The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream
Abstract
:1. Introduction
2. Results and Discussion
2.1. Raw Buffalo Milk’s Composition
2.2. Detection of Residual Gasses in the Packaging Atmosphere
2.3. Microbiological Analysis
2.4. Biochemical Analysis
2.5. Color Properties
2.6. Chromatographic Analyzes
2.6.1. Fatty Acid Composition of CC Samples
2.6.2. Free Fatty Acids from CC Samples
3. Materials and Methods
3.1. Preparation of CC Samples
3.2. Microbiological Analysis
3.3. Biochemical Analysis
3.4. Color Properties
3.5. Chromatographic Analyzes
3.5.1. Analysis of the Fatty Acid Composition
3.5.2. Analysis of Free Fatty Acids
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Alwazeer, D. Reducing atmosphere packaging technique for extending the shelf-life of food products. J. Inst. Sci. Technol. 2019, 9, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Alwazeer, D.; Tan, K.; Örs, B. Reducing atmosphere packaging as a novel alternative technique for extending shelf life of fresh cheese. J. Food Sci. Technol. 2020, 57, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Alwazeer, D.; Liu, F.F.-C.; Wu, X.Y.; LeBaron, T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 5513868. [Google Scholar] [CrossRef]
- Giroux, H.J.; Acteau, G.; Sabik, H.; Britten, M. Influence of dissolved gases and heat treatments on the oxidative degradation of polyunsaturated fatty acids enriched dairy beverage. J. Agric. Food Chem. 2008, 56, 5710–5716. [Google Scholar] [CrossRef]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Abesinghe, A.; Vidanarachchi, J.K.; Islam, N.; Prakash, S.; Silva, K.; Bhandari, B.; Karim, M.A. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: A comparison with shear-homogenization. Innov. Food Sci. Emerg. Technol. 2020, 59, 102237. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Chianese, L.; Addeo, F.; Musso, S.S. Triacylglycerols, fatty acids and conjugated linoleic acids in Italian Mozzarella di Bufala Campana cheese. J. Food Compos. Anal. 2011, 24, 244–249. [Google Scholar] [CrossRef]
- Cakmakci, S.; Hayaloglu, A.A. Evaluation of the chemical, microbiological and volatile aroma characteristics of Ispir Kaymak, a traditional Turkish dairy product. Int. J. Dairy Technol. 2011, 64, 444–450. [Google Scholar] [CrossRef]
- Akalin, A.S.; Tokusoglu, Ö.; Gönç, S.; Ökten, S. Detection of biologically active isomers of conjugated linoleic acid in kaymak. Grasas Y Aceites 2005, 56, 298–302. [Google Scholar]
- Roche, H.M. Unsaturated fatty acids. Proc. Nutr. Soc. 1999, 58, 397–401. [Google Scholar] [CrossRef]
- Spector, A.A. Essentiality of fatty acids. Lipids 1999, 34, S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B.; Trugo, L.C.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition; Academic: New York, NY, USA, 2003; ISBN 012227055X. [Google Scholar]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ayaz, M.; Ajmal, M.; Ellahi, M.Y.; Khalique, A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017, 16, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becskei, Z.; Savić, M.; Ćirković, D.; Rašeta, M.; Puvača, N.; Pajić, M.; Đorđević, S.; Paskaš, S. Assessment of water buffalo milk and traditional milk products in a sustainable production system. Sustainability 2020, 12, 6616. [Google Scholar] [CrossRef]
- Alwazeer, D.; Özkan, N. Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life. J. Food Sci. Technol. 2022, 59, 3951–3964. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Beresford, T.P. Microbiome Changes During Ripening. In Cheese; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everrett, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 389–409. [Google Scholar]
- Kocatürk, K.; Gökçe, Ö.; Ergin, F.; Küçükçetin, A.; Gürsoy, O. Geleneksel Yöntemlerle Üretilen ve Manda Kaymağı Olarak Pazarlanan Ürünlerin Bazı Özellikleri ile Konjuge Linoleik Asit İçerikleri. Akad. Gıda 2019, 17, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Ahmet, K.; Özdemir, S. Erzurum’da Yapılıp Satılan Kaymakların Bileşimi ve Mikrobiyolojik Kalitesi. Gıda 1998, 13, 3. [Google Scholar]
- Fernandes, L.; Pereira, E.L.; Fidalgo, M.D.C.; Gomes, A.; Ramalhosa, E. Effect of modified atmosphere, vacuum and polyethylene packaging on physicochemical and microbial quality of chestnuts (Castanea sativa) during storage. Int. J. Fruit Sci. 2020, 20, S785–S801. [Google Scholar] [CrossRef]
- Sezer, Y.Ç.; Bulut, M.; Boran, G.; Alwazeer, D. The effects of hydrogen incorporation in modified atmosphere packaging on the formation of biogenic amines in cold stored rainbow trout and horse mackerel. J. Food Compos. Anal. 2022, 112, 104688. [Google Scholar] [CrossRef]
- Kimbuathong, N.; Leelaphiwat, P.; Harnkarnsujarit, N. Inhibition of melanosis and microbial growth in Pacific white shrimp (Litopenaeus vannamei) using high CO2 modified atmosphere packaging. Food Chem. 2020, 312, 126114. [Google Scholar] [CrossRef]
- Hamad, S.H. 20 Factors Affecting the Growth of Microorganisms in Food. In Progress in Food Preservation; Bhat, R., Alias, A.K., Paliyath, G., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 405–427. [Google Scholar]
- Vatansever, S.; Vegi, A.; Garden-Robinson, J.; Hall III, C.A. The effect of fermentation on the physicochemical characteristics of dry-salted vegetables. J. Food Res. 2017, 6, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Banjara, N.; Suhr, M.J.; Hallen-Adams, H.E. Diversity of yeast and mold species from a variety of cheese types. Curr. Microbiol. 2015, 70, 792–800. [Google Scholar] [CrossRef]
- Kontaminas, M.G. Modified Atmosphere Packaging in Food. In Encyclopedia of food microbiology, 2nd ed.; Batt, C.A., Tortorello, M., Eds.; Academic Press: London, UK, 2014; Volume 2, pp. 1012–1016. [Google Scholar]
- Ministry of Agriculture and Ministry of Health Anonymous. 2003. Available online: https://www.resmigazete.gov.tr/eskiler/2003/09/20030927.htm#7 (accessed on 2 December 2021).
- Dereli, Z.; Şevik, R. Modifiye atmosferde paketlenerek depolanan Afyon kaymağında oluşan kimyasal değişimler. Gıda Teknol. Elektron. Derg. 2011, 6, 1–8. [Google Scholar]
- Şenel, E. Some carbonyl compounds and free fatty acid composition of Afyon Kaymagı (clotted cream) and their effects on aroma and flavor. Grasas Y Aceites 2011, 62, 418–427. [Google Scholar] [CrossRef]
- Ceylan, M.M.; Bulut, M.; Alwazeer, D.; Koyuncu, M. Evaluation of the impact of hydrogen-rich water on the quality attribute notes of butter. J. Dairy Res. 2022, 89, 431–439. [Google Scholar] [CrossRef]
- Basheer, V.A.; Muthusamy, S. Mathematical modeling and kinetic behavior of Indian Umblachery cow butter and its nutritional degradation analysis under modified atmospheric packaging technique. J. Food Process Eng. 2022, 45, e14042. [Google Scholar] [CrossRef]
- Ge, L.; Yang, M.; Yang, N.-N.; Yin, X.-X.; Song, W.-G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget 2017, 8, 102653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutlu, N.; Pandiselvam, R.; Kamiloglu, A.; Saka, I.; Sruthi, N.U.; Kothakota, A.; Socol, C.T.; Maerescu, C.M. Impact of ultrasonication applications on color profile of foods. Ultrason. Sonochem. 2022, 89, 106109. [Google Scholar] [CrossRef] [PubMed]
- Popov-Raljić, J.V.; Lakić, N.S.; Laličić-Petronijević, J.G.; Barać, M.B.; Sikimić, V.M. Color changes of UHT milk during storage. Sensors 2008, 8, 5961–5974. [Google Scholar] [CrossRef] [Green Version]
- Milovanovic, B.; Djekic, I.; Miocinovic, J.; Djordjevic, V.; Lorenzo, J.M.; Barba, F.J.; Mörlein, D.; Tomasevic, I. What is the color of milk and dairy products and how is it measured? Foods 2020, 9, 1629. [Google Scholar] [CrossRef]
- Kilic-Akyilmaz, M.; Ozer, B.; Bulat, T.; Topcu, A. Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk. Int. Dairy J. 2022, 126, 105231. [Google Scholar] [CrossRef]
- Méndez-Cid, F.J.; Centeno, J.A.; Martínez, S.; Carballo, J. Changes in the chemical and physical characteristics of cow’s milk butter during storage: Effects of temperature and addition of salt. J. Food Compos. Anal. 2017, 63, 121–132. [Google Scholar] [CrossRef]
- Rustan, A.C.; Drevon, C.A. Fatty Acids: Structures and Properties. eLS 2001. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M. Total and free fatty acids analysis in milk and dairy fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Karakus, M.S.; Akgul, F.Y.; Korkmaz, A.; Atasoy, A.F. Evaluation of fatty acids, free fatty acids and textural properties of butter and sadeyag (anhydrous butter fat) produced from ovine and bovine cream and yoghurt. Int. Dairy J. 2022, 126, 105229. [Google Scholar] [CrossRef]
- James, C.S. Assessment of Analytical Methods and Data BT-Analytical Chemistry of Foods; James, C.S., Ed.; Springer: Boston, MA, USA, 1995; pp. 5–12. ISBN 978-1-4615-2165-5. [Google Scholar]
- Vidanagamage, S.A.; Pathiraje, P.; Perera, O. Effects of Cinnamon (Cinnamomum verum) extract on functional properties of butter. Procedia food Sci. 2016, 6, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Case, R.A.; Bradley, R.L., Jr.; Williams, R.R. Chemical and Physical Methods; American Public Health Association: Washington, DC, USA, 1985. [Google Scholar]
- Jellema, A.; Anderson, M.; Heeschen, W.; Kuzdal-Savoie, S.; Needs, E.C.; Suhren, G.; Van Reusel, A. Determination of Free Fatty Acids in Milk and Milk Products; Bulletin of the International Dairy Federation; IDF: Brussels, Belgium, 1991; No. 265. [Google Scholar]
- Egan, H.; Kirk, R.S.; Sawyer, R. Pearson’s Chemical Analysis of Foods; Churchill Livingstone: Edinburgh, UK, 1981; 591p. [Google Scholar]
- Ocak, E.; Tunçtürk, Y.; Javidipour, I.; Köse, Ş. Farklı Tür Sütlerinden Üretilen Van Otlu Peynirlerinde Olgunlaşma Boyunca Meydana Gelen Değişiklikler: II. Mikrobiyolojik Değişiklikler, Lipoliz ve Serbest Yağ Asitleri. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg. 2015, 25, 164–173. [Google Scholar] [CrossRef] [Green Version]
- De Jong, C.; Badings, H.T. Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis. J. High Resolut. Chromatogr. 1990, 13, 94–98. [Google Scholar] [CrossRef]
- Andic, S.; Tuncturk, Y.; Javidipour, I. Effects of frozen storage and vacuum packaging on free fatty acid and volatile composition of Turkish Motal cheese. Food Sci. Technol. Int. 2011, 17, 375–394. [Google Scholar] [CrossRef]
- Koyuncu, M.; Tuncturk, Y. Effect of packaging method and light exposure on oxidation and lipolysis in butter. Oxid. Commun. 2017, 40, 785–798. [Google Scholar]
Parameter | % |
---|---|
Fat | 6.9 ± 0.14 |
Solid non-fat | 10.45 ± 0.21 |
Protein | 3.75 ± 0.07 |
O2 | N2 | H2 | |
---|---|---|---|
MAP1 1 | %0.10 | %98.10 | %1.60 |
MAP2 2 | %0.10 | %99.30 | 20 ppm |
Control | %4.70 | %82.30 | 0 |
Storage Time (Day) | |||||
---|---|---|---|---|---|
Initial sample * | 7 | 14 | 21 | 28 | |
Yeast–Mold Count (log CFU/g) | |||||
MAP1 1 | 1.58 ± 0.10 Ac | 2.27 ± 0.07 Cc | 4.61 ± 0.01 Bb | 7.23 ± 0.31 Aa | 7.51 ± 0.21 Aa |
MAP2 2 | 1.58 ± 0.10 Ad | 3.55 ± 0.32 Bc | 5.30 ± 0.01 Bb | 6.69 ± 0.43 Aa | 7.49 ± 0.65 Aa |
Control | 1.58 ± 0.10 Ad | 4.91 ± 0.02 Ac | 6.76 ± 0.57 Ab | 8.02 ± 0.66 Aab | 8.95 ± 0.19 Aa |
TAMB Count (log CFU/g) | |||||
MAP1 | 1.56 ± 0.16 Ac | 2.31 ± 0.04 Cc | 5.20 ± 0.14 Bb | 6.68 ± 0.27 Aa | 7.03 ± 0.53 Ba |
MAP2 | 1.56 ± 0.16 Ae | 3.42 ± 0.16 Bd | 5.44 ± 0.02 Bc | 6.31 ± 0.17 Ab | 6.95 ± 0.13 Ba |
Control | 1.56 ± 0.16 Ad | 4.67 ± 0.11 Ac | 6.45 ± 0.25 Ab | 7.82 ± 0.59 Aa | 8.45 ± 0.30 Aa |
Storage Time (Day) | |||||
---|---|---|---|---|---|
Initial sample * | 7 | 14 | 21 | 28 | |
Acidity (%LA) | |||||
MAP1 1 | 0.11 ± 0.01 Ab | 0.12 ± 0.00 Ab | 0.17 ± 0.00 Ca | 0.18 ± 0.02 Ba | 0.20 ± 0.01 Ca |
MAP2 2 | 0.11 ± 0.01 Ac | 0.12 ± 0.01 Ac | 0.19 ± 0.05 Bb | 0.21 ± 0.01 Bb | 0.28 ± 0.29 Ba |
Control | 0.11 ± 0.01 Ad | 0.11 ± 0.00 Ad | 0.21 ± 0.01 Ac | 0.67 ± 0.02 Ab | 0.89 ± 0.03 Aa |
Lipolyses (ADV) | |||||
MAP1 | 0.10 ± 0.00 Ab | 0.10 ± 0.00 Ab | 0.14 ± 0.02 Ab | 0.14 ± 0.00 Bb | 0.26 ± 0.03 Ba |
MAP2 | 0.10 ± 0.00 Ac | 0.11 ± 0.01 Abc | 0.13 ± 0.02 Abc | 0.15 ± 0.03 ABb | 0.27 ± 0.00 Ba |
Control | 0.10 ± 0.00 Ac | 0.12 ± 0.01 Abc | 0.17 ± 0.02 Abc | 0.19 ± 0.01 Ab | 0.36 ± 0.04 Aa |
Peroxide Value (meq O2/kg) | |||||
MAP1 | 0.05 ± 0.00 Ab | 0.19 ± 0.01 ABab | 0.11 ± 0.04 Bab | 0.38 ± 0.18 Aa | 0.35 ± 0.22 Aa |
MAP2 | 0.05 ± 0.00 Ab | 0.10 ± 0.06 Bbc | 0.18 ± 0.04 Bbc | 0.46 ± 0.24 Aa | 0.44 ± 0.16 Aa |
Control | 0.05 ± 0.00 Ad | 0.24 ± 0.04 Ac | 0.47 ± 0.08 Ab | 0.76 ± 0.10 Aa | 0.48 ± 0.02 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koyuncu, M.; Batur, S. The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream. Molecules 2023, 28, 1310. https://doi.org/10.3390/molecules28031310
Koyuncu M, Batur S. The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream. Molecules. 2023; 28(3):1310. https://doi.org/10.3390/molecules28031310
Chicago/Turabian StyleKoyuncu, Mubin, and Songül Batur. 2023. "The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream" Molecules 28, no. 3: 1310. https://doi.org/10.3390/molecules28031310
APA StyleKoyuncu, M., & Batur, S. (2023). The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream. Molecules, 28(3), 1310. https://doi.org/10.3390/molecules28031310