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Abstract: Microorganisms, fermentation processes, and the resultant metabolic products are a key
driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality
of final manufactured food products are directly related to the efficiency of the metabolic processes of
producer microorganisms. Food BioTech companies are naturally interested in increasing the produc-
tivity of their biotechnological production lines. This could be achieved via either indirect or direct
influence on the fundamental mechanisms governing biological processes occurring in microbial cells.
This review considers an approach to improve the efficiency of producer microorganisms through the
use of several types of substances or complexes affecting the metabolic processes of microbial produc-
ers that are of interest for food biotechnology, particularly fermented milk products. A classification
of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides;
poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and
other organic compounds, minerals, and multicomponent supplements), and the approved results of
their application will be comprehensively surveyed.
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1. Introduction

Modern biotechnology is rapidly expanding becoming more influential and complex
as it gradually penetrates into all aspects of people’s everyday life. Back in 1970, this term
was mainly referred to as food industry and agriculture. Currently, biotechnology includes
such essential subareas as bioengineering, biomedicine, bioinformatics, bionanotechnology,
bionics, and genetic engineering [1]. However, food biotechnology still takes a leading
position, being replenished with new high-tech methods and approaches, resulting in
the development of innovative tools such as probiotics, prebiotics, synbiotics, and other
functional nutritional supplements.

Fermentation processes are at the heart of traditional biotechnology and the biotech-
nology of food, in particular. Throughout history, fermentation processes have been used to
prepare a wide variety of everyday foods, such as cheese and yogurt, bread, and alcoholic
beverages [2–5]. The microbial fermentation of food raw materials is a complex process,
which results in the formation of a wide assortment of metabolites, which are responsible
for the taste and flavor of the product on the one hand and the consumer’s health benefits
on the other [6]. Although modern knowledge does not question whether microbial fer-
mentation is driven by enzymes, microorganisms producing enzymes rather than enzymes
themselves in their pure form are typically exploited in biotechnology.

Due to the ever-growing demand for biotechnological products, a significant intensifi-
cation of enzymatic processes is urgently required. The current global economic situation
requires biotechnology to meet the following challenges:
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1. Increase the number of biotechnological products available on the market;
2. Save natural resources (raw materials and microbial biomass);
3. Reduce energy consumption, and the technological and labor power costs of production.

All these problems can be largely solved by intensifying microbial fermentation in
food biotechnology. Consequently, the intensification of microbial fermentation processes
is one of the most important tasks of modern biotechnology.

Another important aspect of the modern food industry, as well as medicine and phar-
maceutics, is the stimulation and normalization of the activity of probiotic microorganisms
in the human gastrointestinal tract. Probiotics are living microorganisms that provide
health benefits by improving or restoring intestinal flora. Disruption of the activity of
probiotic microorganisms causes severe pathologies (dysbiosis, etc.). Food, especially fer-
mented milk products (yogurt, kefir, and cheese), is the most essential source of probiotic
microorganisms, among which strains of the genera Lactobacillus and Bifidobacterium are best
known [7]. In modern biotechnology, the production of functional food products containing
stress-resistant, well-functioning microorganisms has become an industrial standard. The
proper selection of probiotic microorganisms with such properties is an important task of
modern microbiology and food science. The relevance of this field is clearly demonstrated
by the constantly increasing number high-impact publications.

Currently, the major efforts of the scientific community are aimed at the following:

1. The intensification of microbial fermentation processes;
2. An increase in stress resistance and the viability of probiotic microorganisms intro-

duced into the human body as functional nutrients.

In general, two approaches are used to solve these essentially similar problems.
The first one involves breeding and genetic engineering. It implies that the genome of

the producer microorganism is intentionally modified to enable the desired properties, such
as the more intense synthesis of necessary metabolites, increased viability, and resistance to
environmental conditions. With the help of genetic engineering, a number of recombinant
producer microorganisms were engineered, which yielded a significant intensification in
microbial fermentation. These outstanding advancements are meticulously discussed in
recent reviews and books [8,9]. Furthermore, genetic engineering and selection allow for
the production of probiotic microorganisms with improved stress resistance as reviewed
in [10,11].

However, genetic engineering and breeding are not the only plausible tools that can
be used to increase the efficiency of microbial production in food biotechnology. Bacteria
are known to need the minimum number of essential nutrients to support growth and
proliferation: water, a carbon source, a nitrogen source, and several mineral salts [12]. Water
plays a fundamental role in the dissolution of nutrients, their transport, and hydrolysis
reactions. Carbon is the most abundant and most important element for bacteria. Bacteria
need to produce carbon-containing compounds such as fats, proteins, carbohydrates, and
nucleic acids, using either inorganic (carbon dioxide) or organic precursors (saccharides and
alcohols) [13]. For the synthesis of peptides, bacteria need nitrogen. Nitrogen sources can
also be in either organic (protein hydrolysates: proteose peptone or tryptone) or inorganic
(nitrates) form [14]. To maintain metabolic reactions in a steady state, bacterial cells need
mineral salts (containing both anions such as phosphates or sulfates and cations such
as magnesium and calcium) [12,13]. The type of source strongly affects the efficiency of
assimilation of these elements by bacterial cells. Consequently, the choice of the most
suitable sources of essential chemical elements for producer microorganisms is crucial to
efficient biotechnological production. Typically, these components are added to the nutrient
substrate as supplements.

In this regard, the present paper surveys the types of supplements that promote the
growth, survival, and productivity of microorganisms relevant to the food industry and
biotechnology, in particular lactic acid and/or probiotic bacteria. These supplements can
be classified into three main groups, depending on their chemical identity:
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1. Poly- and oligosaccharides;
2. Poly- and oligopeptides, individual amino acids;
3. Miscellaneous substances, including vitamins and other organic compounds, minerals,

and multicomponent supplements.

A detailed description of the structure, biological effects, and potential applications
of each type of supplement is given in the sections below. Figure 1 describes the overall
essence of this review.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 30 
 

 

In this regard, the present paper surveys the types of supplements that promote the 
growth, survival, and productivity of microorganisms relevant to the food industry and 
biotechnology, in particular lactic acid and/or probiotic bacteria. These supplements can 
be classified into three main groups, depending on their chemical identity: 
1. Poly- and oligosaccharides; 
2. Poly- and oligopeptides, individual amino acids; 
3. Miscellaneous substances, including vitamins and other organic compounds, miner-

als, and multicomponent supplements. 
A detailed description of the structure, biological effects, and potential applications 

of each type of supplement is given in the sections below. Figure 1 describes the overall 
essence of this review. 

 
Figure 1. A schematic representation of the main idea behind this review. 

2. Poly-Oligosaccharide Supplements 
Prebiotic carbohydrates are known to promote the growth and activity of beneficial 

microorganisms. These include fructo-, gluco-, galacto-, xylo-oligosaccharides, etc. They 
are obtained from monosaccharides or polysaccharides isolated from plants. Currently, 
fructo- and galacto-oligosaccharides are leaders in the world market of prebiotics [15]. 

Figure 1. A schematic representation of the main idea behind this review.

2. Poly-Oligosaccharide Supplements

Prebiotic carbohydrates are known to promote the growth and activity of beneficial
microorganisms. These include fructo-, gluco-, galacto-, xylo-oligosaccharides, etc. They
are obtained from monosaccharides or polysaccharides isolated from plants. Currently,
fructo- and galacto-oligosaccharides are leaders in the world market of prebiotics [15].
Many strains of lactic acid bacteria have been found to grow better on fructo-, galacto-, and
xylo-oligosaccharides than on corresponding monosaccharides as digesting substrates [16].
In this regard, oligosaccharides and dietary fiber are actively used in the development of
fermented food products to enhance the properties of beneficial microorganisms, as well
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as their preservation in the product [17]. The combination of food additives consisting of
probiotic microorganisms and prebiotics, called symbiotics, has shown promising effects
in preventing disease and maintaining good health [18]. Within the context of the appli-
cation of poly- and oligosaccharides as bioactive supplements, their effect on the growth,
metabolism, and survival of bacteria directly participating in the fermentation stage of
biotechnological product production should be described first. The use of these supple-
ments as prebiotics to preserve probiotic bacteria in the active form is equally important.
Table 1 lists the most notable of these supplements.

Table 1. The most notable poly-/oligosaccharide bioactive supplements.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

Inulin Reconstituted skim milk S. thermophilus,
Bifidobacterium longum Improving growth

Soymilk Lactococcus, Lactobacillus
and yeasts Increasing the survival rate

Yogurt S. thermophilus, L. acidophilus
and Bifidobacterium sp. Improving growth

Branched fructans

L. plantarum, L. casei,
Lactobacillus fermentum,

B. catenalatum, B. bifidum,
B. longum, B. animalis

spp. lactis

Growth stimulation

Fructans Agave salmiana L. acidophilus and B. lactis Prebiotic effect
Fructans of A. salmiana L. casei and B. lactis Prebiotic effect

Fructooligosaccharides Yogurt S. thermophilus, L. acidophilus
and Bifidobacterium sp. Improving growth

Fermented soy milk Metabolism improvement

Soymilk

S. thermophilus TH-4,
L. acidophilus LA-5,

L. rhamnosus LGG, L.
fermentum PCC and L. reuteri

RC-14

Raise activity of folic acids
and increasing the

survival rate

Combination of
fructooligosaccharides and

galactooligosaccharides
L. plantarum ZLP001 Vitality improvement

with heat stress

Fructooligosaccharides and
soy oligosaccharides

Vitality improvement
with cold stress

Oligofructose Ice cream mix L. acidophilus La-5 and
B. animalis Bb-12

Lactulose Soymilk B. lactis and B. longum

Increasing the number of
viable cells and enhancing

biotransformation of
isoflavone glycosides to

isoflavone aglycones

Yogurt S. thermophilus and
L. delbrueckii subsp. bulgaricus

Stimulation of growth and
enzymatic processes

Galacto; trisaccharides
synthesized from lactulose

and lactose

Lactobacillus, Streptococcus
and Bifidobacterium Growth promotion

Galactan oligosaccharides L. delbrueckii subsp. bulgaricus
and S. thermophiles

Xylooligosaccharides L. plantarum and L. acidophilus

Increasing stability
to heat, exposure to phenol

solutions and artificial
gastrointestinal juices

L. bulgaricus and
S. thermophilus Prebiotic effect
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Table 1. Cont.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

Arabinoxylans Bifidobacterium breve and
L. reuteri

Growth-stimulating
effect

β-glucan Yogurt Bifidobacterium animalis
ssp. lactis

Improvement in viability and
stability under cold stress;

increasing the production of
lactic and propionic acids

Bifidobacteria Increasing stability under
cold stress

B. longum

2-substituted (1-3)-β-d- glucan Bifidobacteria, L. plantarum
and L. acidophilus

Growth-stimulating
effect

Pullulan Yogurt Lactobacilli and bifidobacteria
Growth-stimulating and

protective effect, improvement
in enzymatic characteristics

β-glucooligosaccharides L. lactis subsp. lactis, L. reuteri,
and Pediococcus acidilactici

Regulate selective growth and
exert antimicrobial activity

Glucooligosaccharides Yogurt L. delbrueckii subsp. bulgaricus
and S. thermophiles

Growth-stimulating
effect

Pectin oligosaccharides L. acidophilus and
B. bifidum

Growth-stimulating
effect

Chitosan Soybean plant L. plantarum and
P. acidipropionici

Growth-stimulating
effect

Cheese S. thermophilus CR57 Growth-stimulating
effect

Intestinal lactobacilli Growth-stimulating
effect

Chitosan oligosaccharides Probiotic lactobacilli
Increasing the resistance to

thermal, chemical, and
enzymatic effects

Lacto bacilli and
bifidobacteria

Growth-stimulating
effect

Raffinose oligosaccharides Milk B. lactis and L. acidophilus
Growth-stimulating and
effect, improvement of

enzymatic characteristics

Chemically modified dextrin

L. casei Shirota, L. casei
DN 114 001, L. rhamnosus,

Lakcid
B. animalis DN 173 010 and

B. bifidum Bb12

Prebiotic effect

2.1. Fructans and Fructooligosaccharides

Inulin is one of the most studied and used prebiotic additives. It is a polysaccha-
ride belonging to the class of fructans—fructose-derived polymers, mainly constructed
from sucrose moieties linked by fructose units through β- (2 → 1) or β- (2 → 6) glyco-
sidic bonds [19]. Currently, inulin is increasingly used in food, in particular in all types
of dairy products, to promote beneficial bacterial activity [20]. Inulin and its oligosac-
charides have been shown to exert a protective action on Lactobacillus acidophilus [21],
Lactobacillus casei [22], Lactobacillus paracasei [23], Lactobacillus rhamnosus [24,25], Streptococ-
cus thermophiles [25], Lactobacillus plantarum [26], and Lactobacillus reuteri, Lactococcus, and
Bifidobacterium spp. [21,27,28], improving on their survival and post-storage activity [29].
Inulin has been reported to generate a more pronounced prebiotic effect than oligofructose,
with respect to both enzymatic activity and the maintaining of the optimum composition
of bacterial communities according to the simulation of the human intestinal microbial
ecosystem [30]. Inulin is a fermentable fiber that cannot be cleaved by amylase or other
hydrolytic enzymes in the upper intestinal tract. Like fructooligosaccharides, it is often
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used in studies in vivo, due to its resistivity to the action of the acidic environment typical
of gastric and pancreatic enzymes [31].

In addition, inulin has proven to be a promising supplement that can enhance the
biological activity of some microorganisms used in food enzymatic processes. The adminis-
tration of inulin (as in the commercial product Raftiline HP®) significantly improved the
growth of S. thermophilus as well as Bifidobacterium longum [28]. In the fermentation of kefir
from soy milk, inulin promoted the survival of cells in the starter cultures of Lactobacillus,
Lactococcus, and yeast [32]. Simultaneously, inulin had no effect on the survival rate and
lactic acid production in starter cultures of S. thermophilus and L. delbrueckii subsp. bulgaricus
during the storage of dry skimmed yogurt and L. casei [33].

It is also important to discuss the prebiotic properties of other fructans according
to studies reported in the literature. The results show that branched fructans with a
higher polymerization degree obtained from Aloe vera plants after water stress were more
efficient than acemannan (acetylated glucomannan) and commercial fructooligosaccharides
in stimulating the growth of various Lactobacillus species (L. plantarum, L. casei, Lactobacillus
fermentum) and Bifidobacterium spp. (B. catenalatum, B. bifidum, B. longum, B. animalis spp.
lactis) [34]. The Agave salmiana plant was also found to be a promising source of potential
prebiotic fructans, which demonstrated an increased growth stimulation of L. acidophilus
and B. lactis cultures in comparison with commercial fructan products [35]. The fructans of
A. salmiana showed a prebiotic effect toward L. casei and B. lactis, comparable to that of inulin,
and participation in the activation and selective differentiation of immune system cells
through the interaction with probiotic microorganisms [36]. The prebiotic effect of fructans
isolated from Agave angustifolia has also been studied depending on their polymerization
degree. As it turned out, some L. casei subsp. rhamnosus and L. plantarum cannot use fructans
as the only carbon source, regardless of their polymerization degree, while Bifidobacterium
spp. grows only in the presence of low-molecular-weight fructans. However, certain strains
of B. adolescentis and B. infantis were able to grow in media containing fructans of any
molecular weight, and strains of L. paracasei subsp. paracasei and B. bifidum grow identically
regardless of the carbon source of the fructan fraction [37]. Thus, it can be concluded that
fructans with shorter molecules are preferable for the growth of probiotic microorganisms,
which contradicts the observations by Quezada et al. (2017) [34] quoted above.

Fructooligosaccharides, which are essentially products of fructan hydrolysis, are
oligosaccharides consisting of D-fructose units assembled via β-(2-1)-links. They are also
not hydrolyzed by human digestive enzymes and may naturally occur in various plants
such as leeks, garlic, asparagus, artichokes, dahlias, yacons, and chicory [38]. The sup-
plementation of both fructooligosaccharides and inulin to yogurt almost equally caused
an increase in the amount of the probiotics S. thermophilus, L. acidophilus, and Bifidobac-
terium sp. [39]. As for the metabolism of these bacteria, fermented soy milk supplemented
with fructooligosaccharides showed a better acidification and post-acidification profile
compared to samples supplemented with inulin, which significantly improved the physico-
chemical and sensory characteristics of the final product [40]. Additionally, fructooligosac-
charides promoted the production of folic acid in five probiotic strains, S. thermophilus
TH-4, L. acidophilus LA-5, L. rhamnosus LGG, L. fermentum PCC, and L. reuteri RC-14, added
to soy milk and supported their survival [41,42]. Investigating the probiotic potential
of the L. plantarum strain, Wang et al. (2019) [43] observed that different combinations
of prebiotic oligosaccharides affect bacteria in different ways. For example, the combi-
nation of fructooligosaccharides and galactooligosaccharides significantly improved the
viability of L. plantarum ZLP001 under heat stress, while fructooligosaccharides and soy
oligosaccharides significantly increased microbial viability in response to cold stress [43].

At the same time, fructooligosaccharides, like mannan oligosaccharides, had no effect
on the growth of Enterococcus faecium, which is one of the most common probiotics and
microorganisms used in milk fermentation. However, when combined with gum arabic in
the commercial product Preplex®, E. faecium NCIMB 30183 grew significantly faster [44].
Additionally, unlike inulin, fructooligosaccharides demonstrated no significant effect on
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the commercial L. casei strain added to a tropical fruit drink [24], and even caused a
decrease in the biomass production of two Lactobacillus plantarum strains [45]. Among the
selected 18 strains of L. delbrueckii subsp. bulgaricus and S. thermophilus, only two strains of
lactobacilli were able to grow on media with fructooligosaccharides as a carbon source [46].
At the same time, compared to inulin, oligofructose significantly improved the viability of
L. acidophilus La-5 and B. animalis Bb-12 in an ice cream mixture during freezer storage [47].

2.2. Lactulose and Galactooligosaccharides

The effect of another prebiotic, lactulose disaccharide synthesized from galactose and
fructose, on bacterial growth was established mainly for Bifidobacteria (bifidogenic ef-
fect) [29], while for probiotic lactobacilli the effect of lactulose was less pronounced [48,49].
Moreover, supplementation with lactulose not only increased the viable cell count of
B. animalis subsp. lactis and B. longum significantly, but also enhanced their promoted bio-
transformation of isoflavone glycosides to isoflavone aglycones in soy milk [50]. However,
in an earlier study, the same authors found a similar effect of this disaccharide on some
strains of lactobacilli [51].

The growth of lactobacilli being more strongly stimulated by the commercially avail-
able products Frutafit and Oligomate 55 (consisting mainly of inulin and galactooligosac-
charides, respectively) than by lactulose has been detected [49]. However, another study
demonstrated that lactulose had a significantly greater effect on the growth and enzymatic
processes of S. thermophilus and L. delbrueckii ssp. bulgaricus in the production of yogurts
than fructo- and galactooligosaccharides [52], as well as in the production of a fermented
milk beverages [53]. The influence of glycosidic bonds in galactotrisaccharides synthesized
from lactulose and lactose on the growth of Lactobacillus, Streptococcus, and Bifidobacterium
was also established. The increased bacterial growth is possibly promoted by the spe-
cific monosaccharide composition of the galactooligosaccharides rather than additional
glycosidic bonds [54].

As for the use of these oligosaccharides in the production of fermented products,
neither lactulose, nor its derived galactooligosaccharides, nor commercial galactooligosac-
charides from lactose affected the viability of lactic acid bacteria and yeast. Furthermore,
they did not affect the concentrations of glycerol, lactic acid, pH, or short-chain fatty acids
in kefir production [55]. However, an earlier study suggested that galactan oligosaccharides
stimulated the growth of L. delbrueckii subsp. bulgaricus and S. thermophiles (10 out of 18)
strains to a larger extent than fructo- and gluco-oligosaccharides [46].

2.3. Xylan and Xylooligosaccharides

Xylooligosaccharides are products of xylan hydrolysis containing oligomers of β-1,4-
linked xylose residues with various substituents, including acetyl groups, phenols, and
uronic acids [56]. They are usually obtained from oat xylan, birch wood, or corn cobs
via enzymatic hydrolysis [57]. Xylooligosaccharides, along with mannanoligosaccharides,
fructooligosaccharides, and chitosan oligosaccharides, were found to increase the tolerance
of L. plantarum and L. acidophilus to heat, exposure to phenol solutions, and artificial
gastrointestinal juices [58]. In a number of other studies, xylan oligosaccharides, like the
previously described lactulose, were found to create a predominantly bifidogenic effect
and exert a significantly lower influence on Lactobacillus [59–62].

Arabinoxylans, which are copolymers of arabinose and xylose, have also been suc-
cessfully tested as potential prebiotics. Arabinoxylans from whole wheat flour were found
to support the selective growth of Bifidobacterium breve and L. reuteri probiotics in vitro,
providing a higher prebiotic activity than inulin [63], as well as the growth of B. animalis
lactis in vivo [64].

At the same time, as in the case of inulin, supplementation with xylooligosaccharides
did not affect the properties of yogurt starter cultures during storage [33]. According to
another study, a prebiotic dose-dependent effect was observed when soy sauce sediment
was added to the nutrient substrate, 53.2% of the molar fraction of which was xylooligosac-
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charides, towards L. bulgaricus and S. thermophilus used both as starter cultures for the
fermentation of fermented foods and as probiotic additives [65].

2.4. Glucans and Glucooligosaccharides

(1,3)-β-glucans are widely considered as biological response modifiers. They attract
the attention of the pharmaceutics and functional food industries due to their beneficial
effects on human and animal health. Their biological effects are mainly influenced by their
branching degree, molecular weight, and tertiary structure [66].

The supplementation of oat β-glucan to yogurt resulted in the improved viability and
stability of Bifidobacterium animalis ssp. lactis comparable to those of inulin. It also increased
the production of lactic and propionic acids [62]. Beta-glucan also generated a protective
effect on strains of bifidobacteria in yogurt under stress during a prolonged refrigeration.
The inclusion of beta-glucan in yogurt improved the survival of B. longum when stored
at 4 ◦C [67]. The choice of the bifidobacteria strain, as well as the method for obtaining
beta-glucan, proved to be vital for increasing the survival of the probiotic. For example,
in the case of B. longum, the supplementation with beta-glucan increased the likelihood
of the physiologically beneficial delivery of the probiotic even after 3 weeks of storage at
4 ◦C. At the same time, the starch taken for comparison had a positive effect on the survival
of S. thermophilus and L. bulgaricus, but did not affect the survival of selected strains of
bifidobacteria [68]. Russo et al. [60] managed to obtain 2-substituted (1-3)-β-d-glucan of
bacterial origin, which promoted the growth of not only bifidobacteria, but also L. plantarum
and L. acidophilus [59].

Pullulan is one of the best-known representatives of glucans, namely α-glucans. Recent
studies have shown its growth-stimulating and protective effect on starter and probiotic
lactobacilli and the bifidobacteria of yogurt, as well as a positive effect on their enzymatic
characteristics related to yogurt acidity [69,70].

The prebiotic and synbiotic properties of oligosaccharides derived from β-glucans
were also studied. For example, β-glucooligosaccharides derived from barley β-glucan,
consisting of 3-O-cellobiosyl-d-glucose and 3-O-cellotriosyl-d-glucose, has recently been
found to regulate selective growth and exert antimicrobial activity on L. lactis subsp. lactis,
L. reuteri, and Pediococcus acidilactici, leading to an increase in their production of nisin Z [71].
According to Ignatova et al. (2009) [46], glucooligosaccharides had a positive effect on the
growth of 6 out of 18 tested bacteria L. delbrueckii subsp. bulgaricus and S. thermophiles, which
is four more than fructooligosaccharides and four less than galactooligosaccharides [46].

2.5. Other Poly-Oligosaccharides and Combinative Prebiotic Effects

It is also advisable to consider here some less studied and used poly- and oligosac-
charides, but similarly promising, in our opinion, in terms of their potential bioactive
properties compared with previously discussed fructans, xylans, glucans, and galactans.
Additionally, we address in the present section the synergistic effects of the aforementioned
prebiotics occurring when they are administered in various combinations.

Pectin is among the most promising candidates for prebiotic applications. It is a
complex heteropolysaccharide of plant origin, formed mainly from residues of galacturonic
acid. Its content in plants is influenced by several factors, including of botanical and
anatomical origin, as well as the age and maturity of the plant [72]. The suitability of
pectin for specific applications is determined by its structural features, including molar
mass, neutral sugar content, fractions of “smooth” and “hairy” areas, or the degree of
methylation and acetylation, which can vary greatly from one raw material to another [73].
The same is true for pectin-based oligosaccharides, which proved to be even better prebi-
otic candidates than pectin itself [74,75]. The ability of pectin oligosaccharides to induce
shifts in the populations of healthy bacteria was found to be similar or better than that of
fructooligosaccharides [75]. Samples of pectin oligosaccharides obtained by the chemical,
enzymatic, and hydrothermal treatment of citrus peel showed a significant prebiotic effect
towards L. acidophilus and especially B. bifidum [76]. The selectivity of the prebiotic effect
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exerted by pectin oligosaccharides obtained from the pulp of sugar beet was also con-
firmed: fractions of oligosaccharides stimulated the growth of lactic acid bacteria without a
noticeable effect on pathogenic strains of E. coli [77]. Another impressive example is the
inducing effect exerted by pectin on the growth of Aspergillus sojae for the production of
polygalacturonase via solid-state fermentation [78,79].

Chitosan, a deacetylated chitin derivative, is a linear aminopolysaccharide consisting
mainly of repeating units of β- (1→ 4) 2-amino-2-deoxy-d-glucose (d-glucosamine) [80].
In terms of microbiology, chitosan and its derivatives in most cases manifest antimicro-
bial activity, both antibacterial and antifungal [81–83]. Despite this, some studies have
demonstrated the positive effects of chitosan on beneficial bacteria used in biotechnology.
Thus, fodder chitosan promoted the growth of L. plantarum and P. acidipropionici during
the fermentation of a soybean plant [84]. Chitosan also slightly promoted the growth of
S. thermophilus CR57, a starter culture used in cheese manufacturing during the storage
of spreadable cheese [85]. Liu et al. (2018) [76] succeeded in obtaining a water-soluble
chitosan derivative that significantly stimulated the growth of intestinal Lactobacillus and
at the same time inhibited opportunistic Enterococcus faecium and Parabacteroides distasonis
in experiments in vivo [86]. An equally important observation is the bacteriocinogenic
activity of chitosan, which plays a key role in its selective effect on harmful and beneficial
bacteria. A combination of chitosan and lactic acid bacteria was found to achieve a notice-
ably greater decrease in the number of pathogenic strains of L. innocua, S. aureus, E. coli, and
S. typhimurium, as well as yeast and mold, than when they are used separately, which may
indicate that chitosan stimulates increased bacterial production [84,87]. Studies on prebiotic
potential were also carried out in relation to chitosan oligosaccharides. As mentioned
above, chitosan oligosaccharides, as well as xylo-, mannano-, and fructooligosaccharides,
increased the resistance of probiotic lactobacilli to thermal, chemical, and enzymatic ef-
fects [58]. Other studies indicate a greater prebiotic potential of chitooligosaccharides as
compared to fructooligosaccharides, since the former ones accelerated the growth of lacto-
and bifidobacteria to a greater extent [88], as well as exerting other selective effects on
beneficial and pathogenic bacteria [89].

However, the negative effect of chitosan in nanopowder form on yogurt starter cultures
should be noted: when supplementing more than 0.7% of nanopowdered chitosan, a
significant decrease in the number of starter lactic acid bacteria was observed, which can be
explained by the predominant antibacterial activity of chitosan, which is increased when it
is supplied in nanoform [90].

The raffinose oligosaccharides isolated from the seeds of Lupinus albus var. Multolupa
are also worth mentioning here. When added to milk, an increase in the populations of
B. lactis and L. acidophilus starter cultures and a reduction in the fermentation time when
obtaining a fermented milk product was observed [91].

The chemically modified dextrin obtained by heating potato starch in the presence of
hydrochloric acid and tartaric acid, which has demonstrated prebiotic properties in relation
to three strains of lactobacilli (L. casei Shirota, L. casei DN 114 001, L. rhamnosus Lakcid) and
two ones of bifidobacteria (B. animalis DN 173 010 and B. bifidum Bb12), is impossible not
to mention [92]. Litesse®, a brand of polydextrose, a synthetic polysaccharide made from
randomly cross-linked glucose residues with various types of bonds, is used as a potential
fat substitute in the production of kefir, and therefore its influence, especially on kefir’s
microbiological profile, should be taken into account. Polydextrose had a negligible effect
on the number of streptococci and yeasts and even enhanced the number of lactobacilli
marginally [93].

A reasonably wide and comprehensive study comparing different prebiotics to the
most prevalent probiotic bacteria was demonstrated by Su et al. (2007). According to
their findings, L. acidophilus grew best in a basal medium supplemented with soy oligosac-
charides, followed by fructooligosaccharides and inulin, while B. animalis lactis grew the
fastest in a basal medium supplemented with soy oligosaccharides, followed by raffinose,
fructooligosaccharides, hydrolysaccharides β-glucan and inulin; L. casei grew fastest in
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a basal medium supplemented with fructooligosaccharides, inulin, soy oligosaccharides,
β-glucan hydrolyzate, and β-glucan concentrate, in that order [16].

3. Amino Acid Supplements

The choice of nitrogen source also has a direct impact on the growth and development
of a producing microorganism, which is key for the biotechnological and food indus-
tries [94]. As previously emphasized, lactic acid and bifidobacteria are two of the most
commercially significant bacteria types in the food sector. De Man, Rogosa, and Sharpe
(MRS), a commercial ready-made substrate extensively used in laboratory research, is one
of the most regularly applied growth media. This medium contains beef and yeast extracts
and peptone as the major sources of nitrogen [95]. However, such a medium is usually
insufficient for the transfer from laboratory to production scale, as it requires a significant
increase in the number of microorganisms. Milk, however, which acts as a nutrient sub-
strate for fermented milk production, lacks an adequate supply of free peptides and amino
acids sufficient for optimal bacterial growth [96]. In this regard, each distinct species of
lactobacilli should be considered to have specific growth demands on the primary energy
sources, carbon and nitrogen [94]. Furthermore, the capacity to synthesize amino acids
is limited in some lactic acid bacteria species. Consequently, they depend on exogenous
sources of amino acids and peptides [97]. Therefore, selecting the correct bioavailable
nitrogen-containing ingredients and additives to prepare an effective fermentation medium
is also one of the most crucial steps in the production of concentrated starter cultures and
their commercial use.

In this regard, the use of peptide and amino acid supplements from various sources in
the form of hydrolysates, isolates, and other forms in order to boost the biological activity
of beneficial strains of microorganisms is acceptable to address in this chapter. Table 2 lists
the most notable of them.

Table 2. The most notable amino acid bioactive supplements.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

Casein hydrolysates Yogurt

L. delbrueckii subsp. bulgaricus,
S. thermophilus, Lb. plantarum,
Lb. sanfranciscensis, Lb. brevis,
L. acidophilus and L. helveticus

Positive contribution to the
growth, survival, and

production of lactic acid, and
synthesis of

exopoly-saccharides
L. acidophilus and L. helveticus Proteolytic activity

Hydrolysates of egg white
powder

L. plantarum, L. acidophilus,
L. reuteri, S. thermophilus,
L. delbrueckii, and B. lactis

Growth-stimulating
effect

Keratin
hydrolysates Lactobacilli and Bifidobacteria Support growth and

aminopeptidase activity

Whey protein concentrate Milk B. lactis Growth-stimulating
effect

Low-fat yogurt S. thermophilus, L. delbrueckii
subs. bulgaricus and B. animalis Increasing viability

Whey protein isolate Kefir/milk Kefir grains Growth-stimulating
effect

Modified whey protein Kefir/milk Kefir grains Growth-stimulating
effect

Simplesse® whey protein
concentrate

Kefir Lactobacilli Growth-stimulating
effect

Versagel®

proteolytic activity
S. thermophilus and B. longum Growth-stimulating

effect
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Table 2. Cont.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

Hydrolysates
β-lactoglobulin

and sodium caseinate

Lactobacilli, bifidobacteria,
thermophilic streptococci

Growth-stimulating
effect

Lactoferrin

L. rhamnosus ATCC 7469,
L. acidophilus BCRC,

B. breve, L. coryniformis,
L. delbrueckii, L. acidophilus,

B. angulatum, B. catenulatum,
L. paraplantarum

Pediococcus pentosaceus,
L. rhamnosus, L. paracasei,

Growth-stimulating
effect

α-lactalbumin-hydrolyzate-
calcium

complexes
Yogurt S. thermophilus Growth-stimulating

effect

Leucine and serine L. plantarum Increasing proteinase activity

Cysteine and
tocopherols

L. acidophilus
L. casei

L. plantarum

Growth-stimulating
effect

Arginine L. lactis NCDO 2118
Increasing GABA synthesis;

Growth-stimulating
effect

3.1. Protein Hydrolysates

In recent years, the production of protein hydrolysates containing biologically active
peptides from animal and plant sources using enzymatic hydrolysis has gotten a lot of
attention due to their positive effect on stimulating the growth of probiotic bacteria [98].
Protein hydrolysates’ capacity to provide free amino acids, low-molecular-weight peptides,
and growth factors may contribute to the growth stimulation of lactic acid bacteria. Amino
acid composition, amino acid form (only L-stereoisomers or L-amino acids can enter the
cell biomass), and peptide form (oligopeptides, di-, tripeptides, or free amino acids) have
also been found to determine the biological value of a particular protein hydrolysate as a
source of nitrogen in growth media [94]. Therefore, protein hydrolysates obtained from a
variety of sources should be considered here.

Casein is the most researched peptide supplement for microbiological purposes since
it is the primary protein component of milk, accounting for about 80% of the total protein
content [99]. Various casein hydrolysates, particularly those hydrolyzed by the papain
enzyme, have been shown to significantly contribute to the growth, survival, and produc-
tion of lactic acid, and the synthesis of exopolysaccharides in lactic acid bacteria such as
L. delbrueckii subsp. bulgaricus, S. thermophilus, Lb. plantarum, Lb. sanfranciscensis, Lb. brevis,
as well as the growth of bifidobacteria and the proteolytic activity of L. acidophilus and
L. helveticus [100–108]. Possibly, due to the smaller size of the peptide fragments (less than
3 kDa) which are more easily absorbed by bacteria, the hydrolysates produced with papain
proved to be the most efficient in contrast to casein hydrolyzed by other enzymes.

According to some reports, eggs are one of the richest and most inexpensive sources
of high-quality protein, as they contain large amounts of proline, arginine, and glutamine,
which are essential amino acids for growth [109,110]. Indeed, one study demonstrated that
the hydrolysates of egg white powder with a high content of free amino acids, including
threonine and leucine, obtained by enzymatic hydrolysis and spray drying, supported the
growth of a number of lactobacilli, including L. plantarum, L. acidophilus, and L. reuteri [111].
Egg protein hydrolysate also boosted the growth of S. thermophilus, L. delbrueckii, and
B. lactis when mixed with other hydrolysates such as bovine whey and soy proteins [98].

Soy, as a protein-rich material, is widely recognized as a natural, functional food
ingredient with exceptional nutritional value. Soy protein is difficult to digest due to its
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complicated molecular structure. However, enzymatically prepared soy peptides are now
widely employed in the food and feed industries [112]. Hongfei et al. (2013) [113] managed
to obtain soy protein hydrolysates suitable for the assimilation of S. thermophilus with
fragment lengths ranging from two to eight amino acid residues, and such fragments had a
stimulating effect on the proliferation of bacteria [113,114].

Some alternative and more economically promising sources of peptides have also
been reported. For example, Meli et al. succeeded in obtaining peptide hydrolysates from
poultry by-products based on keratin protein. Such peptides could support the growth and
aminopeptidase activity of several species of Lactobacillus and Bifidobacterium [115,116].

3.2. Protein Isolates and Concentrates

Protein concentrates and isolates are a functional ingredient commonly utilized to
improve the physical and structural qualities of fermented milk products. It also improves
the product’s nutritional value and biological health impacts.

Such supplements are also worth noting as they have biological activity in relation to
probiotic bacteria. Thus, whey protein concentrate enhanced the growth of B. lactis in milk,
and increased the viability of S. thermophilus, L. delbrueckii subs. Bulgaricus, and B. animalis
in low-fat yogurt significantly more than fructooligosaccharides [113,117]. In addition, the
supplementation of this concentrate did not promote the excessive production of lactic
acid by lactic acid bacteria, which positively influenced the stability of the yogurt during a
21-day storage period [118]. Whey protein concentrate, on the other hand, was found to be
far more efficient in promoting lactobacilli development than bifidobacteria [119]. Whey
protein isolate, which is freer of ballast components than protein concentrate, increased
the biomass of kefir grains significantly more (392%) than modified whey protein and
inulin (223%) [120]. Simplesse® whey protein concentrate was employed as a potential fat
substitute in one of the aforementioned research projects dedicated to the manufacture of
defatted kefir, in addition to polydextrose, whose influence on microbial composition was
studied. This protein supplement slightly reduced the level of yeast and streptococci while
increasing the number of lactobacilli, thus affecting the microbial composition differently
than Litesse®, allowing the product to have a longer shelf life [93]. Another protein-based
fat substitute, Versagel®, significantly improved the growth of S. thermophilus and B. longum
while inhibiting the growth of L. casei, L. acidophilus, and L. delbrueckii ssp. bulgaricus. It
also adversely affected the proteolytic activity of all organisms except B. longum, although
the activity of inhibiting angiotensin I-converting enzyme and inhibiting α-glucosidase
increased [121].

Soy protein isolate also proved to be a bioactive supplement to boost the enzymatic
activity of lactic acid bacteria starter cultures. There was a decrease in the synthesis of lactic
acid by bacteria in two tests of its addition to probiotic and starter cultures in milk and
yogurt, respectively, but an increase in acetic acid, which led to a decline in total acidity
and, consequently, a loss in bacterial viability [122]. Supplementing yogurt with the isolate,
on the other hand, improved the bacterial biotransformation of isoflavone glycosides to
bioavailable isoflavone aglycones [123].

3.3. Other Peptide Supplements

Caseinmacropeptide, a hydrophilic glycopeptide obtained from the action of chy-
mosin on κ-casein during the process of milk curdling in cheese production, contains not
only available nitrogen for bacterial growth, but also amino sugars such as sialic acid and
N-acetylgalactosamine, as described above. Whey protein concentrate, on the other hand,
appeared to be able to increase the amount of B. lactis in milk, albeit to a lesser extent than
protein concentrate [117]. Similarly, glycopeptide hydrolysates obtained via the glycation
of β-lactoglobulin and sodium caseinate with galactose and lactose, and subsequently
hydrolyzed by digestive enzymes, affect not all strains of potential probiotics. All of the
lactobacilli and bifidobacteria tested absorbed B-lactoglobulin hydrolysates, and in most
cases, bacterial growth was greater than when using tagatose. In addition, such glycoconju-
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gates stimulated bacterial growth more efficiently than non-hydrolyzed β-lactoglobulin
fractions. In contrast to glycated and degraded sodium caseinate, which equally stimulated
the development of all tested bacterial strains, this supplement was not absorbed and did
not increase the growth of thermophilic streptococci [124].

Lactoferrin is a naturally occurring iron-binding glycoprotein, found mostly in milk
and is also secreted in most external fluids of mammals. It is considered one of the most
significant components of the body’s defense system due to its antimicrobial activity [125].
However, Chen et al. (2014) suggested that bovine lactoferrin may also have prebiotic
properties. As a result, they were convinced that depending on the concentration, lactoferrin
reduces the growth rate of B. bifidum, B. Infantis, B. longum, B. lactis, L. reuteri, L. coryniformis,
and L. rhamnosus ATCC 53103 to varying degrees, although at the later stages of growth,
it increased this parameter for L. rhamnosus ATCC 7469 and L. acidophilus BCRC 14065 by
about 40–200%, and also inhibited the growth of pathogens at least four times more than
probiotics [126]. In the next study, the authors decided to take other species and strains of
probiotic bacteria and slow/inhibit growth by incubating them at various temperatures.
As a consequence, they found a more favorable prebiotic activity of bovine lactoferrin
in relation to several probiotics whose growth was slowed down at room temperature.
Thus, B. breve, L. coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and
L. paraplantarum completely stopped growing at 22–24 ◦C. However, their growth resumed
after the medium was supplemented with the additive, as was the growth of Pediococcus
pentosaceus, L. rhamnosus, and L. paracasei [127].

α-lactalbumin, a protein that improves the bioavailability of calcium in milk and
plays a key role in the hydrophilic properties of casein micelles, is another significant
component of milk [128]. The effect of α-lactalbumin-hydrolyzate-calcium complexes
on the microbiological properties of yogurt has been investigated. This supplement was
discovered to effectively stimulate the growth of S. thermophilus and the fermentation rate
at low concentrations in the yogurt production, but at high concentrations, it reduced the
amount of L. bulgaricus [129].

In the same section, various studies on the effects of specific amino acids on microor-
ganisms should be considered. For example, the effect of specific amino acids on one of the
L. plantarum strain’s proteinase activity was investigated. Leucine and serine had the high-
est influence on this parameter compared with the arginine, lysine, alanine, and glutamic
acid [130]. The combination of cysteine with tocopherols has also been noted to promote
the growth of some L. acidophilus, L. casei, and L. plantarum strains [131]. Another study
examined the effect of the arginine with malate supplementation on the capacity of L. lactis
NCDO 2118 to produce γ-aminobutyric acid via glutamate decarboxylation. Arginine was
found to be able to significantly increase GABA synthesis, and its combination with malate
allows it to be produced in the early stages of strain development while also enhancing
bacterial biomass growth [132].

4. Other Supplements

The third group of bioactive supplements should include everything that also has an
effect on the above-mentioned microorganisms, according to current research. Vitamins,
minerals, organic acids, and numerous multicomponent supplements (plant extracts, etc.)
are examples of this. Table 3 lists the most notable of them.

Table 3. The most notable other bioactive supplements.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

B1, B2, B3, B5, B7, B9 vitamins Milk/kefir L. acidophilus
L. gasseri

Growth-stimulating
effect;

increasing enzymatic activity
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Table 3. Cont.

Biologically Active
Compound Substrate/Food Microorganisms Effect/Functionality

Vitamin E and l-cysteine Milk
Lactobacillus Acidophilus NRRL

B-4495, Lactobacillus Casei
NRRL B-1922 and Lactobacillus

Plantarum NRRL B-4496

Boosting biomass
fermentation

Tocopherols and
phytosterols Milk/cheese Thermophilic streptococcus Boosting biomass

fermentation

Polyphenols Coumaric acid
B. bifidum

Growth-stimulating
effect

Phenylpyruvic acid L. plantarum, L. fermentum,
L. brevis, and L. paracasei Increasing antifungal activity

Na3PO4 × 12H2O Milk/kefir Kefir grains Growth-stimulating
effect

MgO Milk/kefir Kefir grains Growth-stimulating
effect

Na2HPO4 and CH3COONa L. plantarum Increasing proteinase
production

Copper ions Lactobacilli

Growth-stimulating
effect;

increasing the hydrolysis of
carbohydrates and glycolysis

Selenium L. delbrueckii ssp. bulgaricus
and S. thermophilus

Increasing antibacterial
activity

Cudrania tricuspidata and
Morus alba L. leaf extracts Milk/yogurt L. delbrueckii ssp. bulgaricus

and S. thermophilus
Increasing fermentation

activity

Sonchus oleraceus infusion L. bulgaricus, L. lactis, L. reuteri
and B. longum

Growth-stimulating
effect

Tea extract Skim milk
L. rhamnosus GG, L. acidophilus

NCFM and L. plantarum
ST-III TE

Growth-stimulating
effect;

increasing acidification
activity

Rice extract Yogurt
Lactic acid

bacteria and
bifidobacteria

Growth-stimulating
effect

Persimmon leaf powder Yogurt S. thermophilus and
Lactobacillus

Growth-stimulating
effect

Orange fibers Yogurt L. acidophilus CECT 903 and
L. casei CECT 475

Growth-stimulating
effect

Oliveria decumbens Vent.
flowers Milk/yogurt L. acidophilus and B. bifidum Increasing fermentation

activity

Spirulina platensis Fermented milk

S. thermophilus and
Bifidobacterium spp.,

L. delbruekii subsp. Bulgaricus
and L. lactis subsp. lactis and

L. acidophilus

Increasing stability under cold
stress

Rice bran Yogurt L. casei 431 Growth-stimulating
effect

Skimmed milk powder Soymilk Lactobacillus spp. Growth-stimulating
effect

Sunflower honey Yogurt S. thermophilus and
L. delbrueckii subsp. bulgaricus

Growth-stimulating
effect;

Increasing viability

4.1. Vitamins and Some Organic Compounds

Vitamins are necessary for microorganisms as coenzymes and functional groups of
certain enzymes [133]. The influence of various B and C vitamin groups on the growth of
the kefir grains’ biomass in low fat milk by Demirhan et al. is one of the most important
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research projects identified on the effects of vitamin addition on producing microorganisms
in food biotechnology. They found that all the tested vitamins (B1, B6, B9, B12, C) inhibited
the growth of kefir grains [134]. However, other authors have previously demonstrated
the proliferative effect of some B vitamins (B1, B2, B3, B5, B7, B9) on the growth of several
L. acidophilus and one L. gasseri strains, as well as an increase in their enzymatic activity
towards soy oligosaccharides and, as a result, the assimilation of simple carbohydrates [135].
A recent study also examined the effects of ascorbic acid (vitamin C) and tocopherols
(vitamin E) on lactobacilli strains’ development and viability. The combination of vitamins
C and E did not increase the number of viable cells or shorten the milk fermentation time
in the development of the fermented milk product. In contrast, the supplementation of
vitamin E with l-cysteine boosted biomass fermentation without affecting the fermentation
rate [131]. The same effect was observed when tocopherols were added with phytosterols
in the case of a thermophilic streptococcus starter culture in cheese manufacturing [136].

Other authors were interested in the effect of polyphenols, bioactive compounds with
antioxidant and antibacterial activities that are beneficial to the human body, on intestinal
bifidobacteria. They noticed both stimulating and inhibiting dose-dependent effects on
B. adolescentis and B. bifidum when adding narininin, hesperidin, rutin, and quercetin, as
well as gallic, caffeic, p-coumaric, ferulic, chlorogenic, vanilla, and sinapic acids. Thus,
hesperidin and quercetin markedly reduced the growth of both bifidobacteria species;
however, in the first hours of incubation, rutin boosted the growth to 37%, and quercetin,
hesperidin, and naringin boosted it up to about 20% in the case of B. bifidum. The largest
stimulating effect was observed with coumaric acid supplementation, which induced an
increase in growth in the earliest stages to about 50% of B. bifidum and had no effect on
B. adolescentis [137].

Lactic acid bacteria are known to not only contribute to the final product’s develop-
ment, but also directly extend its microbiological shelf life by producing organic acids,
hydrogen peroxide, cyclic dipeptides, bacteriocins, fatty acids, carbon dioxide, ethanol and
diacetyl, which inhibit the growth of spoilage and pathogenic microflora [138]. Valerio
et al. (2016) studied the antifungal activity of certain strains of L. plantarum, L. fermentum,
L. brevis, and L. paracasei caused by phenyllactic and polyporic acids, the precursor of
which is phenylpyruvic acid. They found that in the presence of phenylpyruvic acid, these
lactobacilli strains actually exhibit higher antifungal activity [139].

Carboxylic acids, being one of the main participants in metabolic processes in microbial
cells, have also established themselves as biostimulating supplements. As previously stated,
when arginine and malate are combined, L. lactis NCDO 2118 not only produces more
GABA, but also does so in an earlier growth phase [132]. Moreover, the supplementation of
citrate to a Lactobacillus crustorum LMG 23699 starter strain during fermentation promotes
the production of some aromatic compounds by this lactic acid bacteria strain. These
compounds impart a distinct flavor to baked goods manufactured with this strain [140].

4.2. Mineral Supplements

In addition to the impact of vitamin supplementation, Demirhan et al. (2013) investigated
the effect of Cu2+, Mn2+, and PO43− ions on kefir grains. The addition of Na3PO4 × 12H2O
stimulated the biomass growth of kefir grains the most, whereas CuSO4 ×H2O had no effect
on microorganisms growth [134]. Previously, the same authors studied the effect of MgO,
MgSO4 × 7H2O, ZnSO4 × 7H2O, CaSO4 × 1/2H2O, and Fe2O3 introduction into milk with
kefir grains. MgO had the greatest effect on growth, increasing the kefir grains’ biomass by
46.3%, and Fe2O3 was the only supplement that did not show any effect [141].

Furthermore, Cheng et al. (2019) [126] studied the effect of several inorganic salts on
proteinase production by the L. plantarum strain, including Na2HPO4, NaH2PO4, K2HPO4,
KH2PO4, CH3COONa, and C6H14N2O7. Proteinase production was found to be highest
in cultures supplemented with Na2HPO4 and CH3COONa, while it was the lowest when
supplemented with K2HPO4 [130].



Molecules 2023, 28, 1413 16 of 28

Among metals, copper warranted specific attention as a bioactive microbial supple-
ment. Rodríguez et al. (2008) [142] examined the effect of copper sulfate supplementation
on the starter lactic acid bacteria and propionic acid bacteria used in the production of Em-
mental cheese (L. delbrueckii, L. helveticus, L. rhamnosus, S. thermophilus, and Propionibacterium
freudenreichii) and found that copper inhibits growth of the chosen strains, particularly
S. thermophiles. L. delbrueckii was discovered to be the most copper-resistant bacterium [142].
Nonetheless, in studying the effect of copper on the post-acidification of yogurt, it was
possible to establish a supplement concentration at which a fermented milk product’s shelf
life could be extended without diminishing the viability of S. thermophilus [143]. In addition
to food production using lactic acid bacteria, copper has shown promise as a bioactive
supplement in microbial food and sludge waste processing, where lactic acid bacteria can
also play a key role. Unlike Fe3+, Mg2+, and Mn2+ ions, which lowered lactobacilli lactic
acid production, copper ions stimulated the hydrolysis of carbohydrates and glycolysis,
increasing it by 77%, and, unlike the previously mentioned streptococci, increased the
number of lactobacilli themselves by 82.6% at a certain dosage [144]. On the other hand,
Fe2+ iron ions were previously demonstrated to do not decrease lactic acid production,
as well as the number of starter lactic acid bacteria when added to yogurt [145]. These
differences are possibly due to the valence of iron, as in the last study it was Fe2+ ions.

Selenium is a trace mineral essential for living organisms to maintain physiological
functions. Therefore, fortifying staple foods with selenium is an effective strategy to correct
selenium insufficiency. According to some reports, greater efficiency in enriching food
with selenium can be achieved by direct accumulation in microorganisms for probiotic
supplements, since lactic acid bacteria and bifidobacteria are able to reduce and accumulate
it from the nutrient medium [146–149]. In this regard, the usage of selenium as a supple-
ment that affects the microorganisms themselves was not overlooked. Thus, selenization
affected neither the growth nor viability of Lactobacillus brevis and Fructobacillus tropaeoli
during storage and in the gastrointestinal tract [150]. However, in one of the studies, en-
richments with selenium were proved to increase the antibacterial activity of lactic acid
bacteria (L. delbrueckii ssp. bulgaricus and S. thermophilus) against pathogenic species while
also reducing selenite to selenium and making it non-toxic, which improves its probiotic
functioning [151].

4.3. Multicomponent Supplements

This category includes biostimulating supplements for microorganisms that consist of
various compound complexes.

4.3.1. Plant Extracts

Some plant extracts rich in biologically active compounds are among the most actively
used complex food additives. Plant extracts are known to have antibacterial and antioxidant
properties that are advantageous to human health [152]. The capacity of plant-derived
extracts to boost the growth of starter cultures and probiotic bacteria should also be studied
in this regard.

For example, one group of researchers found that adding Cudrania tricuspidata and
Morus alba L. leaf extracts to yogurt resulted in a significant reduction in the fermentation
time and an increase in the viability of yogurt starter cultures in comparison with a control
sample. The combination of extracts of monosaccharides (glucose, fructose, lactose, galac-
tose), formic, hydroxycinnamic, as well as non-chlorogenic, chlorogenic, and caffeic acids
was found to play a stimulating role in relation to bacteria [153]. Another study found that
when moringa extract was added, the number of viable lactic acid bacteria in yogurt, such
as S. thermophilus and L. acidophilus, was higher than 106 CFU/mL, which is the standard
value for the number of viable lactic acid bacteria in dairy products. This may be due to
moringa extract’s high content of polyphenols [154]. The presence of polyphenols may also
explain the increase in the amount of S. thermophilus and Lactobacillus during the 12 h of
fermentation upon the supplementation of white mulberry leaf extracts to yogurt [155].
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With the addition of grape cake extract, phenol concentration in fermented milk products
increased considerably. Grape cake extract was discovered to have a protective impact on
the viability of L. acidophilus. However, after 14 days of storage, the L. acidophilus popu-
lations were significantly lower compared to the L. rhamnosus populations, with only the
last probiotic species retaining viability above 7 log CFU mL−1 throughout the research
period [156]. In addition, Yin Lau et al. (2019) [157] discovered a dose-dependent effect of
cranberry cake extract on starter cultures for meat fermentation. According to them, the
maximum growth-promoting concentration for the genera Lactobacillus and Pediococcus was
slightly higher than for Staphylococcus spp., whereas extract concentrations above a certain
value inhibited their growth [157].

The observations made by Michael et al. (2015) [158] are also noteworthy. They found
that yogurts supplemented with a commercial plant extract (consisting of olive, garlic,
onion and citrus extracts) retained a greater amounts of L. bulgaricus and L. acidophilus at
the end of storage than yogurts without supplements, but these extracts had no significant
effect on S. thermophilus and B. animalis [158]. When Siraitia grosvenorii fruit extract was
added to probiotic yogurt, a similar impact was detected, with L. bulgaricus ranging from
8.16 log CFU/g to 8.83 log CFU/g, and they tended to be slightly lower than S. thermophilus
in all yogurt samples. Although the supplementation of 0.5% extract did not significantly
affect the amount of L. bulgaricus, 1% and 2% of the extract significantly increased bacterial
viability. Moreover, the supplementation of this extract significantly improved the viability
of L. casei compared to the control probiotic yogurt. An aqueous extract of S. grosvenorii
was found to contain soluble fiber, monosaccharides, essential amino acids, and flavonoids,
which can provide a prebiotic effect for L. bulgaricus and L. casei [159].

Infusions of 22 South African traditional leafy plants stimulated at least one of the
four probiotics studied (L. bulgaricus, L. lactis, L. reuteri, and B. longum) in pure culture due
to their high inulin content (from 2.5% to 3.6%). Sonchus oleraceus stimulated all four strains
and Taraxacum officinale stimulated three. A total of 18 plants stimulated at least one of the
four probiotic strains [160].

Tea has become a rather interesting and demanded object, with promise as a bios-
timulating supplement. The phenolic substances present in tea are known to be capable
of modifying the intestinal microbiota, inhibiting the growth of pathogenic bacteria, and
increasing the level of commensal bacteria, including bifidobacteria, which indicates their
prebiotic effect [161]. Tea extract was observed to significantly stimulate the reproduction
and acidification of probiotic strains such as L. rhamnosus GG, L. acidophilus NCFM, and
L. plantarum ST-III TE, but did not significantly affect B. bifidum Bb02. Thus, its supple-
mentation to skimmed milk was beneficial for lactic acid bacteria fermentation, but not
for their growth rate [162]. Pu-erh tea also slightly improved the viability of L. acidophilus
and lowered the pH of probiotic yogurts [163]. Simultaneously, the inclusion of the green
tea infusion effect in bioyogurt on the survivability of L. acidophilus LA-5 depended on the
dose. Thus, the higher the infusion dosage, the lower the number of these bacteria was
found in the fermented milk product. The supplementation of 5% green tea resulted in
significantly more lactobacilli (almost 1 log) than higher tea dosages [164].

Marine macroalgae are one of the richest and most promising sources of bioactive
primary and secondary metabolites that can be extracted and have also found their place in
the field of application we are interested in [165]. However, different levels of Gracilaria
domingensis aqueous extract did not affect the product fermentation process. The profiles
of titratable acidity, pH value, and the size of microbial populations of S. thermophilus,
L. acidophilus and B. animalis ssp. lactis were the same for all samples during the fermenta-
tion [166]. Among the positive effects of plant extracts, it is worth noting how the addition
of rice extract to yogurt greatly stimulated the growth of not only lactic acid bacteria, but
also bifidobacteria, which was probably due to its high content of panose [167]. Despite the
predominantly antimicrobial properties of Aloe barbadensis and Aloe arborescens [168], aque-
ous extracts of the internal parenchyma did not inhibit the growth of lactic acid bacteria,
and the growth stimulating effect on L. acidophilus was observed at 5% inclusion [169].
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4.3.2. Plants, Their Components, and By-Products

Numerous studies have shown that plant products, particularly those obtained from
fruit processing (peel, cake, seeds), are good sources of dietary fiber and other biologically
active compounds [170–172]. For example, pineapple peel and cake powders were rich in
nutrients such as dietary fiber, protein and bivalent cations, and demonstrated a prebiotic
effect on L. acidophilus, L. casei, and L. paracasei spp. paracasei, and the supplementation of
persimmon leaf powder to yogurt increased the amount of S. thermophilus and Lactobacillus
starter cultures during 12 h of fermentation [155,173].

The supplementation of passion fruit by-product to mMRS broth with cultures of
B. longum subsp. infantis BB-02 and Lb. reuteri RC-14 had an interesting effect, increasing
folic acid synthesis after 24 h of fermentation [174]. However, passionfruit peel powder did
not cause any significant change in the number of probiotics, with the exception of B. lactis
Bl04 in whole yogurt, which was 0.8 logs higher than in the control group. Perhaps, taking
the entire storage period into account, the average titratable acidity in yogurts containing
passion fruit peel powder was noted to be significantly higher than in their respective
controls [175]. Passion fruit fiber was also noted to increase conjugated linoleic acid in all
probiotic yogurts, and all tested fruit fibers overcame the negative effect of L. acidophilus
L10 on conjugated linoleic acid in yogurts. Furthermore, because of their high levels of
phenolic compounds, carotenoids, and buffering fibers, passion fruit, guava, and orange
by-products contributed to the growth of L. casei Lc-1 and S. thermophilus TA040 during
fermentation, as well as maintaining their population when storing fermented drinks based
on goat milk, as well as oats and rice [176]. At the same time, as with pineapple peel
powder, the supplementation of passion fruit peel powder to probiotic yogurt did not
significantly affect the quantity of S. thermophilus [177]. However, the supplementation of
banana fiber in the same study significantly increased the content of α-linolenic acid in
yogurt [177].

The interesting effects of plant fiber supplementation have been observed by Sendra et al.
(2008) [178]. Citrus fibers increased the survival of L. acidophilus CECT 903 and L. casei CECT
475 in MRS broth when stored in a refrigerator, but the results obtained for B. bifidum CECT
870 were uneven. Fibers from orange increased their growth, while fibers from lemon had an
inhibitory effect [178]. In turn, apple and banana fiber helped to sustain the viability of all
probiotic strains tested in studies for the production of fiber-fortified low-fat yogurts, notably
S. thermophilus, B. animalis subsp. lactis Bl04, HN019, and B94, and L. acidophilus L10 for up to
four weeks cold storage. All fiber-enriched yogurts had greater levels of short-chain fatty acids
and polyunsaturated fatty acids than the control group. A synergistic effect has been noted
between the fiber type and the probiotic strain at the level of conjugated linoleic acid [177].

Oliveria decumbens Vent. has the proper antibacterial effect due to the rich presence of
essential oils [179]. Despite this, dried flowers added to the plant increased the growth rate
of L. acidophilus and B. bifidum in milk and yogurt during storage and helped to achieve the
desired acidity in a shorter period [180]. The latter property was similarly influenced by the
supplementation of sprouted soy seeds to the nutrient medium to a sourdough consisting
of such lactobacillus strains as Lb. plantarum LOCK-0860, Lb. sanfranciscensis DSM-20663,
and Lb. brevis DSM-1267, which is clearly explained by their high nutritional value [107].

Aloe vera powder supplementation (1%) to skim milk resulted in a significant increase
in the ACE inhibitory ability to fermented milk. The increase in the ACE inhibitory activity
with the aloe vera supplementation corresponded to a change in the proteolysis degree
during milk fermentation by the probiotic microorganisms. The supplementation of aloe
vera powder also increased the viable amounts of L. casei NCDC 19 in fermented milk
during storage for 7 days, and these values remained quite high [181].

In vitro studies on the growth of selected probiotics using different plant spices have
shown that this type of nutritional supplement significantly boosts probiotic growth while
suppressing pathogens [182]. For example, yogurt with cardamom added has shown a
marked increase in Bifidobacterium during storage [183].
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Spirulina sp. is the most well-known genus of algae used in food due to its nutritional
value. It contains 18 of the 20 known amino acids, high quality proteins, more calcium than
milk does, more vitamin B12 than bovine liver does, vitamins A, B2, B6, E, H, and K, as
well as all the necessary minerals, trace elements, and enzymes [184]. The supplementation
of Spirulina platensis biomass to fermented milk had a beneficial effect on the survival of
S. thermophilus and Bifidobacterium spp., L. delbruekii subsp. Bulgaricus, and especially L. lactis
subsp. lactis and L. acidophilus, regardless of storage temperature [185,186]. Moreover,
B. animalis was able to sustain higher populations than control samples during the 21 days
of storage of probiotic dairy desserts in the presence of G. birdiae or G. domingensis algae
dispersions, although L. acidophilus demonstrated reduced viability in the product [187].

For plant-based processed foods, supplementation up to 3% of quinoa flour to fer-
mented milk did not affect the fermentation kinetics or probiotic activity of S. thermophilus,
B. animalis ssp. lactis BB-12, and L. acidophilus La-5 within a 28-day storage period [188]. The
supplementation of rice bran to the probiotic yogurt showed a significant increase in the
amounts of L. casei 431 compared to a control yogurt [189]. When strawberry marmalade
was added to yogurt, the survival rate of L. acidophilus was higher than that of B. bifidum.
However, while the viability of L. acidophilus decreased during the storage period, the
amount of B. bifidum remained stable during the entire storage period of the probiotic
yogurt [190].

Grapes and their byproducts are frequently employed as natural sources of antiox-
idants due to their high content of phenols, with special emphasis on anthocyanin and
resveratrol [191]. However, the supplementation of Isabella grapes (Vitis labrusca L.) did
not significantly affect S. thermophiles, L. bulgaricus, or L. acidophilus in a goat milk probiotic
yogurt [192]. Plant preparations (carrots, pumpkin, broccoli, and red bell peppers) were
supplemented to processed cow’s milk fermented with DVS yogurt culture. Only the prod-
uct with added pumpkin pomace showed lower lactobacilli levels and a slightly higher
count of streptococci than other yogurts [193]. Moreover, despite its high polysaccharide
and polyphenol content [194], the pulp of ziziphus (Zízíphus jujúba), when added to goat
milk yogurt at concentrations of 3%, 6%, and 9%, significantly reduced the amount of
S. thermophilus [195].

4.3.3. Others

L. acidophilus 4461, L. acidophilus 4962, L. casei 290, and L. casei 2607 have been used to
ferment soymilk. After 24 h of incubation, the addition of skimmed milk powder signifi-
cantly increased the growth of Lactobacillus spp., providing lactose and other nutrients, and
thus playing a key role in lowering the pH of the product, as well as significantly increasing
the biotransformation of isoflavone glycosides to isoflavone aglycones [196].

Apar et al. (2017) [197] evaluated the effect of yeast extract on kefir grain growth and
found the greatest (1.657%) increase in the biomass of kefir grains in whey over a 10-day
period when this extract was added, compared to samples with the supplementation of
yogurt (1.458%) and milk (1.294%) [197].

Honey is produced worldwide by over 500 species of bees belonging to 32 genera [198],
and naturally contains a large number of antioxidants (including flavonoids, phenolic
and carotenoids), organic acids, Maillard reaction products, and amino acids in their
composition [199], as well as a specific profile and acidity of sugar, which gives the product
unique sensory characteristics [200]. The positive effect of this multicomponent product
on microbiological processes in fermented milk product manufacturing would be quite
fair. On the one hand, honey supplementation ranging from 1.0% to 5.0% (w/v) was found
to have no significant effect on the survival of S. thermophilus and L. delbrueckii subsp.
bulgaricus in yogurt for 6 weeks at 4 ◦C. Similarly, honey had no effect on pH and lactic
acid levels in the final products [201]. However, when sunflower honey was added to the
samples, the number of S. thermophilus and L. delbrueckii subsp. bulgaricus rose dramatically
in contrast to the control group samples, as did their vitality [202]. Goat milk yogurt
containing Melipona scutellaris honey showed the highest amount of L. acidophilus La-05, at
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about 1 log CFU/g, indicating a growth stimulating effect [203]. The growth kinetics of
P. pentosaceus and L. fermentum starter cultures used in baking was positively influenced
by the supplementation of Prosopis sp. honey in the amount of 6.5% (w/v). Despite the
fact that the population size was the same after 19 h of fermentation, P. pentosaceus had a
stronger effect on the acidification process than L. fermentum. The latter, on the other hand,
showed a higher growth rate than P. pentosaceus [204].

5. Conclusions

Taken together, all the above observations have shown that the effect of boosting
the growth of beneficial microorganisms and their various metabolic activities related to
food biotechnology in fermented and/or probiotic food products depends both on the
supplement used and on the bacterial species/strain targeted. The efficiency of these
supplements is determined not only by the content of the essential substances therein,
but also by their bioavailability with regard to specific species/strains of bacteria, as well
as the level of demand for these compounds. This conclusion can be derived from a
systematic analysis taking into account the exact type of the nutrient and set of biologically
active compounds it contains. Mainly, this review should have shed light onto issues
of advisability of using certain compounds as additives to growth media during the
cultivation of microorganisms in order to obtain fermented food products, and then help in
determining which supplements would be the most complete and affordable source of all
the essential components. According to our analysis, the main emphasis in contemporary
studies is placed onto economic aspects, to find the most cost-effective and accessible
sources. In addition, some of the considered supplements were incorporated into a product
not to stimulate microbial processes, but rather to improve on other product features,
i.e., to directly influence the sensory (taste/flavor) and physicochemical properties of the
final product. However, their effect on the microbiological profile of the product has
been studied as well, to guarantee that such supplements, at worst, have no effect on
beneficial microorganisms in the product, such as probiotics. The issue of the ambiguity
and even unpredictability of the effects of such bio-additives on microorganisms is a
key limitation to their widespread involvement in microbiological food production. It is
therefore reasonable to see a wider and more comprehensive study of them as a near-term
goal. In summary, we have managed to perform a complete and almost comprehensive
review of the results obtained to date concerning the effects of various supplements, both
single- and multi-component ones, on the microorganisms widely applied in fermented
dairy products development.
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