Vitro. Arch. Iran. Med. 2016, 19, 92–95. [Google Scholar]
- Bernal-Castro, C.A.; Díaz-Moreno, C.; Gutiérrez-Cortés, C. Inclusion of Prebiotics on the Viability of a Commercial Lactobacillus Casei Subsp. Rhamnosus Culture in a Tropical Fruit Beverage. J. Food Sci. Technol. 2019, 56, 987–994. [Google Scholar] [CrossRef]
- de Souza Oliveira, R.P.; Perego, P.; de Oliveira, M.N.; Converti, A. Effect of Inulin on the Growth and Metabolism of a Probiotic Strain of Lactobacillus Rhamnosus in Co-Culture with Streptococcus Thermophilus. LWT 2012, 47, 358–363. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Frutos, M.J. Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices. Plant Foods Hum. Nutr. 2017, 72, 161–167. [Google Scholar] [CrossRef]
- Bedani, R.; Rossi, E.A.; Isay Saad, S.M. Impact of Inulin and Okara on Lactobacillus Acidophilus La-5 and Bifidobacterium Animalis Bb-12 Viability in a Fermented Soy Product and Probiotic Survival under In Vitro Simulated Gastrointestinal Conditions. Food Microbiol. 2013, 34, 382–389. [Google Scholar] [CrossRef]
- Ramchandran, L.; Shah, N.P. Influence of Addition of Raftiline HP® on the Growth, Proteolytic, ACE- and α-Glucosidase Inhibitory Activities of Selected Lactic Acid Bacteria and Bifidobacterium. LWT-Food Sci. Technol. 2010, 43, 146–152. [Google Scholar] [CrossRef]
- Adebola, O.O.; Corcoran, O.; Morgan, W.A. Synbiotics: The Impact of Potential Prebiotics Inulin, Lactulose and Lactobionic Acid on the Survival and Growth of Lactobacilli Probiotics. J. Funct. Foods 2014, 10, 75–84. [Google Scholar] [CrossRef]
- van de Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H.; Verstraete, W. Inulin-Type Fructans of Longer Degree of Polymerization Exert More Pronounced In Vitro Prebiotic Effects. J. Appl. Microbiol. 2007, 102, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef]
- dos Santos, D.C.; de Oliveira Filho, J.G.; Santana, A.C.A.; de Freitas, B.S.M.; Silva, F.G.; Takeuchi, K.P.; Egea, M.B. Optimization of Soymilk Fermentation with Kefir and the Addition of Inulin: Physicochemical, Sensory and Technological Characteristics. LWT 2019, 104, 30–37. [Google Scholar] [CrossRef]
- Li, R.; Ding, Q.; Zhao, X.-H. Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics. Foods 2019, 8, 181. [Google Scholar] [CrossRef]
- Quezada, M.P.; Salinas, C.; Gotteland, M.; Cardemil, L. Acemannan and Fructans from Aloe Vera (Aloe barbadensis Miller) Plants as Novel Prebiotics. J. Agric. Food Chem. 2017, 65, 10029–10039. [Google Scholar] [CrossRef]
- Castro-Zavala, A.; Juárez-Flores, B.I.; Pinos-Rodríguez, J.M.; Delgado-Portales, R.E.; Aguirre-Rivera, J.R.; Alcocer-Gouyonnet, F. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus Acidophilus and Bifidobacterium Lactis Cultures. Nat. Prod. Commun. 2015, 10, 1934578X1501001145. [Google Scholar] [CrossRef]
- Moreno-Vilet, L.; Garcia-Hernandez, M.H.; Delgado-Portales, R.E.; Corral-Fernandez, N.E.; Cortez-Espinosa, N.; Ruiz-Cabrera, M.A.; Portales-Perez, D.P. In Vitro Assessment of Agave Fructans (Agave salmiana) as Prebiotics and Immune System Activators. Int. J. Biol. Macromol. 2014, 63, 181–187. [Google Scholar] [CrossRef]
- Velázquez-Martínez, J.; González-Cervantes, R.; Hernández-Gallegos, M.; Mendiola, R.; Aparicio, A.; Ocampo, M. Prebiotic Potential of Agave angustifolia Haw Fructans with Different Degrees of Polymerization. Molecules 2014, 19, 12660–12675. [Google Scholar] [CrossRef]
- Yıldız, S. The Metabolism of Fructooligosaccharides and Fructooligosaccharide-Related Compounds in Plants. Food Rev. Int. 2010, 27, 16–50. [Google Scholar] [CrossRef]
- Gustaw, W.; Kordowska-Wiater, M.; Kozioł, J. The Influence of Selected Prebiotics on the Growth of Lactic Acid Bacteria for Bio-Yoghurt Production. Acta Sci. Pol. Technol. Aliment. 2011, 10, 455–466. [Google Scholar] [PubMed]
- Mishra, S.; Mishra, H. Comparative Study of the Synbiotic Effect of Inulin and Fructooligosaccharide with Probiotics with Regard to the Various Properties of Fermented Soy Milk. Food Sci. Technol. Int. 2018, 24, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.A.C.; Bedani, R.; LeBlanc, J.G.; Saad, S.M.I. Passion Fruit By-Product and Fructooligosaccharides Stimulate the Growth and Folate Production by Starter and Probiotic Cultures in Fermented Soymilk. Int. J. Food Microbiol. 2017, 261, 35–41. [Google Scholar] [CrossRef]
- Albuquerque, M.A.C.; Yamacita, D.S.; Bedani, R.; LeBlanc, J.G.; Saad, S.M.I. Influence of Passion Fruit By-Product and Fructooligosaccharides on the Viability of Streptococcus Thermophilus TH-4 and Lactobacillus Rhamnosus LGG in Folate Bio-Enriched Fermented Soy Products and Their Effect on Probiotic Survival and Folate Bio-Accessibility under in Vitro Simulated Gastrointestinal Conditions. Int. J. Food Microbiol. 2019, 292, 125–136. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Liu, H.; Zhang, D.; Wang, Y.; Ji, H. Effects of Oligosaccharides on the Growth and Stress Tolerance of Lactobacillus Plantarum ZLP001 in Vitro, and the Potential Synbiotic Effects of L. plantarum ZLP001 and Fructo-Oligosaccharide in Post-Weaning Piglets1. J. Anim. Sci. 2019, 97, 4588–4597. [Google Scholar] [CrossRef]
- Salavati Schmitz, S. Allenspach Effects of Different Oligosaccharides on Growth of Selected Probiotic Bacterial Strains. J. Microb. Biochem. Technol. 2017, 9, 572–576. [Google Scholar] [CrossRef]
- Altieri, C.; Bevilacqua, A.; Sinigaglia, M. Prolonging the Viability of Lactobacillus Plantarum through the Addition of Prebiotics into the Medium. J. Food Sci. 2011, 76, M336–M345. [Google Scholar] [CrossRef]
- Ignatova, T.; Iliev, I.; Kirilov, N.; Vassileva, T.; Dalgalarrondo, M.; Haertlé, T.; Chobert, J.-M.; Ivanova, I. Effect of Oligosaccharides on the Growth of Lactobacillus Delbrueckii Subsp. Bulgaricus Strains Isolated from Dairy Products. J. Agric. Food Chem. 2009, 57, 9496–9502. [Google Scholar] [CrossRef]
- Akalın, A.S.; Erişir, D. Effects of Inulin and Oligofructose on the Rheological Characteristics and Probiotic Culture Survival in Low-Fat Probiotic Ice Cream. J. Food Sci. 2008, 73, M184–M188. [Google Scholar] [CrossRef]
- De Souza Oliveira, R.P.; Rodrigues Florence, A.C.; Perego, P.; De Oliveira, M.N.; Converti, A. Use of Lactulose as Prebiotic and Its Influence on the Growth, Acidification Profile and Viable Counts of Different Probiotics in Fermented Skim Milk. Int. J. Food Microbiol. 2011, 145, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, I.; Rodríguez-Serrano, G.; Gómez-Ruiz, L.; García-Garibay, M.; Cruz-Guerrero, A. Prebiotic Effect of Commercial Saccharides on Probiotic Bacteria Isolated from Commercial Products. Food Sci. Technol. 2019, 39, 747–753. [Google Scholar] [CrossRef]
- Pham, T.T.; Shah, N.P. Effects of Lactulose Supplementation on the Growth of Bifidobacteria and Biotransformation of Isoflavone Glycosides to Isoflavone Aglycones in Soymilk. J. Agric. Food Chem. 2008, 56, 4703–4709. [Google Scholar] [CrossRef]
- Pham, T.T.; Shah, N.P. Effect of Lactulose on Biotransformation of Isoflavone Glycosides to Aglycones in Soymilk by Lactobacilli. J. Food Sci. 2008, 73, M158–M165. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Fernández, P.; Corzo, N.; Olano, A.; Hernández-Hernández, O.; Moreno, F.J. Effect of Selected Prebiotics on the Growth of Lactic Acid Bacteria and Physicochemical Properties of Yoghurts. Int. Dairy J. 2019, 89, 77–85. [Google Scholar] [CrossRef]
- Nobakhti, A.R.; Ehsani, M.R.; Mousavi, S.M.; Mortazavian, A.M. Influence of Lactulose and Hi-Maize Addition on Viability of Probiotic Microorganisms in Freshly Made Synbiotic Fermented Milk Drink. Milchwissenschaft 2009, 64, 191–193. [Google Scholar]
- Cardelle-Cobas, A.; Corzo, N.; Olano, A.; Peláez, C.; Requena, T.; Ávila, M. Galactooligosaccharides Derived from Lactose and Lactulose: Influence of Structure on Lactobacillus, Streptococcus and Bifidobacterium Growth. Int. J. Food Microbiol. 2011, 149, 81–87. [Google Scholar] [CrossRef]
- Delgado-Fernández, P.; Corzo, N.; Lizasoain, S.; Olano, A.; Moreno, F.J. Fermentative Properties of Starter Culture during Manufacture of Kefir with New Prebiotics Derived from Lactulose. Int. Dairy J. 2019, 93, 22–29. [Google Scholar] [CrossRef]
- Singh, R.D.; Banerjee, J.; Arora, A. Prebiotic Potential of Oligosaccharides: A Focus on Xylan Derived Oligosaccharides. Bioact. Carbohydr. Diet. Fibre 2015, 5, 19–30. [Google Scholar] [CrossRef]
- Moure, A.; Gullón, P.; Domínguez, H.; Parajó, J.C. Advances in the Manufacture, Purification and Applications of Xylo-Oligosaccharides as Food Additives and Nutraceuticals. Process Biochem. 2006, 41, 1913–1923. [Google Scholar] [CrossRef]
- Pan, X.; Wu, T.; Zhang, L.; Cai, L.; Song, Z. Influence of Oligosaccharides on the Growth and Tolerance Capacity of Lactobacilli to Simulated Stress Environment. Lett. Appl. Microbiol. 2009, 48, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Summanen, P.H.; Komoriya, T.; Finegold, S.M. In Vitro Study of the Prebiotic Xylooligosaccharide (XOS) on the Growth of Bifidobacterium spp. and Lactobacillus spp. Int. J. Food Sci. Nutr. 2015, 66, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; López, P.; Capozzi, V.; de Palencia, P.F.; Dueñas, M.T.; Spano, G.; Fiocco, D. Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039. [Google Scholar] [CrossRef] [PubMed]
- Mäkeläinen, H.; Saarinen, M.; Stowell, J.; Rautonen, N.; Ouwehand, A. Xylo-Oligosaccharides and Lactitol Promote the Growth of Bifidobacterium Lactis and Lactobacillus Species in Pure Cultures. Benef. Microbes 2010, 1, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Erickson, J.; Hess, J.; Gould, T.; Slavin, J. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients 2017, 9, 1361. [Google Scholar] [CrossRef] [PubMed]
- Paesani, C.; Salvucci, E.; Moiraghi, M.; Fernandez Canigia, L.; Pérez, G.T. Arabinoxylan from Argentinian Whole Wheat Flour Promote the Growth of Lactobacillus Reuteri and Bifidobacterium Breve. Lett. Appl. Microbiol. 2019, 68, 142–148. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Possemiers, S.; Druart, C.; Van de Wiele, T.; De Backer, F.; Cani, P.D.; Larondelle, Y.; Delzenne, N.M. Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE 2011, 6, e20944. [Google Scholar] [CrossRef]
- Yang, B.; Prasad, K.N.; Xie, H.; Lin, S.; Jiang, Y. Structural Characteristics of Oligosaccharides from Soy Sauce Lees and Their Potential Prebiotic Effect on Lactic Acid Bacteria. Food Chem. 2011, 126, 590–594. [Google Scholar] [CrossRef]
- Sletmoen, M.; Stokke, B.T. Higher Order Structure of (1,3)-β-D-Glucans and Its Influence on Their Biological Activities and Complexation Abilities. Biopolymers 2008, 89, 310–321. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Kealy, T.; Mishra, V.K. Effects of β—Glucan Addition to a Probiotic Containing Yogurt. J. Food Sci. 2007, 72, C405–C411. [Google Scholar] [CrossRef]
- Rosburg, V.; Boylston, T.; White, P. Viability of Bifidobacteria Strains in Yogurt with Added Oat Beta-Glucan and Corn Starch during Cold Storage. J. Food Sci. 2010, 75, C439–C444. [Google Scholar] [CrossRef]
- Chlebowska-Śmigiel, A.; Kycia, K.; Neffe-Skocińska, K.; Kieliszek, M.; Gniewosz, M.; Kołożyn-Krajewska, D. Effect of Pullulan on Physicochemical, Microbiological, and Sensory Quality of Yogurts. Curr. Pharm. Biotechnol. 2019, 20, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Kycia, K.; Chlebowska-Śmigiel, A.; Szydłowska, A.; Sokół, E.; Ziarno, M.; Gniewosz, M. Pullulan as a Potential Enhancer of Lactobacillus and Bifidobacterium Viability in Synbiotic Low Fat Yoghurt and Its Sensory Quality. LWT 2020, 128, 109414. [Google Scholar] [CrossRef]
- Lee, J.M.; Jang, W.J.; Lee, E.-W.; Kong, I.-S. β-Glucooligosaccharides Derived from Barley β-Glucan Promote Growth of Lactic Acid Bacteria and Enhance Nisin Z Secretion by Lactococcus Lactis. LWT 2020, 122, 109014. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a Versatile Polysaccharide Present in Plant Cell Walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Sila, D.N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in Processed Fruits and Vegetables: Part II-Structure-Function Relationships. Compr. Rev. Food Sci. Food Saf. 2009, 8, 86–104. [Google Scholar] [CrossRef]
- Chen, J.; Liang, R.; Liu, W.; Li, T.; Liu, C.; Wu, S.; Wang, Z. Pectic-Oligosaccharides Prepared by Dynamic High-Pressure Microfluidization and Their in Vitro Fermentation Properties. Carbohydr. Polym. 2013, 91, 175–182. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic Potential of Pectins and Pectic Oligosaccharides Derived from Lemon Peel Wastes and Sugar Beet Pulp: A Comparative Evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and Prebiotic Potential of Pectin Oligosaccharides Obtained from Citrus Peel Pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef]
- Prandi, B.; Baldassarre, S.; Babbar, N.; Bancalari, E.; Vandezande, P.; Hermans, D.; Bruggeman, G.; Gatti, M.; Elst, K.; Sforza, S. Pectin Oligosaccharides from Sugar Beet Pulp: Molecular Characterization and Potential Prebiotic Activity. Food Funct. 2018, 9, 1557–1569. [Google Scholar] [CrossRef]
- Heerd, D.; Diercks-Horn, S.; Fernández-Lahore, M. Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions. SpringerPlus 2014, 3, 742. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.C.; Strasser de Saad, A.M. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J. Ind. Microbiol. Biotechnol. 1998, 20, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Shih, P.-Y.; Liao, Y.-T.; Tseng, Y.-K.; Deng, F.-S.; Lin, C.-H. A Potential Antifungal Effect of Chitosan Against Candida Albicans Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front. Microbiol. 2019, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Gandra, J.R.; Takiya, C.S.; Del Valle, T.A.; Oliveira, E.R.; de Goes, R.H.T.B.; Gandra, E.R.S.; Batista, J.D.O.; Araki, H.M.C. Soybean Whole-Plant Ensiled with Chitosan and Lactic Acid Bacteria: Microorganism Counts, Fermentative Profile, and Total Losses. J. Dairy Sci. 2018, 101, 7871–7880. [Google Scholar] [CrossRef]
- Gammariello, D.; Chillo, S.; Mastromatteo, M.; Di Giulio, S.; Attanasio, M.; Del Nobile, M.A. Effect of Chitosan on the Rheological and Sensorial Characteristics of Apulia Spreadable Cheese. J. Dairy Sci. 2008, 91, 4155–4163. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Kong, M.; Li, X. Prebiotic-Like Effects of Water Soluble Chitosan on the Intestinal Microflora in Mice. Int. J. Food Eng. 2018, 14, 20180089. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Teixeira, P. Evaluation of the Combined Effect of Chitosan and Lactic Acid Bacteria in Alheira (Fermented Meat Sausage) Paste. J. Food Process. Preserv. 2017, 41, e12866. [Google Scholar] [CrossRef]
- Lee, H.-W.; Park, Y.-S.; Jung, J.-S.; Shin, W.-S. Chitosan Oligosaccharides, Dp 2–8, Have Prebiotic Effect on the Bifidobacterium Bifidium and Lactobacillus sp. Anaerobe 2002, 8, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Aparicio, I.; Mengíbar, M.; Heras, A. Effect of Chito-Oligosaccharides over Human Faecal Microbiota during Fermentation in Batch Cultures. Carbohydr. Polym. 2016, 137, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Lee, S.Y.; Chang, Y.H.; Kwak, H.S. Physicochemical, Microbial, and Sensory Properties of Yogurt Supplemented with Nanopowdered Chitosan during Storage. J. Dairy Sci. 2009, 92, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C.; Gómez, R. Raffinose Family of Oligosaccharides from Lupin Seeds as Prebiotics: Application in Dairy Products. J. Food Prot. 2005, 68, 1246–1252. [Google Scholar] [CrossRef]
- Barczynska, R.; Slizewska, K.; Jochym, K.; Kapusniak, J.; Libudzisz, Z. The Tartaric Acid-Modified Enzyme-Resistant Dextrin from Potato Starch as Potential Prebiotic. J. Funct. Foods 2012, 4, 954–962. [Google Scholar] [CrossRef]
- Temiz, H.; Kezer, G. Effects of Fat Replacers on Physicochemical, Microbial and Sensorial Properties of Kefir Made Using Mixture of Cow and Goat’s Milk. J. Food Process. Preserv. 2015, 39, 1421–1430. [Google Scholar] [CrossRef]
- Ummadi, M.; Curic-Bawden, M. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations. In Protein Hydrolysates in Biotechnology; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Meli, F.; Lazzi, C.; Neviani, E.; Gatti, M. Effect of Protein Hydrolysates on Growth Kinetics and Aminopeptidase Activities of Lactobacillus. Curr. Microbiol. 2014, 68, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ren, J.; Zhao, H.; Zhao, M.; Xu, J.; Zhao, Q. Influence of Casein Hydrolysates on the Growth and Lactic Acid Production of Lactobacillus Delbrueckii Subsp. Bulgaricus and Streptococcus Thermophilus. Int. J. Food Sci. Technol. 2011, 46, 1014–1020. [Google Scholar] [CrossRef]
- Foucaud, C.; Hemme, D.; Desmazeaud, M. Peptide Utilization by Lactococcus Lactis and Leuconostoc Mesenteroides. Lett. Appl. Microbiol. 2008, 32, 20–25. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Sato, H.H. Functional Properties and Growth Promotion of Bifidobacteria and Lactic Acid Bacteria Strains by Protein Hydrolysates Using a Statistical Mixture Design. Food Biosci. 2014, 7, 19–30. [Google Scholar] [CrossRef]
- Kunz, C.; Lönnerdal, B. Human-Milk Proteins: Analysis of Casein and Casein Subunits by Anion-Exchange Chromatography, Gel Electrophoresis, and Specific Staining Methods. Am. J. Clin. Nutr. 1990, 51, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Vaningelgem, F.; Zamfir, M.; Adriany, T.; De Vuyst, L. Fermentation Conditions Affecting the Bacterial Growth and Exopolysaccharide Production by Streptococcus Thermophilus ST 111 in Milk-Based Medium. J. Appl. Microbiol. 2004, 97, 1257–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ren, J.; Zhao, M.; Zhao, H.; Regenstein, J.M.; Li, Y.; Wu, J. Isolation and Characterization of Three Novel Peptides from Casein Hydrolysates That Stimulate the Growth of Mixed Cultures of Streptococcus Thermophilus and Lactobacillus Delbrueckii Subsp. Bulgaricus. J. Agric. Food Chem. 2011, 59, 7045–7053. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Qu, D.; Zhao, H.; Zhao, Q. Effect of Papain-Hydrolysed Casein Peptides on the Fermentation Kinetics, Microbiological Survival and Physicochemical Properties of Yoghurt. Int. J. Food Sci. Technol. 2010, 45, 2379–2386. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, B.; Brashears, M.M.; Yu, Z.; Zhao, M.; Liu, N.; Li, Y. Influence of Casein Hydrolysates on Exopolysaccharide Synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus. J. Sci. Food Agric. 2014, 94, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Brashears, M.M.; Yu, Z.; Ren, J.; Li, Y.; Zhao, M. Effect of Ultrafiltered Fractions from Casein on Lactic Acid Biosynthesis and Enzyme Activity in Yoghurt Starter Cultures. Int. J. Food Sci. Technol. 2013, 48, 1474–1482. [Google Scholar] [CrossRef]
- Tang, X.; Tian, Q.; Cheng, X.; Li, N.; Mao, X.-Y. Bifidobacterial Growth-Promoting Effect of Yak Milk κ-Casein Hydrolysates Produced with Different Proteases. Int. J. Food Sci. Technol. 2013, 48, 1682–1687. [Google Scholar] [CrossRef]
- Gandhi, A.; Shah, N.P. Cell Growth and Proteolytic Activity of Lactobacillus Acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. Bulgaricus, and Streptococcus Thermophilus in Milk as Affected by Supplementation with Peptide Fractions. Int. J. Food Sci. Nutr. 2014, 65, 937–941. [Google Scholar] [CrossRef]
- Diowksz, A.; Kordialik-Bogacka, E. Stimulation of Gluten-Free Sourdough Fermentation. Acta Aliment. 2014, 43, 225–231. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, T.-T.; Tang, X.; Han, M.-Z.; Leng, X.-J.; Mao, X.-Y. Developing a Potential Prebiotic of Yogurt: Growth of Bifidobacterium and Yogurt Cultures with Addition of Glycomacropeptide Hydrolysate. Int. J. Food Sci. Technol. 2015, 50, 120–127. [Google Scholar] [CrossRef]
- Kassis, N.M.; Beamer, S.K.; Matak, K.E.; Tou, J.C.; Jaczynski, J. Nutritional Composition of Novel Nutraceutical Egg Products Developed with Omega-3-Rich Oils. LWT-Food Sci. Technol. 2010, 43, 1204–1212. [Google Scholar] [CrossRef]
- Kassis, N.; Drake, S.R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Development of Nutraceutical Egg Products with Omega-3-Rich Oils. LWT-Food Sci. Technol. 2010, 43, 777–783. [Google Scholar] [CrossRef]
- Mis Solval, K.; Chouljenko, A.; Chotiko, A.; Sathivel, S. Growth Kinetics and Lactic Acid Production of Lactobacillus Plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in Media Containing Egg White Hydrolysates. LWT 2019, 105, 393–399. [Google Scholar] [CrossRef]
- Darmawan, R.; Bringe, N.A.; de Mejia, E.G. Antioxidant Capacity of Alcalase Hydrolysates and Protein Profiles of Two Conventional and Seven Low Glycinin Soybean Cultivars. Plant Foods Hum. Nutr. 2010, 65, 233–240. [Google Scholar] [CrossRef]
- Hongfei, Z.; Fengling, B.; Fang, Z.; Walczak, P.; Xiangning, J.; Bolin, Z. ChaAkalin, A.S.; Gönç, S.; Ünal, G.; Fenderya, S. Effects of Fructooligosaccharide and Whey Protein Concentrate on the Viability of Starter Culture in Reduced-Fat Probiotic Yogurt during Storage. J. Food Sci. 2007, 72, M222–M227. [Google Scholar] [CrossRef]
- racterization of Soybean Protein Hydrolysates Able to Promote the Proliferation of Streptococcus Thermophilus ST. J. Food Sci. 2013, 78, M575–M581. [CrossRef] [PubMed]
- Meli, F.; Lazzi, C.; Neviani, E.; Gatti, M. Effect of Protein Hydrolizates on Growth Kinetics and Aminopeptidase Activities of Some Bifidobacterium Species. Anaerobe 2013, 22, 130–133. [Google Scholar] [CrossRef]
- Fadda, S.; Sanz, Y.; Vignolo, G.; Aristoy, M.-C.; Oliver, G.; Toldrá, F. Characterization of Muscle Sarcoplasmic and Myofibrillar Protein Hydrolysis Caused by Lactobacillus plantarum. Appl. Environ. Microbiol. 1999, 65, 3540–3546. [Google Scholar] [CrossRef]
- Janer, C.; Peláez, C.; Requena, T. Caseinomacropeptide and Whey Protein Concentrate Enhance Bifidobacterium Lactis Growth in Milk. Food Chem. 2004, 86, 263–267. [Google Scholar] [CrossRef]
- Glušac, J.; Stijepić, M.; Đurđević-Milošević, D.; Milanović, S.; Kanurić, K.; Vukić, V. Growth and Viability of Lactobacillus Delbrueckii Subsp. Bulgaricus and Streptococcus Thermophilus in Traditional Yoghurt Enriched by Honey and Whey Protein Concentrate. Iran. J. Vet. Res. 2015, 16, 249. [Google Scholar]
- Chramostová, J.; Mošnová, R.; Lisová, I.; Pešek, E.; Drbohlav, J.; Němečková, I. Influence of Cultivation Conditions on the Growth of Lactobacillus Acidophilus, Bifidobacterium sp., and Streptococcus Thermophiles, and on the Production of Organic Acids in Fermented Milks. Czech J. Food Sci. 2014, 32, 422–429. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.; Kok-Tas, T.; Ertekin-Filiz, B.; Seydim, A.C. Effect of Different Growth Conditions on Biomass Increase in Kefir Grains. J. Dairy Sci. 2011, 94, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Ramchandran, L.; Shah, N.P. Effect of Versagel® on the Growth and Metabolic Activities of Selected Lactic Acid Bacteria. J. Food Sci. 2007, 73, M21–M26. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Shah, N.P. Fermentation of Reconstituted Skim Milk Supplemented with Soy Protein Isolate by Probiotic Organisms. J. Food Sci. 2008, 73, M62–M66. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Shah, N.P. Performance of Starter in Yogurt Supplemented with Soy Protein Isolate and Biotransformation of Isoflavones during Storage Period. J. Food Sci. 2009, 74, M190–M195. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Ávila, M.; Moreno, F.J.; Requena, T.; Villamiel, M. Effect of Milk Protein Glycation and Gastrointestinal Digestion on the Growth of Bifidobacteria and Lactic Acid Bacteria. Int. J. Food Microbiol. 2012, 153, 420–427. [Google Scholar] [CrossRef]
- Farnaud, S.; Evans, R.W. Lactoferrin—A Multifunctional Protein with Antimicrobial Properties. Mol. Immunol. 2003, 40, 395–405. [Google Scholar] [CrossRef]
- Chen, P.-W.; Ku, Y.-W.; Chu, F.-Y. Influence of Bovine Lactoferrin on the Growth of Selected Probiotic Bacteria under Aerobic Conditions. BioMetals 2014, 27, 905–914. [Google Scholar] [CrossRef]
- Chen, P.-W.; Liu, Z.-S.; Kuo, T.-C.; Hsieh, M.-C.; Li, Z.-W. Prebiotic Effects of Bovine Lactoferrin on Specific Probiotic Bacteria. BioMetals 2017, 30, 237–248. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, S.; Cai, X.; Hong, J.; Wang, S. A Specific Peptide with Calcium Chelating Capacity Isolated from Whey Protein Hydrolysate. J. Funct. Foods 2014, 10, 46–53. [Google Scholar] [CrossRef]
- Zhao, L.L.; Wang, X.L.; Liu, Z.P.; Sun, W.H.; Dai, Z.Y.; Ren, F.Z.; Mao, X.Y. Effect of α-Lactalbumin Hydrolysate-Calcium Complexes on the Fermentation Process and Storage Properties of Yogurt. LWT 2018, 88, 35–42. [Google Scholar] [CrossRef]
- Cheng, F.; Chen, H.; Lei, N.; Zhang, M.; Wan, H.; Shu, G. Effect of Prebiotics, Inorganic Salts and Amino Acids for Cell Envelope Proteinase Production from Lactobacillus Plantarum LP69 [Pdf]. Acta Sci. Pol. Technol. Aliment. 2019, 18, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Soto, R.I.; Jiménez-Munguía, M.T.; Mani-López, E.; Palou, E.; López-Malo, A. Growth and Viability of Lactobacillus Acidophilus NRRL B-4495, Lactobacillus Casei NRRL B-1922 and Lactobacillus Plantarum NRRL B-4496 in Milk Supplemented with Cysteine, Ascorbic Acid and Tocopherols. Int. Dairy J. 2019, 97, 15–24. [Google Scholar] [CrossRef]
- Laroute, V.; Yasaro, C.; Narin, W.; Mazzoli, R.; Pessione, E.; Cocaign-Bousquet, M.; Loubière, P. GABA Production in Lactococcus Lactis Is Enhanced by Arginine and Co-Addition of Malate. Front. Microbiol. 2016, 7, 1050. [Google Scholar] [CrossRef]
- Downs, D. Bacterial Physiology: Life without an Essential Coenzyme. Nat. Microbiol. 2017, 2, 16252. [Google Scholar] [CrossRef]
- Demirhan, E.; Gürses, B.; Yalçin, B.E.; Apar, D.K.; Özbek, B. Influence of Vitamin (B1, B6, B9, B12, C) and Ions (Cu2+, Mn2+, PO43−) on Kefir Grain Biomass Growth. Food Sci. Biotechnol. 2013, 22, 1007–1013. [Google Scholar] [CrossRef]
- Ewe, J.-A.; Wan-Abdullah, W.-N.; Liong, M.-T. Viability and Growth Characteristics of Lactobacillus in Soymilk Supplemented with B-Vitamins. Int. J. Food Sci. Nutr. 2010, 61, 87–107. [Google Scholar] [CrossRef]
- Pega, J.; Rizzo, S.; Pérez, C.D.; Rossetti, L.; Díaz, G.; Ruzal, S.M.; Nanni, M.; Descalzo, A.M. Effect of the Addition of Phytosterols and Tocopherols on Streptococcus Thermophilus Robustness during Industrial Manufacture and Ripening of a Functional Cheese as Evaluated by QPCR and RT-QPCR. Int. J. Food Microbiol. 2016, 232, 117–125. [Google Scholar] [CrossRef]
- Gwiazdowska, D.; Juś, K.; Jasnowska-Małecka, J.; Kluczyńska, K. The Impact of Polyphenols on Bifidobacterium Growth. Acta Biochim. Pol. 2015, 62, 895–901. [Google Scholar] [CrossRef]
- Crowley, S.; Mahony, J.; van Sinderen, D. Current Perspectives on Antifungal Lactic Acid Bacteria as Natural Bio-Preservatives. Trends Food Sci. Technol. 2013, 33, 93–109. [Google Scholar] [CrossRef]
- Valerio, F.; Di Biase, M.; Lattanzio, V.M.T.; Lavermicocca, P. Improvement of the Antifungal Activity of Lactic Acid Bacteria by Addition to the Growth Medium of Phenylpyruvic Acid, a Precursor of Phenyllactic Acid. Int. J. Food Microbiol. 2016, 222, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Comasio, A.; Harth, H.; Weckx, S.; De Vuyst, L. The Addition of Citrate Stimulates the Production of Acetoin and Diacetyl by a Citrate-Positive Lactobacillus Crustorum Strain during Wheat Sourdough Fermentation. Int. J. Food Microbiol. 2019, 289, 88–105. [Google Scholar] [CrossRef]
- Demirhan, E.; Apar, D.K.; Payer, G.; Özbek, B. A Modelling Study on Kefir Grain Biomass Growth: Influence of Various Minerals. Int. J. Dairy Technol. 2011, 64, 402–407. [Google Scholar] [CrossRef]
- Rodríguez, L.M.; Alatossava, T. Effects of Copper Supplement on Growth and Viability of Strains Used as Starters and Adjunct Cultures for Emmental Cheese Manufacture. J. Appl. Microbiol. 2008, 105, 1098–1106. [Google Scholar] [CrossRef]
- Han, X.; Zhang, L.; Du, M.; Yi, H.; Li, J.; Zhang, L. Effects of Copper on the Post Acidification of Fermented Milk by St. Thermophilus. J. Food Sci. 2012, 77, M25–M28. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Li, X.; Zhang, T.; Su, Y.; Zhang, W.; Li, J.; Gan, Y.; Zhang, A.; Liu, Y.; Xue, G. Copper (II) Addition to Accelerate Lactic Acid Production from Co-Fermentation of Food Waste and Waste Activated Sludge: Understanding of the Corresponding Metabolisms, Microbial Community and Predictive Functional Profiling. Waste Manag. 2018, 76, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.; Ivanov, G.; Simov, Z. Growth and Activity of Bulgarian Yogurt Starter Culture in Iron-Fortified Milk. J. Ind. Microbiol. Biotechnol. 2008, 35, 1109–1115. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Dullius, A.; Dullius, C.H.; Bandt, C.R.; Kuhn, D.; Brietzke, D.T.; Malmann Kuffel, F.J.; Etgeton, H.P.; Altmayer, T.; Gonçalves, T.E.; et al. Validation of an Analytical Method for the Quantitative Determination of Selenium in Bacterial Biomass by Ultraviolet–Visible Spectrophotometry. Food Chem. 2018, 255, 182–186. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Dullius, A.; Dullius, C.H.; Bandt, C.R.; Kuhn, D.; Brietzke, D.T.; José Malmann Kuffel, F.; Etgeton, H.P.; Altmayer, T.; Gonçalves, T.E.; et al. Assessment of Selenium Bioaccumulation in Lactic Acid Bacteria. J. Dairy Sci. 2018, 101, 10626–10635. [Google Scholar] [CrossRef]
- Pophaly, S.D.; Singh, P.; Kumar, H.; Tomar, S.K.; Singh, R. Selenium Enrichment of Lactic Acid Bacteria and Bifidobacteria: A Functional Food Perspective. Trends Food Sci. Technol. 2014, 39, 135–145. [Google Scholar] [CrossRef]
- Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food Prospects of Selenium Enriched-Lactobacillus Acidophilus CRL 636 and Lactobacillus Reuteri CRL 1101. J. Funct. Foods 2017, 35, 466–473. [Google Scholar] [CrossRef]
- Martínez, F.G.; Cuencas Barrientos, M.E.; Mozzi, F.; Pescuma, M. Survival of Selenium-Enriched Lactic Acid Bacteria in a Fermented Drink under Storage and Simulated Gastro-Intestinal Digestion. Food Res. Int. 2019, 123, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial Activity of Selenium-Enriched Lactic Acid Bacteria against Common Food-Borne Pathogens in Vitro. J. Dairy Sci. 2018, 101, 1930–1942. [Google Scholar] [CrossRef] [Green Version]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of Plant Extracts upon Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 873–886. [Google Scholar] [CrossRef]
- Oh, N.S.; Lee, J.Y.; Joung, J.Y.; Kim, K.S.; Shin, Y.K.; Lee, K.-W.; Kim, S.H.; Oh, S.; Kim, Y. Microbiological Characterization and Functionality of Set-Type Yogurt Fermented with Potential Prebiotic Substrates Cudrania Tricuspidata and Morus alba L. Leaf Extracts. J. Dairy Sci. 2016, 99, 6014–6025. [Google Scholar] [CrossRef]
- Zhang, T.; Jeong, C.H.; Cheng, W.N.; Bae, H.; Seo, H.G.; Petriello, M.C.; Han, S.G. Moringa Extract Enhances the Fermentative, Textural, and Bioactive Properties of Yogurt. LWT 2019, 101, 276–284. [Google Scholar] [CrossRef]
- Joung, J.Y.; Lee, J.Y.; Ha, Y.S.; Shin, Y.K.; Kim, Y.; Kim, S.H.; Oh, N.S. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts. Korean J. Food Sci. Anim. Resour. 2016, 36, 90. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, K.M.; de Oliveira, I.C.; Lopes, M.A.; Cruz, A.P.G.; Buriti, F.C.; Cabral, L.M. Addition of Grape Pomace Extract to Probiotic Fermented Goat Milk: The Effect on Phenolic Content, Probiotic Viability and Sensory Acceptability. J. Sci. Food Agric. 2017, 97, 1108–1115. [Google Scholar] [CrossRef]
- Yin Lau, A.T.; Barbut, S.; Ross, K.; Diarra, M.S.; Balamurugan, S. The Effect of Cranberry Pomace Ethanol Extract on the Growth of Meat Starter Cultures, Escherichia Coli O157:H7, Salmonella Enterica Serovar Enteritidis and Listeria Monocytogenes. LWT 2019, 115, 108452. [Google Scholar] [CrossRef]
- Michael, M.; Phebus, R.K.; Schmidt, K.A. Plant Extract Enhances the Viability of Lactobacillus Delbrueckii Subsp. Bulgaricus and Lactobacillus Acidophilus in Probiotic Nonfat Yogurt. Food Sci. Nutr. 2015, 3, 48–55. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Huang, Z.; Enomoto, T.; Huang, L.; Li, L. Bioactive Properties of Probiotic Set-Yogurt Supplemented with Siraitia Grosvenorii Fruit Extract. Food Chem. 2020, 303, 154000. [Google Scholar] [CrossRef] [PubMed]
- Kassim, M.A.; Baijnath, H.; Odhav, B. Effect of Traditional Leafy Vegetables on the Growth of Lactobacilli and Bifidobacteria. Int. J. Food Sci. Nutr. 2014, 65, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Bond, T. Derbyshire Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients 2019, 11, 2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Gong, G.; Ma, C.; Liu, Z.; Cai, J. Study on the Influence of Tea Extract on Probiotics in Skim Milk: From Probiotics Propagation to Metabolite. J. Food Sci. 2016, 81, M1981–M1986. [Google Scholar] [CrossRef] [PubMed]
- Najgebaue-Lejko, D. Characteristics of Probiotic Yoghurts Supplemented with Pu-Erh Tea Infusion. Acta Sci. Pol. Technol. Aliment. 2019, 18, 153–161. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D. Effect of Green Tea Supplementation on the Microbiological, Antioxidant, and Sensory Properties of Probiotic Milks. Dairy Sci. Technol. 2014, 94, 327–339. [Google Scholar] [CrossRef]
- De Almeida, C.L.F.; Falcão, D.S.; Lima, D.M.; Gedson, R.; Montenegro, D.A.; Lira, N.S.; Rodrigues, L.C.; De Souza, M.d.F.V.; Barbosa-Filho, J.M.; Batista, L.M. Bioactivities from Marine Algae of the Genus Gracilaria. Int. J. Mol. Sci. 2011, 12, 4550–4573. [Google Scholar] [CrossRef]
- Tavares Estevam, A.C.; Alonso Buriti, F.C.; de Oliveira, T.A.; Pereira, E.V.d.S.; Florentino, E.R.; Porto, A.L.F. Effect of Aqueous Extract of the Seaweed Gracilaria Domingensis on the Physicochemical, Microbiological, and Textural Features of Fermented Milks. J. Food Sci. 2016, 81, C874–C880. [Google Scholar] [CrossRef]
- Lee, J.K.; Cho, H.-R.; Kim, K.-Y.; Lim, J.M.; Jung, G.W.; Sohn, J.H.; Choi, J.-S. The Growth-Stimulating Effects of Fermented Rice Extract (FRe) on Lactic Acid Bacteria and Bifidobacterium spp. Food Sci. Technol. Res. 2014, 20, 479–483. [Google Scholar] [CrossRef]
- Pellizzoni, M.; Ruzickova, G.; Kalhotka, L.; Lucini, L. Antimicrobial Activity of Different Aloe Barbadensis Mill. and Aloe Arborescens Mill. Leaf Fractions. J. Med. Plant Res. 2012, 6, 1975–1981. [Google Scholar]
- Chiodelli, G.; Pellizzoni, M.; Ruzickova, G.; Lucini, L. Effect of Different Aloe Fractions on the Growth of Lactic Acid Bacteria. J. Food Sci. 2017, 82, 219–224. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-Products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Physico-Chemical, Technological, Antibacterial and Antioxidant Properties of Dietary Fiber Powder Obtained from Yellow Passion Fruit (Passiflora Edulis Var. Flavicarpa) Co-Products. Food Res. Int. 2013, 51, 756–763. [Google Scholar] [CrossRef]
- O’Shea, N.; Ktenioudaki, A.; Smyth, T.P.; McLoughlin, P.; Doran, L.; Auty, M.A.E.; Arendt, E.; Gallagher, E. Physicochemical Assessment of Two Fruit By-Products as Functional Ingredients: Apple and Orange Pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of Pineapple Waste Powder on Probiotic Growth, Antioxidant and Antimutagenic Activities of Yogurt. J. Food Sci. Technol. 2016, 53, 1698–17108. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, M.A.C.; Bedani, R.; Vieira, A.D.S.; LeBlanc, J.G.; Saad, S.M.I. Supplementation with Fruit and Okara Soybean By-Products and Amaranth Flour Increases the Folate Production by Starter and Probiotic Cultures. Int. J. Food Microbiol. 2016, 236, 26–32. [Google Scholar] [CrossRef] [PubMed]
- do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M.N. Influence of Milk Type and Addition of Passion Fruit Peel Powder on Fermentation Kinetics, Texture Profile and Bacterial Viability in Probiotic Yoghurts. LWT 2012, 47, 393–399. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.F.M.; Penna, A.L.B. Guava, Orange and Passion Fruit by-Products: Characterization and Its Impacts on Kinetics of Acidification and Properties of Probiotic Fermented Products. LWT 2018, 98, 69–76. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.S.M.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from Fruit By-Products Enhance Probiotic Viability and Fatty Acid Profile and Increase CLA Content in Yoghurts. Int. J. Food Microbiol. 2012, 154, 135–144. [Google Scholar] [CrossRef]
- Sendra, E.; Fayos, P.; Lario, Y.; Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Incorporation of Citrus Fibers in Fermented Milk Containing Probiotic Bacteria. Food Microbiol. 2008, 25, 13–21. [Google Scholar] [CrossRef]
- Eftekhari, M.; Shams Ardekani, M.R.; Amin, M.; Attar, F.; Akbarzadeh, T.; Safavi, M.; Karimpour-Razkenari, E.; Amini, M.; Isman, M.; Khanavi, M. Oliveria Decumbens, a Bioactive Essential Oil: Chemical Composition and Biological Activities. Iran. J. Pharm. Res. 2019, 18, 412. [Google Scholar] [PubMed]
- Marhamatiz, M.H.; Ehsandoost, E.; Gholami, P.; Nazemi, M. Effect of Denak (Oliveria Decumbens Vent) on Growth and Survival of Lactobacillus Acidophilus and Bifidobacterium Bifidum for Production of Probiotic Herbal Milk and Yoghurt. Pak. J. Biol. Sci. 2013, 16, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Basannavar, S.; Pothuraju, R.; Sharma, R.K. Effect of Aloe Vera (Aloe Barbadensis Miller) on Survivability, Extent of Proteolysis and ACE Inhibition of Potential Probiotic Cultures in Fermented Milk. J. Sci. Food Agric. 2014, 94, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.; Miles, M.; Hedderley, D.; Li, J.; Devoy, S.; Sutton, K.; Lauren, D. In Vitro Effects of Food Extracts on Selected Probiotic and Pathogenic Bacteria. Int. J. Food Sci. Nutr. 2009, 60, 717–727. [Google Scholar] [CrossRef]
- Illupapalayam, V.V.; Smith, S.C.; Gamlath, S. Consumer Acceptability and Antioxidant Potential of Probiotic-Yogurt with Spices. LWT 2014, 55, 255–262. [Google Scholar] [CrossRef]
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Spirulina for Snack Enrichment: Nutritional, Physical and Sensory Evaluations. LWT 2018, 90, 270–276. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J.; Kovács, R.; Földes, T.; Buti, S. Influence of a Spirulina Platensis Biomass on the Microflora of Fermented ABT Milks During Storage (R1). J. Dairy Sci. 2002, 85, 1031–1038. [Google Scholar] [CrossRef]
- de Caire, G.Z.; Parada, J.L.; Zaccaro, M.C.; de Cano, M.M.S. Effect of Spirulina Platensis Biomass on the Growth of Lactic Acid Bacteria in Milk. World J. Microbiol. Biotechnol 2000, 16, 563–565. [Google Scholar] [CrossRef]
- Tavares Estevam, A.C.; de Almeida, M.C.; de Oliveira, T.A.; Florentino, E.R.; Alonso Buriti, F.C.; Porto, A.L.F. Comparison of Dairy Desserts Produced with a Potentially Probiotic Mixed Culture and Dispersions Obtained from Gracilaria Birdiae and Gracilaria Domingensis Seaweeds Used as Thickening Agents. Food Funct. 2017, 8, 3075–3082. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Carneiro, B.M.; Penna, A.L.B. Evaluation of the Effect of Supplementing Fermented Milk with Quinoa Flour on Probiotic Activity. J. Dairy Sci. 2014, 97, 6027–6035. [Google Scholar] [CrossRef]
- Demirci, T.; Aktaş, K.; Sözeri, D.; Öztürk, H.İ.; Akın, N. Rice Bran Improve Probiotic Viability in Yoghurt and Provide Added Antioxidative Benefits. J. Funct. Foods 2017, 36, 396–403. [Google Scholar] [CrossRef]
- Turgut, T.; Cakmakci, S. Probiotic Strawberry Yogurts: Microbiological, Chemical and Sensory Properties. Probiotics Antimicrob Proteins 2018, 10, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Morelli, L.L.L.; Prado, M.A. Extraction Optimization for Antioxidant Phenolic Compounds in Red Grape Jam Using Ultrasound with a Response Surface Methodology. Ultrason. Sonochem. 2012, 19, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.; de Oliveira, M.E.G.; de Figueirêdo, R.M.F.; Sampaio, K.B.; de Souza, E.L.; de Oliveira, C.E.V.; Pintado, M.M.E.; Ramos do Egypto Queiroga, R.d.C. The Effect of Isabel Grape Addition on the Physicochemical, Microbiological and Sensory Characteristics of Probiotic Goat Milk Yogurt. Food Funct. 2017, 8, 2121–2132. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Tabaszewska, M.; Grega, T. The Eff Ect of Addition of Selected Vegetables on the Microbiological, Textural and Fl Avour Profi Le Properties of Yoghurts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 45–53. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.; Pan, Z. Changes in Phenolic Compounds and Their Antioxidant Capacities in Jujube (Ziziphus Jujuba Miller) during Three Edible Maturity Stages. LWT 2016, 66, 56–62. [Google Scholar] [CrossRef]
- Feng, C.; Wang, B.; Zhao, A.; Wei, L.; Shao, Y.; Wang, Y.; Cao, B.; Zhang, F. Quality Characteristics and Antioxidant Activities of Goat Milk Yogurt with Added Jujube Pulp. Food Chem. 2019, 277, 238–245. [Google Scholar] [CrossRef]
- Pham, T.T.; Shah, N.P. Skim Milk Powder Supplementation Affects Lactose Utilization, Microbial Survival and Biotransformation of Isoflavone Glycosides to Isoflavone Aglycones in Soymilk by Lactobacillus. Food Microbiol. 2008, 25, 653–661. [Google Scholar] [CrossRef]
- Apar, D.K.; Demirhan, E.; Özel, B.; Özbek, B. Kefir Grain Biomass Production: Influence of Different Culturing Conditions and Examination of Growth Kinetic Models. J. Food Process Eng. 2017, 40, e12332. [Google Scholar] [CrossRef]
- Vit, P.; Pedro, S.R.M.; Roubik, D. (Eds.) Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4959-1. [Google Scholar]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and Therapeutic Effects of Honey Produced by Honey Bees and Stingless Bees: A Comparative Review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- de Sousa, J.M.B.; de Souza, E.L.; Marques, G.; Benassi, M.d.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar Profile, Physicochemical and Sensory Aspects of Monofloral Honeys Produced by Different Stingless Bee Species in Brazilian Semi-Arid Region. LWT 2016, 65, 645–651. [Google Scholar] [CrossRef]
- Varga, L. Effect of Acacia (Robinia pseudo-acacia L.) Honey on the Characteristic Microflora of Yogurt during Refrigerated Storage. Int. J. Food Microbiol. 2006, 108, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Sert, D.; Akin, N.; Dertli, E. Effects of Sunflower Honey on the Physicochemical, Microbiological and Sensory Characteristics in Set Type Yoghurt during Refrigerated Storage. Int. J. Dairy Technol. 2011, 64, 99–107. [Google Scholar] [CrossRef]
- Machado, T.A.D.G.; de Oliveira, M.E.G.; Campos, M.I.F.; de Assis, P.O.A.; de Souza, E.L.; Madruga, M.S.; Pacheco, M.T.B.; Pintado, M.M.E.; Queiroga, R.d.C.R.d.E. Impact of Honey on Quality Characteristics of Goat Yogurt Containing Probiotic Lactobacillus Acidophilus. LWT 2017, 80, 221–229. [Google Scholar] [CrossRef]
- Nutter, J.; Fritz, R.; Saiz, A.I.; Iurlina, M.O. Effect of Honey Supplementation on Sourdough: Lactic Acid Bacterial Performance and Gluten Microstructure. LWT 2017, 77, 119–125. [Google Scholar] [CrossRef]
Biologically Active Compound | Substrate/Food | Microorganisms | Effect/Functionality |
---|---|---|---|
Inulin | Reconstituted skim milk | S. thermophilus, Bifidobacterium longum | Improving growth |
Soymilk | Lactococcus, Lactobacillus and yeasts | Increasing the survival rate | |
Yogurt | S. thermophilus, L. acidophilus and Bifidobacterium sp. | Improving growth | |
Branched fructans | L. plantarum, L. casei, Lactobacillus fermentum, B. catenalatum, B. bifidum, B. longum, B. animalis spp. lactis | Growth stimulation | |
Fructans Agave salmiana | L. acidophilus and B. lactis | Prebiotic effect | |
Fructans of A. salmiana | L. casei and B. lactis | Prebiotic effect | |
Fructooligosaccharides | Yogurt | S. thermophilus, L. acidophilus and Bifidobacterium sp. | Improving growth |
Fermented soy milk | Metabolism improvement | ||
Soymilk | S. thermophilus TH-4, L. acidophilus LA-5, L. rhamnosus LGG, L. fermentum PCC and L. reuteri RC-14 | Raise activity of folic acids and increasing the survival rate | |
Combination of fructooligosaccharides and galactooligosaccharides | L. plantarum ZLP001 | Vitality improvement with heat stress | |
Fructooligosaccharides and soy oligosaccharides | Vitality improvement with cold stress | ||
Oligofructose | Ice cream mix | L. acidophilus La-5 and B. animalis Bb-12 | |
Lactulose | Soymilk | B. lactis and B. longum | Increasing the number of viable cells and enhancing biotransformation of isoflavone glycosides to isoflavone aglycones |
Yogurt | S. thermophilus and L. delbrueckii subsp. bulgaricus | Stimulation of growth and enzymatic processes | |
Galacto; trisaccharides synthesized from lactulose and lactose | Lactobacillus, Streptococcus and Bifidobacterium | Growth promotion | |
Galactan oligosaccharides | L. delbrueckii subsp. bulgaricus and S. thermophiles | ||
Xylooligosaccharides | L. plantarum and L. acidophilus | Increasing stability to heat, exposure to phenol solutions and artificial gastrointestinal juices | |
L. bulgaricus and S. thermophilus | Prebiotic effect | ||
Arabinoxylans | Bifidobacterium breve and L. reuteri | Growth-stimulating effect | |
β-glucan | Yogurt | Bifidobacterium animalis ssp. lactis | Improvement in viability and stability under cold stress; increasing the production of lactic and propionic acids |
Bifidobacteria | Increasing stability under cold stress | ||
B. longum | |||
2-substituted (1-3)-β-d- glucan | Bifidobacteria, L. plantarum and L. acidophilus | Growth-stimulating effect | |
Pullulan | Yogurt | Lactobacilli and bifidobacteria | Growth-stimulating and protective effect, improvement in enzymatic characteristics |
β-glucooligosaccharides | L. lactis subsp. lactis, L. reuteri, and Pediococcus acidilactici | Regulate selective growth and exert antimicrobial activity | |
Glucooligosaccharides | Yogurt | L. delbrueckii subsp. bulgaricus and S. thermophiles | Growth-stimulating effect |
Pectin oligosaccharides | L. acidophilus and B. bifidum | Growth-stimulating effect | |
Chitosan | Soybean plant | L. plantarum and P. acidipropionici | Growth-stimulating effect |
Cheese | S. thermophilus CR57 | Growth-stimulating effect | |
Intestinal lactobacilli | Growth-stimulating effect | ||
Chitosan oligosaccharides | Probiotic lactobacilli | Increasing the resistance to thermal, chemical, and enzymatic effects | |
Lacto bacilli and bifidobacteria | Growth-stimulating effect | ||
Raffinose oligosaccharides | Milk | B. lactis and L. acidophilus | Growth-stimulating and effect, improvement of enzymatic characteristics |
Chemically modified dextrin | L. casei Shirota, L. casei DN 114 001, L. rhamnosus, Lakcid B. animalis DN 173 010 and B. bifidum Bb12 | Prebiotic effect |
Biologically Active Compound | Substrate/Food | Microorganisms | Effect/Functionality |
---|---|---|---|
Casein hydrolysates | Yogurt | L. delbrueckii subsp. bulgaricus, S. thermophilus, Lb. plantarum, Lb. sanfranciscensis, Lb. brevis, L. acidophilus and L. helveticus | Positive contribution to the growth, survival, and production of lactic acid, and synthesis of exopoly-saccharides |
L. acidophilus and L. helveticus | Proteolytic activity | ||
Hydrolysates of egg white powder | L. plantarum, L. acidophilus, L. reuteri, S. thermophilus, L. delbrueckii, and B. lactis | Growth-stimulating effect | |
Keratin hydrolysates | Lactobacilli and Bifidobacteria | Support growth and aminopeptidase activity | |
Whey protein concentrate | Milk | B. lactis | Growth-stimulating effect |
Low-fat yogurt | S. thermophilus, L. delbrueckii subs. bulgaricus and B. animalis | Increasing viability | |
Whey protein isolate | Kefir/milk | Kefir grains | Growth-stimulating effect |
Modified whey protein | Kefir/milk | Kefir grains | Growth-stimulating effect |
Simplesse® whey protein concentrate | Kefir | Lactobacilli | Growth-stimulating effect |
Versagel® proteolytic activity | S. thermophilus and B. longum | Growth-stimulating effect | |
Hydrolysates β-lactoglobulin and sodium caseinate | Lactobacilli, bifidobacteria, thermophilic streptococci | Growth-stimulating effect | |
Lactoferrin | L. rhamnosus ATCC 7469, L. acidophilus BCRC, B. breve, L. coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, L. paraplantarum Pediococcus pentosaceus, L. rhamnosus, L. paracasei, | Growth-stimulating effect | |
α-lactalbumin-hydrolyzate-calcium complexes | Yogurt | S. thermophilus | Growth-stimulating effect |
Leucine and serine | L. plantarum | Increasing proteinase activity | |
Cysteine and tocopherols | L. acidophilus L. casei L. plantarum | Growth-stimulating effect | |
Arginine | L. lactis NCDO 2118 | Increasing GABA synthesis; Growth-stimulating effect |
Biologically Active Compound | Substrate/Food | Microorganisms | Effect/Functionality |
---|---|---|---|
B1, B2, B3, B5, B7, B9 vitamins | Milk/kefir | L. acidophilus L. gasseri | Growth-stimulating effect; increasing enzymatic activity |
Vitamin E and l-cysteine | Milk | Lactobacillus Acidophilus NRRL B-4495, Lactobacillus Casei NRRL B-1922 and Lactobacillus Plantarum NRRL B-4496 | Boosting biomass fermentation |
Tocopherols and phytosterols | Milk/cheese | Thermophilic streptococcus | Boosting biomass fermentation |
Polyphenols | Coumaric acid B. bifidum | Growth-stimulating effect | |
Phenylpyruvic acid | L. plantarum, L. fermentum, L. brevis, and L. paracasei | Increasing antifungal activity | |
Na3PO4 × 12H2O | Milk/kefir | Kefir grains | Growth-stimulating effect |
MgO | Milk/kefir | Kefir grains | Growth-stimulating effect |
Na2HPO4 and CH3COONa | L. plantarum | Increasing proteinase production | |
Copper ions | Lactobacilli | Growth-stimulating effect; increasing the hydrolysis of carbohydrates and glycolysis | |
Selenium | L. delbrueckii ssp. bulgaricus and S. thermophilus | Increasing antibacterial activity | |
Cudrania tricuspidata and Morus alba L. leaf extracts | Milk/yogurt | L. delbrueckii ssp. bulgaricus and S. thermophilus | Increasing fermentation activity |
Sonchus oleraceus infusion | L. bulgaricus, L. lactis, L. reuteri and B. longum | Growth-stimulating effect | |
Tea extract | Skim milk | L. rhamnosus GG, L. acidophilus NCFM and L. plantarum ST-III TE | Growth-stimulating effect; increasing acidification activity |
Rice extract | Yogurt | Lactic acid bacteria and bifidobacteria | Growth-stimulating effect |
Persimmon leaf powder | Yogurt | S. thermophilus and Lactobacillus | Growth-stimulating effect |
Orange fibers | Yogurt | L. acidophilus CECT 903 and L. casei CECT 475 | Growth-stimulating effect |
Oliveria decumbens Vent. flowers | Milk/yogurt | L. acidophilus and B. bifidum | Increasing fermentation activity |
Spirulina platensis | Fermented milk | S. thermophilus and Bifidobacterium spp., L. delbruekii subsp. Bulgaricus and L. lactis subsp. lactis and L. acidophilus | Increasing stability under cold stress |
Rice bran | Yogurt | L. casei 431 | Growth-stimulating effect |
Skimmed milk powder | Soymilk | Lactobacillus spp. | Growth-stimulating effect |
Sunflower honey | Yogurt | S. thermophilus and L. delbrueckii subsp. bulgaricus | Growth-stimulating effect; Increasing viability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dysin, A.P.; Egorov, A.R.; Godzishevskaya, A.A.; Kirichuk, A.A.; Tskhovrebov, A.G.; Kritchenkov, A.S. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023, 28, 1413. https://doi.org/10.3390/molecules28031413
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules. 2023; 28(3):1413. https://doi.org/10.3390/molecules28031413
Chicago/Turabian StyleDysin, Artem P., Anton R. Egorov, Anastasia A. Godzishevskaya, Anatoly A. Kirichuk, Alexander G. Tskhovrebov, and Andreii S. Kritchenkov. 2023. "Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review" Molecules 28, no. 3: 1413. https://doi.org/10.3390/molecules28031413
APA StyleDysin, A. P., Egorov, A. R., Godzishevskaya, A. A., Kirichuk, A. A., Tskhovrebov, A. G., & Kritchenkov, A. S. (2023). Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules, 28(3), 1413. https://doi.org/10.3390/molecules28031413