Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Photoinduced Cationic ROP Procedures
3.2.1. Photoinduced ROP of D4 by Direct Activation
3.2.2. Photoinduced ROP of D4 by Sensitization
3.3. Instrumentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
D3 | hexamethylcyclotrisiloxane |
D4 | octamethylcyclotetrasiloxane |
TMDS | tetramethyldisiloxane |
DPI | diphenyliodonium hexafluorophosphate |
PDMS | polydimethylsiloxane |
PS | photosensitizer |
ROP | ring-opening polymerization |
NMR | nuclear magnetic resonance |
FTIR | Fourrier-transform infrared |
1H-NMR | proton nuclear magnetic resonance |
29Si-NMR | silicon nuclear magnetic resonance |
GPC | gel-permeation chromatography |
UV | ultraviolet |
NIR | near-infrared |
References
- Yilgor, I.; Steckle, W.P.; Yilgor, E.; Freelin, R.G.; Riffle, J.S. Novel triblock siloxane copolymers: Synthesis, characterization, and their use as surface modifying additives. J. Polym. Sci. A Polym. Chem. 1989, 27, 3673–3690. [Google Scholar] [CrossRef]
- Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Cao, D.; Sun, Y.; Li, F.; Qi, Z. Cationic ring opening polymerization of octamethylcyclotetrasiloxane initiated by solid superacid. Glass Phys. Chem. 2016, 42, 307–311. [Google Scholar] [CrossRef]
- McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Mannsfeld, S.C.B.; Tee, B.C.K.; Stoltenberg, R.M.; Chen, C.V.H.H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef]
- Grubb, W.T.; Osthoff, R.C. Kinetics of the polymerization of a cyclic dimethylsiloxane. J. Am. Chem. Soc. 1955, 77, 1405–1411. [Google Scholar] [CrossRef]
- Barrère, M.; Ganachaud, F.; Bendejacq, D.; Dourges, M.A.; Maitre, C.; Hémery, P. Anionic polymerization of octamethylcyclotetrasiloxane in miniemulsion II. Molar mass analyses and mechanism scheme. Polymer 2001, 42, 7239–7246. [Google Scholar] [CrossRef]
- Zheng, P.; McCarthy, T.J. A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 2012, 134, 2024–2027. [Google Scholar] [CrossRef]
- Rutnakornpituk, M.; Ngamdee, P. Surface and mechanical properties of microporous membranes of poly(ethylene glycol)-polydimethylsiloxane copolymer/chitosan. Polymer 2006, 47, 7909–7917. [Google Scholar] [CrossRef]
- Hao, X.; Jeffery, J.L.; Wilkie, J.S.; Meijs, G.F.; Clayton, A.B.; Watling, J.D.; Ho, A.; Fernandez, V.; Acosta, C.; Yamamoto, H.; et al. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses. Biomaterials 2010, 31, 8153–8163. [Google Scholar] [CrossRef]
- Rutnakornpituk, M.; Ngamdee, P.; Phinyocheep, P. Synthesis, characterization and properties of chitosan modified with poly(ethylene glycol)-polydimethylsiloxane amphiphilic block copolymers. Polymer 2005, 46, 9742–9752. [Google Scholar] [CrossRef]
- Köhler, T.; Gutacker, A.; Mejiá, E. Industrial synthesis of reactive silicones: Reaction mechanisms and processes. Org. Chem. Front. 2020, 7, 4108–4120. [Google Scholar] [CrossRef]
- Tomanek, A. Silicones & Industry: A Compendium for Practical Use, Instruction and Reference; Wacker-Chemie: Munich, Germany, 1991. [Google Scholar]
- Meals, R.N. Silicones. Ann. N. Y. Acad. Sci. 1965, 125, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, M.; Cristea, M.; Cazacu, M.; Ioanid, A.; Simionescu, B.C. Composite materials based on polydimethylsiloxane and in situ generated silica by using the sol–gel technique. Polym. Compos. 2009, 30, 751–759. [Google Scholar] [CrossRef]
- Toskas, G.; Besztercey, G.; Moreau, M.; Masure, M.; Sigwalt, P. Cationic polymerization of hexamethylcyclotrisiloxane by trifluoromethanesulfonic acid and its derivatives, 2. Reaction involving activated trifluoromethylsulfonates. Macromol. Chem. Phys. 1995, 196, 2715–2735. [Google Scholar] [CrossRef]
- Patnode, W.; Wilcock, D.F. Methylpolysiloxanes. J. Am. Chem. Soc. 1946, 68, 358–363. [Google Scholar] [CrossRef]
- Yang, X.; Shao, Q.; Fang, Q.; Yang, L.; Cao, C.; Ren, Z.; Wu, L.; Lai, G.; Han, G. Synthesis of vinyl end-capped polydimethylsiloxane by ring opening polymerization of octamethylcyclotetrasiloxane (D4) catalyzed by rare earth solid super acid SO42−/TiO2/Ln3+. Polym. Int. 2014, 63, 347–351. [Google Scholar] [CrossRef]
- Clark, J.H. Green chemistry: Challenges and opportunities. Green Chem. 1999, 1, 1–8. [Google Scholar] [CrossRef]
- Yilmaz, G.; Yagci, Y. New photochemical processes for macromolecular syntheses. J. Photopoly. Sci. Technol. 2016, 29, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Albini, A.; Fagnoni, M. Green chemistry and photochemistry were born at the same time. Green Chem. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Zou, X.; Zhu, J.; Zhu, Y.; Yagci, Y.; Liu, R. Photopolymerization of macroscale black 3D objects using near-infrared photochemistry. ACS Appl. Mater. Interfaces 2020, 12, 58287–58294. [Google Scholar] [CrossRef] [PubMed]
- Garra, P.; Fouassier, J.P.; Lakhdar, S.; Yagci, Y.; Lalevée, J. Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog. Polym. Sci. 2020, 107, 101277. [Google Scholar] [CrossRef]
- Kuroishi, P.K.; Dove, A.P. Photoinduced ring-opening polymerisation of L-lactide via a photocaged superbase. Chem. Commun. 2018, 54, 6264–6267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celiker, T.; Ghorbanizamani, F.; Moulahoum, H.; Guler Celik, E.; Tok, K.; Zihnioglu, F.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; et al. Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(ε-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations. Microchim. Acta 2022, 189, 202. [Google Scholar] [CrossRef]
- Yağci, Y.; Ledwith, A. Mechanistic and kinetic studies on the photoinitiated polymerization of tetrahydrofuran. J. Polym. Sci. A Polym. Chem. 1988, 26, 1911–1918. [Google Scholar]
- Kiliclar, H.C.; Altinkok, C.; Yilmaz, G.; Yagci, Y. Visible light induced step-growth polymerization by electrophilic aromatic substitution reactions. Chem. Commun. 2021, 57, 5398–5401. [Google Scholar] [CrossRef]
- Crivello, J.V. The discovery and development of onium salt cationic photoinitiators. J. Polym. Sci. A Polym. Chem. 1999, 37, 4241–4254. [Google Scholar] [CrossRef]
- Klikovits, N.; Sinawehl, L.; Knaack, P.; Koch, T.; Stampfl, J.; Gorsche, C.; Liska, R. UV-induced cationic ring-opening polymerization of 2-oxazolines for hot lithography. ACS Macro Lett. 2020, 9, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Merckle, D.; Constant, E.; Cartwright, Z.; Weems, A.C. Ring opening copolymerization of four-dimensional printed shape memory polyester photopolymers using digital light processing. Macromolecules 2021, 54, 2681–2690. [Google Scholar] [CrossRef]
- Sharma, J.; Ahuja, S.; Arya, R.K. Depth profile study of poly(styrene)-poly(methyl methacrylate)-tetrahydrofuran coatings. Prog. Org. Coat. 2019, 134, 297–302. [Google Scholar] [CrossRef]
- Degirmenci, M.; Izgin, O.; Yagci, Y. Synthesis and characterization of cyclohexene oxide functional poly(ε-caprolactone) macromonomers and their use in photoinitiated cationic homo- and copolymerization. J. Polym. Sci. A Polym. Chem. 2004, 42, 3365–3372. [Google Scholar] [CrossRef]
- Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ellis, A.V.; Voelcker, N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010, 31, 2–16. [Google Scholar] [CrossRef]
- Camino, C.; Lomakin, S.M.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Schmid, H.; Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042–3049. [Google Scholar] [CrossRef]
- Lalevée, J.; Mokbel, H.; Fouassier, J.P. Recent developments of versatile photoinitiating systems for cationic ring opening polymerization operating at any wavelengths and under low light intensity sources. Molecules 2015, 20, 7201–7221. [Google Scholar] [CrossRef] [Green Version]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J.; Tehfe, M.; Graff, B.; Lalevée, J.; Dumur, F.; et al. Green-light-induced cationic ring opening polymerization reactions: perylene-3,4:9,10-bis(dicarboximide) as efficient photosensitizers. Macromol. Chem. Phys. 2013, 214, 1052–1060. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, J.; Campolo, D.; Dumur, F.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Copper and iron complexes as visible-light-sensitive photoinitiators of polymerization. J. Polym. Sci. A Polym. Chem 2015, 53, 2673–2684. [Google Scholar] [CrossRef]
- Crivello, J.V.; Lam, J.H.W. Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules 1977, 10, 1307–1315. [Google Scholar] [CrossRef]
- Zhdankin, V.V. Hypervalent iodine chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds; Wiley: Hoboken, NJ, USA, 2014; pp. 1–468. [Google Scholar]
- Wirth, T. Hypervalent iodine chemistry in synthesis: Scope and new directions. Angew. Chem. Int. Ed. 2005, 44, 3656–3665. [Google Scholar] [CrossRef] [PubMed]
- Celiker, T.; Kaya, K.; Koyuncu, S.; Yagci, Y. Polypyrenes by photoinduced step-growth polymerization. Macromolecules 2020, 53, 5787–5794. [Google Scholar] [CrossRef]
- Sari, E.; Yilmaz, G.; Koyuncu, S.; Yagci, Y. Photoinduced step-growth polymerization of N-ethylcarbazole. J. Am. Chem. Soc. 2018, 140, 12728–12731. [Google Scholar] [CrossRef]
- Gomurashvili, Z.; Crivello, J.V. Monomeric and polymeric phenothiazine photosensitizers for photoinitiated cationic polymerization. Macromolecules 2002, 35, 2962–2969. [Google Scholar] [CrossRef]
- Sangermano, M.; Sordo, F.; Chiolerio, A.; Yagci, Y. One-pot photoinduced synthesis of conductive polythiophene-epoxy network films. Polymer 2013, 54, 2077–2080. [Google Scholar] [CrossRef]
- Aydogan, B.; Gundogan, A.S.; Ozturk, T.; Yagci, Y. Polythiophene derivatives by step-growth polymerization via photoinduced electron transfer reactions. Chem. Commun. 2009, 41, 6300–6302. [Google Scholar] [CrossRef] [PubMed]
- Topa-Skwarczyńska, M.; Galek, M.; Jankowska, M.; Morlet-Savary, F.; Graff, B.; Lalevée, J.; Popielarz, R.; Ortyl, J. Development of the first panchromatic BODIPY-based one-component iodonium salts for initiating the photopolymerization processes. Polym. Chem. 2021, 12, 6873–6893. [Google Scholar] [CrossRef]
- Yagci, Y.; Yilmaz, F.; Kiralp, S.; Toppare, L. Photoinduced polymerization of thiophene using iodonium salt. Macromol. Chem. Phys. 2005, 206, 1178–1182. [Google Scholar] [CrossRef]
- Tasdelen, M.A.; Kumbaraci, V.; Jockusch, S.; Turro, N.J.; Talinli, N.; Yagci, Y. Photoacid generation by stepwise two-photon absorption: Photoinitiated cationic polymerization of cyclohexene oxide by using benzodioxinone in the presence of iodonium salt. Macromolecules 2008, 41, 295–297. [Google Scholar] [CrossRef]
- Topa, M.; Ortyl, J. Moving towards a finer way of light-cured resin-based restorative dental materials: Recent advances in photoinitiating systems based on iodonium salts. Materials 2020, 13, 4093. [Google Scholar] [CrossRef]
- Yagci, Y.; Onen, A.; Schnabel, W. Block copolymers by combination of radical and promoted cationic polymerization routes. Macromolecules 1991, 24, 4620–4623. [Google Scholar] [CrossRef]
- Yağci, Y.; Lukáč, I.; Schnabel, W. Photosensitized cationic polymerization using N-ethoxy-2-methylpyridinium hexafluorophosphate. Polymer 1993, 34, 1130–1133. [Google Scholar] [CrossRef]
- Böttcher, A.; Hasebe, K.; Hizal, G.; Yagci, Y.; Stellberg, P.; Schnabel, W. Initiation of cationic polymerization via oxidation of free radicals using pyridinium salts. Polymer 1991, 32, 2289–2293. [Google Scholar] [CrossRef]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Mechanism of photoinduced step polymerization of thiophene by onium salts: Reactions of phenyliodinium and diphenylsulfinium radical cations with thiophene. Macromolecules 2007, 40, 4481–4485. [Google Scholar] [CrossRef]
- Richardson, R.D.; Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem. Int. Ed. 2006, 45, 4402–4404. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hari, D.P.; Vita, M.V.; Waser, J. Cyclic hypervalent iodine reagents for atom-transfer reactions: Beyond trifluoromethylation. Angew. Chem. Int. Ed. 2016, 55, 4436–4454. [Google Scholar] [CrossRef] [Green Version]
- Merritt, E.A.; Olofsson, B.; Olofsson, B.; Merritt, E.A. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed. 2009, 48, 9052–9070. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Y.; Meng, H.; Shao, Q.; Xu, Z.; Bao, W.; Gu, Y.; Xue, X.S.; Zhao, Y. Metal-free C−H functionalization via diaryliodonium salts with a chemically robust dummy ligand. Angew. Chem. Int. Ed. 2022, 61, e202201240. [Google Scholar]
- Moriarty, R.M.; Prakash, O. Synthesis of heterocyclic compounds using organohypervalent iodine reagents. Adv. Heterocycl. Chem. 1997, 69, 1–87. [Google Scholar]
- Sari, E.; Mitterbauer, M.; Liska, R.; Yagci, Y. Visible light induced free radical promoted cationic polymerization using acylsilanes. Prog. Org. Coat. 2019, 132, 139–143. [Google Scholar] [CrossRef]
- Tasdelen, M.A.; Lalevée, J.; Yagci, Y. Photoinduced free radical promoted cationic polymerization 40 years after its discovery. Polym. Chem. 2020, 11, 1111–1121. [Google Scholar] [CrossRef]
- Wang, D.; Garra, P.; Fouassier, J.P.; Lalevée, J. Silane/iodonium salt as redox/thermal/photoinitiating systems in radical and cationic polymerizations for laser write and composites. Polym. Chem. 2020, 11, 857–866. [Google Scholar] [CrossRef]
- Wang, D.; Szillat, F.; Fouassier, J.P.; Lalevée, J. Remarkable versatility of silane/iodonium salt as redox free radical, cationic, and photopolymerization initiators. Macromolecules 2019, 52, 5638–5645. [Google Scholar] [CrossRef]
- Fouassier, J.P.; Lalevée, J. Photochemical production of interpenetrating polymer networks; simultaneous initiation of radical and cationic polymerization reactions. Polymers 2014, 6, 2588–2610. [Google Scholar] [CrossRef]
Ph2I+-PF6 Amount (w %) | Reaction Time (h) | Conv. b (%) | Mn (kg mol−1) c | Đc | Polymer |
---|---|---|---|---|---|
0.25 0.25 | 2 | 33 | 5.0 | 1.4 | PDMS-1 |
6 | 70 | 5.1 | 1.3 | ||
0.50 0.50 | 2 | 58 | 10.0 | 1.4 | PDMS-2 |
6 | 78 | 10.0 | 1.4 |
Photosensitizer | Conv. b (%) | Mn (kg·mol−1) c | Đc | Polymer |
---|---|---|---|---|
Benzophenone | 81 | 9.8 | 1.4 | PDMS-3 |
Pyrene | 70 | 7.3 | 1.4 | PDMS-4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coban, Z.G.; Kiliclar, H.C.; Yagci, Y. Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane. Molecules 2023, 28, 1299. https://doi.org/10.3390/molecules28031299
Coban ZG, Kiliclar HC, Yagci Y. Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane. Molecules. 2023; 28(3):1299. https://doi.org/10.3390/molecules28031299
Chicago/Turabian StyleCoban, Zehra Gul, Huseyin Cem Kiliclar, and Yusuf Yagci. 2023. "Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane" Molecules 28, no. 3: 1299. https://doi.org/10.3390/molecules28031299
APA StyleCoban, Z. G., Kiliclar, H. C., & Yagci, Y. (2023). Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane. Molecules, 28(3), 1299. https://doi.org/10.3390/molecules28031299