Zinc(II) Carboxylate Coordination Polymers with Versatile Applications
Abstract
:1. Introduction
2. Zinc(II) Carboxylate Coordination Polymers Developed for Different Applications
2.1. Zinc(II) Carboxylate Coordination Polymers with Luminescent Properties
2.2. Zinc(II) Carboxylate Coordination Polymers with Catalytic Properties
2.3. Zinc(II) Carboxylate Coordination Polymers with Biological Properties
2.4. Zinc(II) Carboxylate Coordination Polymers as Storage Materials
2.5. Zinc(II) Carboxylate Coordination Polymers for Miscellaneous Applications
3. Conclusions
4. Further Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
ade | adenine |
aldt | aldrithiol |
azopy | 4,4′-azobispyridine |
azpy | 4,4′-azobipyridine |
bcbpy | 1,1′-bis(3-carboxylatobenzyl)-4,4′-bipyridine |
bcpa | 9,10-bis(p-carboxyphenyl) anthracene |
bfmta | 2,5-bis(furan-2-ylmethylcarbamoyl)terephthalic acid |
bib | 1,4-bis(benzimidazol-1-yl)-2-butene |
bibz | 1,4-bis(1-imidazoly)benzene |
1,4-bimb | 1,4-bis(imidazole-1-ylmethyl)benzene |
bip | 1,3-bis(2-methyl-imidazol-1-yl)propane |
bipr | 1,3-bis(imidazolyl)propane |
bipy | 2,2′/4,4′-bipyridine |
bpdh | 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene |
bpe | 1,2-bis-(4-pyridyl)ethane |
bpat | N,N’-bis(3-pyridylamide)-3,4-thiophene |
bpp | 1,3-bis(1-pyridyl)propane |
bptpa | N,N′-bis(pyridin-3-ylmethyl)-terephthalamide |
bpybzimH2 | 6,6′-bis-(1H-benzoimidazol-2-yl)-2,2′-bipyridine |
bzad | benzaldehyde |
bzp | 1,3-bis(benzimidazole-1-yl)-2-propanol |
CBCP | carboxylate-based coordination polymer |
cpma | 9,10-bis((4-carboxylatopyridinium-1-methylene)anthracene |
2,6-DC-4-NA | 2,6-dichloro-4-nitroaniline |
dbpt | 2,7-di(4H-1,2,4-triazol-4-yl)[lmn][3,8]phenantroline-1,3,6,8(2H,7H)-tetraone |
dimb | 1,4-di(1H-imidazol-4-yl)benzene |
dipytz | di-3,6-(4-pyridyl)-1,2,4,5-tetrazine |
DL | detection limit |
DMA | N,N-dimethylacetamide |
DMF | N,N-dimethylformamide |
dpb | 1,4-bis(pyridine-4-yl)benzene |
dptz | 3,6-di(1H-pyrazol-4-yl)-1,2,4,5-tetrazine |
DTZ | dimetridazole |
ebpba | (E)-4,4′-(ethene-1,2-diyl)bis[(N-pyridin-3-yl)benzamide |
e-urea | ethyleneurea |
H2aip | 5-aminoisophthalic acid |
hb | 1,1′-hexane-1,6-diylbis(1H-benzimidazole) |
H2bcpa | 9,10-bis(p-carboxyphenyl)antracene |
H2bda | 4′-hydroxy-[1,1′-biphenyl]-3,5-dicarboxylic acid |
H2bdc | benzene dicarboxylic acid |
H2bdmsb | 2,2′-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid |
H2bpdc | 4,4′-biphenyldicarboxylic acid |
H2bpdc | 4,4′-biphenyl-dicarboxylic acid |
H4bptc | biphenyl-3,3′,5,5′-tetracarboxylic acid |
H3bta | 4-hydroxy-[1,1′-biphenyl]-3,3′,5,5′-tetracarboxylic acid |
H3btc | 1,2,4-benzenetricarboxylic acid |
H4cbaiph | 5-(bis(4-carboxybenzyl)amino)isophthalic acid |
H2chdc | 1,4-cyclohexanedicarboxylic acid |
H3cpip | 5-(4′-carboxylphenoxy)isophthalic acid |
H3cpn | 5-(3,4-dicarboxylphenoxy)nicotinic acid |
Hdaba | acid 4-diallylamino-benzoic |
H5ddpb | 3,5-di(2′,5′-dicarboxylphenyl)benozoic acid |
H4dhta | 2,5-dihydroxy-1,4-terephthalic acid |
Hdmpz | 3,5-dimethylpyrazole |
H4dobdc | 2,5-dioxido-1,4-benzenedicarboxylic acid |
H4dobpdc | 4,4′-dioxido-3,3′-biphenyldicarboxylic acid |
Hdpa | 4,4′-dipyridylamine |
H2dpdc | 3,3′-diphenyldicarboxylic acid |
H2dttp | 2,5-di(1H-1,2,4-triazol-1-yl)terephthalic acid |
H4eptc | 1,1′-ethylbiphenyl-3,3′,5,5′-tetracarboxylic acid |
HER | hydrogen evolution reaction |
H2fum | fumaric acid |
H2glu | glutaric acid |
5-H2hip | 5-hydroxyisophthalic acid |
H2ia | itaconic acid |
HI3AA | indole-3-acetic acid |
HI2CA | indole-2-carboxylic acid |
HI3CA | indole-3-carboxylic acid |
HI3PA | indole-3-propionic acid |
5-HMeOI2cah2 | 5-methoxyindole-2-carboxylic acid |
hmb | 1,1′-hexane-1,6-diylbis(2-methyl-1H-benzimidazole |
5-H2mip | 5-methylisophthalic acid |
H2mpca | 3-methyl-1H-pyrazole-4-carboxylic acid |
H3mtb | 5-methoxybenzene-1,2,3-tricarboxylic acid |
H2nba | 3-nitro-4,4′-biphenyldicarboxylic acid |
H2ndc | 1,4/2,6-naphthalenedicarboxylic acid |
H2ndic | 5-(5-norbonene-2,3-dicarboximide)isophthalic acid |
H3ntb | 4,4′,4″-nitrilotribenzoic acid |
H2oba | 4,4′-oxybisbenzoic acid |
H2opda | 1,2-phenylenediacetic acid |
H2ox | oxalic acid |
Hpab | 3,5-bis(pyridine-3-ylmethylamino)benzoic acid |
H2paph | 5-{(pyren-4-ylmethyl)amino}isophthalic acid |
H4pbta | 5,5′-phenylenebis(methylene)-1,1′-3,3′-(benzene-tetracarboxylic) acid |
H2pda | 1,4-phenylenediacetic acid |
H2pdc | 2,5-pyridinedicarboxylic acid |
H2piph | 5-(pyrazin-2-yl)isophthalic acid |
H4pmbcd | 9,9′-(1,4-phenylene bis(methylene))bis(9H-carbazole-3,6-dicarboxylic acid |
H2pmbd | 3,3′-{[1,3-phenylene-bis(methylene)bis(oxy)}dibenzoic acid |
Hpml | pyromellitic acid |
Hpna | 5-(pyrazol-1-yl) nicotinic acid |
H2pzdc | pyrazine-2,3-dicarboxylic acid |
Hpyac | trans-3-(4-pyridyl)acrylic acid |
H2sdb | 4,4′-sulfonyldibenzoic acid |
H2sq | squaric acid |
Hqnl | quinoline-3-carboxylic acid |
H2tbta | tetrabromoterephthalic acid |
H4tcpbp | 2,2′,6,6′-tetra(4-carboxyphenyl)-4,4′-bipyridine |
H2tda | thiophene-2,5-dicarboxylic acid |
H2tfbdc | 2,3,5,6-tetrafluoroterephthalic acid |
H2tpp | tetraphenyl phthalic acid |
H4tptc | p-terphenyl-2,2′,5″,5‴-tetracarboxylic acid |
H3ttha | 1,3,5-triazine-2,4,6-triamine hexaacetic acid |
H2ttpa | 2,5-bis-(1,2,4-triazol-1-yl)-terephthalic acid |
H3tzbt | 1-(triazol-1-yl)-2,4,6-benzene tricarboxylic acid |
H3tzpi | 5-(4-(1H-tetrazolyl)phenyl)isophthalic acid |
Hyd | 8-hydroxyquinoline |
IBP | ibuprofen |
ICP | infinite coordination polymer |
2-I-H2Pht | 2-iodoterephthalic acid |
IL | intra-ligand |
levo | levofloxacin |
LIB | lithium-ion battery |
LLCT | ligand-to-ligand |
MB | methylene blue |
mbp | 1,5-bis(2-methylbenzimidazol-1-yl)pentane |
MLCT | metal-to-ligand |
MO | methyl orange |
MOF | metal–organic framework |
mpnd | N,N’-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide) |
MR | methyl red |
MV | methyl violet |
N3-H2ipa | 5-azidoisophthalic acid |
NA | nitroaniline |
NB | nitrobenzene |
3-ndi | N,N’-bis(3-pyridinemethyl)-1,4,5,8-naphthalenediimide |
NFT | nitrofurantoin |
NFZ | nitrofurazone |
NMeF | N-methylformamide |
NP | nitrophenol |
npdi | 1,1′-(4-nitro-1,3-phenylene)bis(1H-benzo[d]imidazole |
NPs | nanoparticles |
NT | nitrotoluene |
PA | picric acid |
pbib | 1,4-bis(1-imidazolyl)benzene |
PDMS | poly(dimethylsiloxane) |
phen | 1,10-phenantroline |
ppmh | N-pyridin-2-yl-N’-pyridin-4-ylmethylene-hydrazine |
5-pro-H2ip | 5-propoxyisophthalic acid |
pvbim | 2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole |
py | pyridine |
RH | relative humidity |
Rh6G | rhodamine 6G |
RhB | rhodamine B |
ROS | reactive oxygen species |
scCO2 | supercritical CO2 |
TBHP | t-butylhydroperoxide |
TEA | triethylamine |
TET | tetracycline |
tib | 1,3,5-tris(1-imidazolyl)benzene |
TNP | 2,4,6-trinitrophenol |
TNT | trinitrotoluene |
tpim | 2,4,5-(tri(4-pyridyl)imidazole) |
tpom | tetrakis(4-pyridyloxymethylene)methane |
trmb | 1,3-bis(1,2,4-triazol-4-ylmethyl)benzene |
vim | 1-vinylimidazole |
References
- Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the Brain: Friend or Foe? Int. J. Mol. Sci. 2020, 21, 8941. [Google Scholar] [CrossRef]
- Meshkini, A. A Correlation Between Intracellular Zinc Content and Osteosarcoma. Biol. Trace Elem. Res. 2021, 199, 3222–3231. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Sukhorukov, V.N.; Orekhov, A.N. Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int. J. Mol. Sci. 2022, 23, 6890. [Google Scholar] [CrossRef] [PubMed]
- Planeta Kepp, K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chem. Bio. Chem. 2022, 23, e202100554. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.J.; Yang, Y.; Liu, J. Zn2+-dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. Chem. Bio. Chem. 2021, 22, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Li, Y. Coordination Dynamics of Zinc in Proteins. Chem. Rev. 2009, 109, 4682–4707. [Google Scholar] [CrossRef]
- de Frémont, P.; Adet, N.; Parmentier, J.; Xu, X.; Jacques, B.; Dagorne, S. Cationic organometallic complexes of group 12 metals: A decade of progress toward the quest of novel Lewis acidic catalysts. Coord. Chem. Rev. 2022, 469, 214647. [Google Scholar] [CrossRef]
- Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev. 2021, 445, 214088. [Google Scholar] [CrossRef]
- Riduan, S.N.; Zhang, Y. Recent Advances of Zinc-based Antimicrobial Materials. Chem. Asian J. 2021, 16, 2588–2595. [Google Scholar] [CrossRef]
- Chen, S.-S.; Fan, J.; Okamura, T.-A.; Chen, M.-S.; Su, Z.; Sun, W.-Y.; Ueyama, N. Synthesis, Crystal Structure, and Photoluminescence of a Series of Zinc(II) Coordination Polymers with 1,4-Di(1H-imidazol-4-yl)benzene and Varied Carboxylate Ligands. Cryst. Growth Des. 2010, 10, 812–822. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Panunzi, B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers 2021, 13, 3712. [Google Scholar] [CrossRef] [PubMed]
- Parmar, B.; Bisht, K.K.; Rachuri, Y.; Suresh, E. Zn(II)/Cd(II) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants. Inorg. Chem. Front. 2020, 7, 1082. [Google Scholar] [CrossRef]
- Jeong, A.R.; Shin, J.W.; Jeong, J.H.; Jeoung, S.; Moon, H.R.; Kang, S.; Min, K.S. Porous and Nonporous Coordination Polymers Induced by Pseudohalide Ions for Luminescence and Gas Sorption. Inorg. Chem. 2020, 59, 15987–15999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shen, Y.; Ding, J.; Zhou, H.; Zhang, Y.; Feng, Q.; Zhang, X.; Chen, K.; Xu, P.; Zhang, P. A Combined Experimental and Computational Study on the Adsorption Sites of Zinc-Based MOFs for Efficient Ammonia Capture. Molecules 2022, 27, 5615. [Google Scholar] [CrossRef] [PubMed]
- Sai Bhargava Reddy, M.; Ponnamma, D.; Sadasivuni, K.K.; Kumar, B.; Abdullah, A.M. Carbon dioxide adsorption based on porous materials. RSC Adv. 2021, 11, 12658. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Gu, C.; Liu, W.; Xu, J.; Li, B.; Wang, W. Rational synthesis of a novel 3,3,5-c polyhedral metal–organic framework with high thermal stability and hydrogen storage capability. J. Mater. Chem. A 2016, 4, 11630–11634. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Luo, Z.; Li, B.; Yuan, D. Microporous Metal–Organic Framework Based on Ligand-Truncation Strategy with High Performance for Gas Adsorption and Separation. Inorg. Chem. 2017, 56, 10215–10219. [Google Scholar] [CrossRef]
- Dutta, A.; Pan, Y.; Liu, J.-Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord. Chem. Rev. 2021, 445, 214074. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Micropor. Mesopor. Mat. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Erxleben, A. Structures and properties of Zn(II) coordination polymers. Coord. Chem. Rev. 2003, 246, 203–228. [Google Scholar] [CrossRef]
- Safdar Ali, R.; Meng, H.; Li, Z. Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules 2022, 27, 100. [Google Scholar] [CrossRef] [PubMed]
- Mohammadikish, M.; Ghanbari, S. Preparation of monodispersed metal-based infinite coordination polymer nanostructures and their good capability for metal oxide preparation. J. Solid State Chem. 2018, 264, 86–90. [Google Scholar] [CrossRef]
- Zhu, L.-N.; Zhang, L.Z.; Wang, W.-Z.; Liao, D.-Z.; Cheng, P.; Jiang, Z.-H.; Yan, S.-P. [Zn(BDC)(H2O)2]n: A novel blue luminescent coordination polymer constructed from BDC-bridged 1-D chains via interchain hydrogen bonds (BDC = 1,4-benzenedicarboxylate). Inorg. Chem. Commun. 2002, 5, 1017–1021. [Google Scholar] [CrossRef]
- Shi, Y.; Song, M.-M.; Tao, D.-L.; Bo, Q.-B. Two Novel 2D Zn (II) Coordination Polymers with Quinoline-3-Carboxylic Acid and Tetraphenylphthalic Acid: Synthesis and Photoluminescence Properties. J. Chem. Crystallogr. 2020, 50, 198–205. [Google Scholar] [CrossRef]
- Tang, P.; Dong, W.-W.; Xia, W.; Zhao, J. Two New Zn(II)/Cd(II) Coordination Polymers Based on Rigid Squaric Acid: Crystal Structure, Topology and Fluorescent Properties. J. Inorg. Organomet. Polym. 2015, 25, 569–575. [Google Scholar] [CrossRef]
- Wibowo, A.H.; Suryandari, Y.; Masykur, A.; Perez-Yañez, S.; Rodríguez Diéguez, A.; Cepeda, J. Zinc/Itaconate Coordination Polymers as First Examples with Long-Lasting Phosphorescence Based on Acyclic Ligands. J. Mater. Chem. C 2018, 6, 10870–10880. [Google Scholar] [CrossRef]
- Hua, J.; Zhao, Y.; Liu, Q.; Zhao, D.; Chen, K.; Sun, W. Zinc(II) coordination polymers with substituted benzenedicarboxylate and tripodal imidazole ligands: Syntheses, structures and properties. Cryst. Eng. Comm. 2014, 16, 7536–7546. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wang, S.-Y.; Xia, B.; Wang, Q.-L.; Ma, Y. Two zinc coordination polymers with photochromic behaviors and photo-controlled luminescence property. Cryst. Eng. Comm. 2020, 22, 5162–5169. [Google Scholar] [CrossRef]
- Burlak, P.V.; Samsonenko, D.G.; Kovalenko, K.; Fedin, V. Synthesis, structure and luminescent properties of Zn(II) metal–organic frameworks constructed by flexible and rigid ligands. Polyhedron 2022, 222, 115880. [Google Scholar] [CrossRef]
- Fan, C.-B.; Meng, X.-M.; Fan, Y.-H.; Zong, Z.-A.; Zhang, X.-Y.; Bi, C.-F. Two 3D ZnII Metal-Organic Frameworks with 3- and 8-Fold Interpenetration: Syntheses, Structures, Photodegradation, and Photoluminescent Properties. Aust. J. Chem. 2016, 70, 314–321. [Google Scholar] [CrossRef]
- Fan, C.-B.; Meng, X.-M.; Fan, Y.-H.; Cui, L.-S.; Zhang, X.; Bi, C.-F. Synthesis, crystal structures and photoluminescent properties of two Cd(II)/Zn(II) coordination polymers with rarely 8-/2-fold interpenetrated based on 4,4′-stilbenedicarboxylic acid and imidazole ligands. J. Coord. Chem. 2017, 70, 734–745. [Google Scholar] [CrossRef]
- Li, W.-W.; Zhang, Z.-T. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties. J. Mol. Struct. 2016, 1106, 1–4. [Google Scholar] [CrossRef]
- Xia, X.; Xia, L.; Zhang, G.; Jiang, Y.; Sun, F.; Wu, H. A 2-D Zn(II) coordination polymer based on 4,5-imidazoledicarboxylate and bis(benzimidazole) ligands: Synthesis, crystal structure and fluorescence properties. Z. Naturforsch. B 2021, 76, 313–318. [Google Scholar] [CrossRef]
- Cao, T.; Peng, Y.; Liu, T.; Wang, S.; Dou, J.; Li, Y.; Zhou, C.; Li, D.; Bai, J. Assembly of a series of d10 coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: Syntheses, structures and fluorescence properties. Cryst. Eng. Comm. 2014, 16, 10658–10673. [Google Scholar] [CrossRef]
- Narea, P.; Cisterna, J.; Cárdenas, A.; Amo-Ochoa, P.; Zamora, F.; Climent, C.; Alemany, P.; Conejeros, S.; Llanos, J.; Brito, I. Crystallization Induced Enhanced Emission in Two New Zn(II) and Cd(II) Supramolecular Coordination Complexes with the 1-(3,4-Dimethylphenyl)-5-Methyl-1H-1,2,3-Triazole-4-Carboxylate Ligand. Polymers 2020, 12, 1756. [Google Scholar] [CrossRef]
- Yang, J.-X.; Zhang, X.; Qin, Y.-Y.; Yao, Y.-G. N-donor auxiliary ligand influence on the coordination mode variations of V-shaped triazole dicarboxylic acid ligand affording seven new luminescent Zn(II) compounds with variable structural motifs. Cryst. Growth Des. 2020, 20, 6366–6638. [Google Scholar] [CrossRef]
- Ma, T.; Li, M.-X.; Wang, Z.-X.; Zhang, J.-C.; Shao, M.; He, X. Structural Diversity, Luminescence, and Magnetic Properties of Eight Co(II)/Zn(II) Coordination Polymers Constructed from Semirigid Ether-Linked Tetracarboxylates and Bend Dipyridyl-Triazole Ligands. Cryst. Growth Des. 2014, 14, 4155–4165. [Google Scholar] [CrossRef]
- Domasevich, K.V.; Campitelli, P.; Moroni, M.; Bassoli, S.; Mercuri, G.; Pugliesi, M.; Giambastiani, G.; Di Nicola, C.; Rossin, A.; Galli, S. Coordination polymers of d- and f-elements with (1,4-phenylene)dithiazole dicarboxylic acid. Inorg. Chim. Acta 2022, 537, 120923. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.-B.; Yang, G.-S.; Xiong, Z.-Q.; Liu, H.; Wen, H.-L. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties. J. Solid State Chem. 2015, 231, 70–79. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.-Y.; Li, P.-Z.; Bi, Y.-G.; Yu, C.; Shi, X.-D.; Chi, Z.-X. Self-assembly of three 1-D zinc–benzenedicarboxylate coordination polymers with 1,10-phenanthroline. J. Coord. Chem. 2010, 63, 3923–3932. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Jiao, S.; Song, X.; Li, S.; Liu, K.; Wang, L. Coordination polymers driven by 2,5-dibromoterephthalic acid and chelating co-ligands: Syntheses, structures and luminescent properties. J. Solid State Chem. 2020, 292, 121721. [Google Scholar] [CrossRef]
- Kumar, M.A.; Kumar, S.A.; Krishna, S.; Jagdish, P. Synthesis, characterization and fluorescence properties of mixed-ligand cobalt(II), copper(II), zinc(II) and cadmium(II) coordination polymer complexes involving 4,4′-bipyridine and 2,5-pyridinedicarboxylic acid. Res. J. Chem. Environ. 2021, 25, 147–156. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Fedin, V.P. Zn(II) coordination polymer with π-stacked 4,4′-bipyridine dimers: Synthesis, structure and luminescent properties. Polyhedron 2022, 219, 115793. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Guo, L.; Dong, W.; Jia, M.; Zhang, J.-X.; Sun, Z.; Chang, F. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5′-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid. J. Solid State Chem. 2016, 240, 82–90. [Google Scholar] [CrossRef]
- Wen, H.; Gong, Y.; Lai, B.; Liu, Z.; Xiong, Z.g; Liu, C. Three Microporous Zn Coordination Polymers Constructed by 3,4,5-Tris(carboxymethoxy)benzoic Acid and 4,4′-bipyrdine: Structures, Topologies, and Luminescence. J. Solid State Chem. 2018, 266, 143–149. [Google Scholar] [CrossRef]
- Zuo, M.; Yuan, N.; Gao, Y.; Li, Y.; Cui, S. Two new Zinc (II)-viologen coordination polymers: Syntheses, structures, and photochromic behaviors. J. Mol. Struct. 2023, 1273, 134315. [Google Scholar] [CrossRef]
- Gurtovyi, R.I.; Gavrish, S.P.; Tsymbal, L.V.; Apostu, M.-O.; Cazacu, M.; Shova, S.; Lampeka, Y.D. 2D coordination polymers and ionic complexes of the nickel(II) and zinc(II) cyclam cations with trigonal carboxylate linkers based on triazine core. Crystal structures, supramolecular catenation and spectral characterization. Polyhedron 2022, 221, 115870. [Google Scholar] [CrossRef]
- Ma, L.Z.; Wang, C.M.; Tian, L.; Cheng, L. A multi-responsive luminescent indicator based on a Zn(II) metal-organic framework with “Turn on” sensing of pyridine and “Turn off” sensing of Fe3+, Cr2O72− and antibiotics in aqueous media. Inorg. Chim. Acta 2021, 526, 120513. [Google Scholar] [CrossRef]
- Cai, H.; Li, N.; Yan, L.; An, D.-M. New Three-Dimensional Zn(II)/Cd(II)-Based Coordination Polymers as luminescent sensor for Cu2+. Inorg. Chim. Acta. 2020, 512, 119886. [Google Scholar] [CrossRef]
- Zhu, C.-Y.; Wang, C.-L.; Chen, L.; Gao, W.; Li, P.; Zhang, X.-M. A water-stable Zn(II) coordination polymer for a high sensitivity detection of Fe3+ and 2,4,6-trinitrophenol. J. Solid State Chem. 2022, 310, 123079. [Google Scholar] [CrossRef]
- Wang, J.-K.; Wang, X.-W.; Wang, Z.-S.; Yao, L.-S.; Niu, L.-Z.; Yu, Y.-H.; Gao, J.-S. Two zinc coordination polymers constructed by 4′-hydroxy-[1,1′-biphenyl]-3,5-dicarboxylic acid (H2BDA) and 4-hydroxy-[1,1′-biphenyl]-3,3′,5,5′-tetracarboxylic acid (H3BTA): Synthesis, structures and luminescence identifying properties. Polyhedron 2019, 167, 85–92. [Google Scholar] [CrossRef]
- Wang, L.-B.; Wang, J.-J.; Yue, E.-L.; Li, J.-F.; Tang, L.; Wang, X.; Hou, X.-Y.; Zhang, Y.; Ren, Y.-X.; Chen, X.-L. Luminescent Zn (II) coordination polymers for highly selective detection of triethylamine, nitrobenzene and tetracycline in water systems. Dyes Pigm. 2022, 197, 109863. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, R.; Zhang, J.; Cheng, G.; Yang, H. Lanthanide (Tb3+, Eu3+)-functionalized a new one dimensional Zn-MOF composite as luminescent probe for highly selectively sensing Fe3+. Polyhedron 2018, 148, 178–183. [Google Scholar] [CrossRef]
- Ren, G.; Li, Z.; Li, M.; Liang, Z.; Yang, W.; Qiu, P.; Pan, Q.; Zhu, G. A hexanuclear cluster based metal-organic framework for Fe3+ sensing. Inorg. Chem. Commun. 2018, 91, 108–111. [Google Scholar] [CrossRef]
- Verma, P.; Singh, U.P.; Butcher, R.J.; Banerjee, S.; Roy, P. Nanoscale coordination polymers with live-cell imaging property. J. Mol. Struct. 2022, 1249, 131590. [Google Scholar] [CrossRef]
- Farahani, Y.D.; Safarifard, V. Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine decorated pores. J. Solid State Chem. 2019, 275, 131–140. [Google Scholar] [CrossRef]
- Ma, J.-X.; Xu, N.; Wang, Y.; Liu, G.-C.; Wang, X.-L. Three Zn(II) coordination polymers as dual-responsive luminescent probes for highly selective detection of Fe3+ cation and MnO4− anion. Z. Anorg. Allg. Chem. 2022, 648, e202100331. [Google Scholar] [CrossRef]
- Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B.; Gu, W.; Liu, X. Zinc Metal-Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution. Inorg. Chem. 2017, 56, 12348–12356. [Google Scholar] [CrossRef]
- Xiao, Z.Z.; Han, L.J.; Wang, Z.J.; Zheng, H.G. Three Zn(II)-based MOFs for luminescence sensing of Fe3+ and Cr2O72− ions. Dalton Trans. 2018, 47, 3298–3302. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.Y.; You, S.Y. A luminescent pillar-layer Zn(II) metal–organic framework for the ultrasensitive detection of nitroaniline. Inorg. Chim. Acta 2020, 509, 119703. [Google Scholar] [CrossRef]
- Chai, Y.-H.; Liu, X.-Y.; Cui, Z.-Y.; Zhao, Y.; Ma, L.-F.; Zhao, B.-T. Design and syntheses of two luminescent metal-organic frameworks for detecting nitro-antibiotic, Fe3+ and Cr2O72−. J. Solid State Chem. 2022, 312, 123211. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, X.; Wang, S.; Lu, J.; Li, Y.; Li, D.; Dou, J. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72− ions. J. Solid State Chem. 2018, 261, 75–85. [Google Scholar] [CrossRef]
- Liu, G.; Han, S.; Gao, Y.; Xu, N.; Wang, X.; Chen, B. Multifunctional fluorescence responses of phenyl-amide-bridged d10 coordination polymers structurally regulated by dicarboxylates and metal ions. Cryst. Eng. Commun. 2020, 22, 7952–7961. [Google Scholar] [CrossRef]
- Chi, J.; Zhong, B.; Li, Y.; Shao, P.; Liu, G.; Gao, Q.; Chen, B. Uncoordinated-substituents-induced zinc(II) coordination polymers exhibiting multifunctional fluorescent sensing activity for cations, anions and organochlorine pesticides. Z. Anorg. Allg. Chem. 2021, 647, 1284–1293. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, X.; Zhang, N.; Wang, Y.; Zhao, L.; Yang, Q. Novel multifunctional Zn metal–organic framework fluorescent probe demonstrating unique sensitivity and selectivity for detection of PA and Fe3+ ions in water solution. Cryst. Growth Des. 2019, 19, 5729–5736. [Google Scholar] [CrossRef]
- Geng, J.; Li, Y.; Lin, H.; Liu, Q.; Lu, J.; Wang, X. A new three-dimensional zinc(II) metal–organic framework as a fluorescence sensor for sensing the biomarker 3-nitrotyrosine. Dalton Trans. 2022, 51, 11390–11396. [Google Scholar] [CrossRef]
- Zhao, X.-X.; Qin, Z.-B.; Li, Y.-H.; Cui, G.-H. New Cd(II) and Zn(II) coordination polymers showing luminescent sensing for Fe(III) and photocatalytic degrading methylene blue. Polyhedron 2018, 153, 197–204. [Google Scholar] [CrossRef]
- Wang, H.; Gao, T.; Zhang, Y. Synthesis of two 3D supramoleculars and their fluorescent sensing for nitroaromatic compounds/Fe3+ ions in aqueous medium. Inorg. Chem. Commun. 2020, 122, 108293. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, Y.; Liu, M.; Ren, Y.; Wang, Z.; Cao, J.; Wang, J. Two zinc(II) coordination polymers based on flexible co-ligands featuring assembly imparted sensing abilities for Cr2O72− and o-NP. RSC Adv. 2019, 9, 21086–21094. [Google Scholar] [CrossRef] [Green Version]
- Park, M.K.; Lim, K.S.; Park, J.H.; Song, J.H.; Kang, D.W.; Lee, W.R.; Hong, C.S. Two- and three-dimensional Zn(II) coordination polymers constructed from mixed ligand systems: Interpenetration, structural transformation and sensing behavior. Cryst. Eng. Commun. 2016, 18, 4349–4358. [Google Scholar] [CrossRef]
- Lu, L.; He, J.; Wang, J.; Wu, W.P.; Li, B.; Singh, A.; Kumar, A.; Qin, X. Luminescent sensing and photocatalytic degradation in a new 3D Zn(II)-based highly luminescent metal−organic framework. J. Mol. Struct. 2019, 1179, 612–617. [Google Scholar] [CrossRef]
- Xu, T.-Y.; Li, J.M.; Han, Y.H.; Wang, A.R.; He, K.H.; Shi, Z.F. A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal-organic framework: The sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol. New J. Chem. 2020, 44, 4011–4022. [Google Scholar] [CrossRef]
- Wang, X.-W.; Su, Y.-Q.; Blatov, V.A.; Cui, G.-H. Three Zn(II) luminescent coordination polymers as sensors for the sensing of levofloxacin and benzaldehyde. J. Mol. Struct. 2023, 1272, 134239. [Google Scholar] [CrossRef]
- Yin, J.C.; Li, N.; Qian, B.B.; Yu, M.H.; Chang, Z.; Bu, X.H. Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe3+ and Cr2O72− ions in aqueous systems. J. Coord. Chem. 2020, 73, 2718–2727. [Google Scholar] [CrossRef]
- Jia, J.; Wang, P.; Chai, J.; Ma, B.; Sun, J.; Chen, X.; Fan, Y.; Wang, L.; Xu, J. Construction of new zinc(II) coordination polymers by 1-(triazol-1-yl)−2,4,6-benzenetricarboxylate ligand for sensitizing lanthanide(III) ions and sensing small molecules. J. Solid State Chem. 2017, 253, 430–437. [Google Scholar] [CrossRef]
- Zhang, M.N.; Fan, T.T.; Wang, Q.S.; Han, H.L.; Li, X. Zn/Cd/Cu- frameworks constructed by 3,3′-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium. J. Solid State Chem. 2018, 258, 744–752. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Blatov, V.A.; Lv, X.X.; Yang, C.H.; Qian, L.L.; Li, K.; Li, B.L.; Wu, B. Construction of five zinc coordination polymers with 4-substituted bis(trizole) and multicarboxylate ligands: Syntheses, structures and properties. Polyhedron 2018, 155, 223–231. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.-W. A novel Zn(II)-based coordination polymer: Fluorescence sensing property and treatment activity on glomerulus nephritis by reducing ROS production. J. Polym. Res. 2020, 27, 370. [Google Scholar] [CrossRef]
- Hasi, Q.-M.; Su, X.-H.; Mu, X.-T.; Wei, Y.-M. Synthesis, crystal structures and selective luminescence sensing property of Zn(II) coordination polymers based on semi-rigid tricarboxylic acid ligands. J. Mol. Struct. 2022, 1263, 133162. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.; Zhai, L.; Liang, J.; Liang, J.; Niu, X.; Hu, T. Fluorescent sensing properties of Cd (II)/Zn (II) metal–organic frameworks based on 3,5-di(2′,5′-dicarboxylphenyl)benozoic acid. Polyhedron 2019, 164, 90–95. [Google Scholar] [CrossRef]
- Yang, S.L.; Liu, W.S.; Li, G.; Bu, R.; Li, P.; Gao, E.Q. A pH-Sensing Fluorescent Metal-Organic Framework: pH-triggered fluorescence transition and detection of mycotoxin. Inorg. Chem. 2020, 59, 15421–15429. [Google Scholar] [CrossRef]
- Li, S.; Lu, L.; Zhu, M.; Feng, S.; Su, F.; Zhao, X. Exploring the syntheses, structures, topologies, luminescence sensing and magnetism of Zn(II) and Mn(II) coordination polymers based on a semirigid tricarboxylate ligand. Cryst. Eng. Comm. 2018, 20, 5442–5456. [Google Scholar] [CrossRef]
- Mai, Z.; Luo, X.; Lei, H. Ionothermal synthesis of Zn(II) coordination polymers with fluorescent sensing and selective dye adsorption properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1746–1754. [Google Scholar] [CrossRef]
- Yang, H.; Qi, D.; Chen, Z.; Cao, M.; Deng, Y.; Liu, Z.; Shao, C.; Yang, L. A Zn-based metal–organic framework as bifunctional chemosensor for the detection of nitrobenzene and Fe3+. J. Solid State Chem. 2021, 296, 121970. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Chen, F.-M.; Wen, Q.; Zhou, C.-C.; He, X.; Li, Y.; Liu, H.-F. Zn-based coordination polymers with tricarboxylic acid ligand: Fluorescence sensor toward Fe3+ and MnO4−. J. Mol. Struct. 2022, 1252, 32183. [Google Scholar] [CrossRef]
- Adala, A.; Debbache, N.; Sehili, T. Two coordination polymers synthesized from various N-donor clusters spaced by terephthalic acid for efficient photocatalytic degradation of ibuprofen in water under solar and artificial irradiation. ACS Omega 2022, 7, 9276–9290. [Google Scholar] [CrossRef]
- Wang, J.; Lu, L.; He, J.-R.; Wu, W.-P.; Gong, C.; Fang, L.; Pan, Y.; Singh, A.K.; Kumar, A. Photocatalytic performances of two new Cd(II) and Zn(II)-based coordination polymers. J. Mol. Struct. 2019, 1182, 79–86. [Google Scholar] [CrossRef]
- Zhou, S.-H.; Wang, J.; Liu, Y.-W.; Zhong, Y.; Sun, Y.-C.; Xie, B.; Ma, A.; Singh, A.; Muddassir, M.; Kumar, A. Structures and photocatalytic properties of two new Zn(II) coordination polymers based on semirigid V-shaped multicarboxylate ligands. RSC Adv. 2020, 10, 18721–18727. [Google Scholar] [CrossRef]
- Xue, Y.-S.; Cheng, W.-W.; Chen, Z.-L.; Kong, W.; Zhang, J. A novel three-dimensional zinc (II) coordination polymer based on 3,3′-{1,3-phenylene-bis(methylene)]bis(oxy)}dibenzoic acid and 1,4-bis(pyridine-4-yl)benzene: Synthesis, crystal structure and photocatalytic properties. Acta. Crystogr. 2020, 76, 353–358. [Google Scholar] [CrossRef]
- Wang, S.-L.; Huang, W.-F.; Wei, Q.-M.; Chen, Z.-L.; Tan, M.-X. A novel Zn(II) coordination polymer based on tetra-carboxylates ligand and N-donor ligand: Synthesis, structure and photocatalytic properties. Mol. Cryst. Liq. Cryst. 2018, 667, 78–87. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, D.; Li, Y.-H.; Cui, G.-H. Syntheses, crystal structures, and photocatalytic properties of two zinc (II) coordination polymers based on dicarboxylates and flexible bis(benzimidazole)ligands. Polyhedron 2019, 167, 44–50. [Google Scholar] [CrossRef]
- Kaeosamut, N.; Chimupala, Y.; Yimklan, S. Anion-controlled synthesis of enantiomeric twofold interpenetrated 3D zinc (II) coordination polymer with ligand substitution-induced single-crystal-to-single-crystal transformation and photocatalysis. Cryst. Growth Des. 2021, 21, 2942–2953. [Google Scholar] [CrossRef]
- Liu, C.; Xing, Z.; Liu, L.; Han, Z.-B. Ultrasound-assisted synthesis of a benzimidazole-containing Zn(II) coordination polymer as highly effective Lewis acid catalyst for cycloaddition of epoxides with CO2. Inorg. Chem. Commun. 2020, 113, 107812. [Google Scholar] [CrossRef]
- Wei, X.-J.; Liu, D.; Li, Y.-H.; Cui, G.-H. Two Zn(II) coordination polymers based on 5-substituted isophthalic acid: Syntheses, crystal structures, luminescence sensing properties. Polyhedron 2019, 158, 357–364. [Google Scholar] [CrossRef]
- Coceição, N.R.; Nobre, B.; Karmakar, A.; Palavra, A.; Mahmudov, K.; Guedes da Silva, F.; Pombeiro, A. Knoevenagel condensation reaction in supercritical carbon dioxide medium using a Zn(II)coordination polymer as catalyst. Inorg. Chim. Acta 2022, 538, 120981. [Google Scholar] [CrossRef]
- Jana, S.; Datta, J.; Maity, S.; Thakurta, B.; Ray, P.P.; Sinha, C. Tetrameric and polymeric Zn(II) coordination complexes of 4-diallylamino benzoic acid and their applications in the electroreduction of CO2 and Schotty diode behavior. Crys. Growth Des. 2021, 21, 5240–5250. [Google Scholar] [CrossRef]
- Wang, X.; Xue, M.; Wu, G.; Pan, Y.; Qiu, S. Constructing two new crystalline metal-organic frameworks based on a mixed-donor ligand. Inorg. Chem. Commun. 2016, 64, 31–34. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Duan, C.-P.; Qin, L.; Liu, J.-L.; Wang, Y.-Q.; Li, J.; Zhang, Y.-L.; Zhang, M.-D. Luminiscence sensing for one Zn MOF and improvement of hydrogen evolution performance by cobalt doping. J. Solid State Chem. 2022, 310, 123092. [Google Scholar] [CrossRef]
- Colinas, I.; Rojas-Andrade, M.; Chakraborty, I.; Oliver, S. Two structurally diverse Zn-based coordination polymers with excellent antibacterial activity. CrystEngComm 2018, 20, 3353–3362. [Google Scholar] [CrossRef]
- Szmigiel-Bakalarz, K.; Skoczyńska, A.; Lewańska, M.; Günther, D.; Oeckler, O.; Malik-Gajewska, M.; Michalska, D.; Morzyk-Ociepa, B. New Zn(II) coordination polymer of indole-3-acetic acid, a plant growth promoting hormone: Crystal structure, spectroscopic characterization, DFT calculations and microbiological activity. Polyhedron 2020, 185, 114582. [Google Scholar] [CrossRef]
- Patel, Y.; Dixit, R.; Patel, H.S. Synthesis, characterization and biological activity of coordination polymers derived from pyromellitic dianhydride. Turk J. Chem. 2013, 37, 978–986. [Google Scholar] [CrossRef]
- Chandra, A.; Das, M.; Pal, K.; Jana, S.; Dutta, B.; Ray, P.P.; Jana, K.; Sinha, C. Three-dimensional-coordination polymer of Zn(II)-carboxylate: Structural elucidation, photoelectrical conductivity, and biological activity. ACS Omega 2019, 4, 17649–17661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Ma, X.; Shao, D.; Geng, Z.; Zhang, Z.; Wang, Z. Coordination induced assembly of coordination polymer submicrospheres: Promising antibacterial and in vitro anticancer activities. Cryst. Growth Des. 2012, 12, 3786–3791. [Google Scholar] [CrossRef]
- Yu, X.; Jin, T.; Lu, F.; Luo, Z.-J.; Liu, C.; Jin, W.-X. Two Zn(II) coordination polymers: Selective detection of Fe3+ ion and inhibitory activity on the liver cancer viability by regulating the prolyl hydrolase-3. Arab. J. Chem. 2021, 14, 102998. [Google Scholar] [CrossRef]
- Gogoi, A.; Das, A.; Frontera, A.; Verma, A.; Bhattacharyya, M. Energetically significant unconventional p-p contacts involving fumarate in a novel coordination polymer of Zn(II): In vitro anticancer evaluation and theoretical studies. Inorg. Chim. Acta. 2019, 493, 1–13. [Google Scholar] [CrossRef]
- Ji, X.; Zhu, X.; Chen, S.; Song, D.; Wu, S.; Zhang, Y.; Gao, E.; Xu, J.; Zhu, M. Two Cu(II) and Zn(II) complexes derived from 5-(pyrazol-1-yl)nicotinic acid: Crystal structure, DNA binding and anticancer studies. J. Solid State Chem. 2022, 305, 122707. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ganguly, S.; Manna, K.; Mondal, S.; Mahapatra, S.; Das, D. Green approach to synthesize crystalline nanoscale ZnII-coordination polymers: Cell growth inhibition and immunofluorescence study. Inorg. Chem. 2018, 57, 4050–4060. [Google Scholar] [CrossRef]
- Han, X.-S.; Li, T.; Zhang, X.-A.; Lu, J. A new 3D zinc (II)-coordination polymer: Treatment activity on lymphoma combined with doxorubicin via regulating apoptotic genes expression. Inorg. Nano-Met. Chem. 2020, 51, 467–473. [Google Scholar] [CrossRef]
- Sun, Y.F.; Shao, L.W.; Chen, Q.; Gao, X.; Li, F.; Wu, C.Y. Two new mixed-ligand coordination polymers based on multi-N chelating ligand inhibit YAP expression and induce caspase-mediated spinal tumor cell apoptosis. Braz. J. Med. Biol. Res. 2019, 52, e8499. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.-L.; Guo, L.-J. Application value of a new Zn(II)-coordination polymer in enteral nutrition rehabilitation by enhancing intenstinal villi transport function. J. Indian Chem. Soc. 2022, 99, 10413. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, L.; Zhang, Y.; Liu, Y.; Ji, D.-H. A fluorescent Zn(II) coordination polymer: Sensitive detection of Cr2O72− in water and prevention activity on the deep vein thrombosis in orthopedic nursing. J. Fluoresc. 2020, 30, 1225–1232. [Google Scholar] [CrossRef]
- Sang, S.-M.; Zhang, M.-X. Zn(II) coordination polymers: Therapeutic activity and nursing application values against coronary heart disease. Des. Monomers Polym. 2022, 25, 128–135. [Google Scholar] [CrossRef]
- Liu, H.-M.; Shang, X.-N. Two new Cd(II)/Zn(II) coordination polymers: Luminescence properties and synergistic treatment activity with ultrasound therapy on uterine fibroids. Des. Monomers Polym. 2022, 25, 197–204. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Z.; Zhang, Y.; Zhao, D.; Yang, J.; Zhang, X. p-Terphenyl-2,2”,5,5”-tetracarboxylate acid based bifunctional 1D zinc (II) metal-organic platform for luminiscent sensing and gas adsorption. Inorg. Chem. Commun. 2019, 107, 107463. [Google Scholar] [CrossRef]
- Yilmaz, H.; Andac, O. A novel zinc (II) complex containing square pyramidal, octahedral and tetrahedral geometries on the same polymeric chain constructed from pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole. J. Chem. Sci. 2018, 130, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Li, X.; Dong, Y. Photoluminiscence and gas sorption properties of a new zinc(II) coordination polymer constructed from biphenyl-3,3′,5,5′-tetracarboxylate ligand. Z. Anorg. Allg. Chem. 2015, 641, 596–600. [Google Scholar] [CrossRef]
- Lee, L.-W.; Luo, T.-T.; Lo, S.-H.; Lee, G.-H.; Peng, S.-M.; Liu, Y.-H.; Lee, S.-L.; Lu, K.-L. Pillared-bilayer zinc (II)-organic laminae: Pore modification and selective gas adsorption. Cryst. Eng. Comm. 2015, 17, 6320–6327. [Google Scholar] [CrossRef]
- Sato, H.; Matsuda, R.; Sugimoto, K.; Takata, M.; Kitagawa, S. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nat. Mater. 2010, 9, 661–666. [Google Scholar] [CrossRef]
- Sezer, G.G.; Yeșiler, O.K.; Șahin, O.; Arslanoğlu, H.; Erucar, I. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations. J. Mol. Struct. 2017, 1143, 355–361. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, W.; Chen, Z.-F.; Xiong, R.-G.; Abrahams, B.; Fun, H.-K. The first four-fold interprenetrating diamantoid framework that traps gaseous molecules: {Zn[trans-3-(4-pyridyl)acrylate]2∙(trans-2-butene)}n. J. Chem. Soc. Dalton Trans. 2001, 1806–1808. [Google Scholar] [CrossRef]
- Zaguzin, A.S.; Sukhikh, T.S.; Sakhapov, I.F.; Fedin, V.P.; Sokolov, M.N.; Adonin, S.A. Zn(II) and Co(II) 3D coordination polymers based on 2-iodoterephtalic acid and 1,2-bis(4-pyrydil)ethane: Structures and sorption properties. Molecules 2022, 27, 1305. [Google Scholar] [CrossRef] [PubMed]
- Zaguzin, A.S.; Sukhikh, T.; Kolesov, B.; Sokolov, M.; Fedin, V.; Adonin, S. Iodinated vs non-iodinated: Comparison of sorption selectivity by [Zn2(bdc)2(dabco)]n and superstructural 2-iodoterephtalate-based metal-organic framework. Polyhedron 2022, 212, 115587. [Google Scholar] [CrossRef]
- Glover, G.; Peterson, G.; Schindler, B.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170. [Google Scholar] [CrossRef]
- Lawson, S.; Newport, K.; Schueddig, K.; Rownaghi, A.A.; Rezaei, F. Optimizing ibuprofen concentration for rapid pharmacokinetics on biocompatible zinc-based MOF-74 and UTSA-74. Mater. Sci. Eng. C 2020, 117, 111336. [Google Scholar] [CrossRef]
- Luo, F.; Yan, C.; Dang, L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X.; Han, Y.; Hu, T.-L.; O’Keeffe, M.; et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc. 2016, 138, 5678–5684. [Google Scholar] [CrossRef]
- Nunez Lucena, G.; Alves, R.C.; Abuçafy, M.P.; Chiavacci, L.A.; da Silva, I.C.; Pavan, F.R.; Galvão Frem, R.C. Zn-based porous coordination solid as diclofenac sodium carrier. J. Solid State Chem. 2018, 260, 67–72. [Google Scholar] [CrossRef]
- Xia, S.-B.; Li, F.-S.; Shen, X.; Li, X.; Cheng, F.-X.; Sun, C.-K.; Guo, H.; Liu, J.-J. Photochromic zinc-based coordination polymer for Li-ion batteries anode with high capacity and stable cycling stability. Dalton. Trans. 2018, 47, 13222–13228. [Google Scholar] [CrossRef]
- Song, Y.; Yu, L.; Gao, Y.; Shi, C.; Cheng, M.; Wang, X.; Liu, H.-J.; Liu, Q. One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries. Inorg. Chem. 2017, 56, 11603–11609. [Google Scholar] [CrossRef]
- Sanda, S.; Biswas, S.; Konar, S. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature. Inorg. Chem. 2015, 54, 1218–1222. [Google Scholar] [CrossRef]
- Agarwal, R. One dimensional coordination polymer of Zn(II) for developing multifunctional nanoparticles. Sci. Rep. 2017, 7, 13212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Che, Y.; Zhang, Z.; Yang, X.; Zang, L. Fluorescent nanoscale zinc(II)-carboxylate coordination polymers for explosive sensing. Chem. Commun. 2011, 47, 2336–2338. [Google Scholar] [CrossRef]
- Algucil, F.J.; López, F.A. Organic dyes versus adsorption processing. Molecules 2021, 26, 5440. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, X.; Gao, J.; Ma, Y. Studying of the structure diverse and photocatalytic activities of two 1,4-bis(imidazole-1-methyl)-benzene-based coordination polymers. Inorg. Chim. Acta 2023, 544, 121227. [Google Scholar] [CrossRef]
- Pérez-Sequera, A.; Díaz-Pérez, M.A.; Serrano-Ruiz, C. Recent advances in the electroreduction of CO2 over heteroatom-doped carbon materials. Catalysts 2020, 10, 1179. [Google Scholar] [CrossRef]
- Mohammadikish, M.; Yarahmadi, S.; Molla, F. A new water-insoluble coordination polymer as efficient dye adsorbent and olefin epoxidation catalyst. J. Environ. Manag. 2020, 254, 109784. [Google Scholar] [CrossRef] [PubMed]
- Olar, R.; Badea, M.; Chifiriuc, M.C. Metal complexes—A promising approach to target biofilm associated infections. Molecules 2022, 27, 758. [Google Scholar] [CrossRef]
- Cuajungo, M.P.; Ramirez, M.S.; Tolmasky, M.E. Zinc: Multidimensional effects on living organisms. Biomedicines 2021, 9, 208. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Iskandarov, A.; Tada, T. Coordination polymer design for fast proton conduction: Hybrid atomistic approach based on kinetic Monte Carlo and molecular dynamics methods. Mater. Des. 2022, 222, 111094. [Google Scholar] [CrossRef]
- Lai, J.-C.; Li, L.; Wang, D.-P.; Zhang, M.-H.; Mo, S.-R.; Wang, X.; Zeng, K.-Y.; Li, C.-H.; Jiang, Q.; You, X.-Z.; et al. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Complex | Carboxylate Ligand (Bridge Coordination Mode)/Second Ligand | Application | Ref. |
---|---|---|---|
Species developed as sensors | |||
{[Zn(ttpa)]⋅1.5DMA}n (13) | 2,5-bis-(1,2,4-triazol-1-yl)-terephthalate (μ4) | Fe(III), Cr2O72−, and antibiotics (nitrofurazone, nitrofurantoin, dimetridazole) detection at μM level | [48] |
[Zn(dttp)(H2O)]n (14) | 2,5-di(1H-1,2,4-triazol-1-yl)terephthalate (μ4)/water | Cu(II) ion detection at μM level | [49] |
[Zn(piph)(H2O)2]n (15) | 5-(pyrazin-2-yl)isophthalate (μ2)/water | Fe(III) ion and TNP detection at μM level | [50] |
[Zn(bda)]n (16) | 4′-hydroxy-[1,1′-biphenyl]-3,5-dicarboxylate (μ2) | TNT, and Fe(III) detection | [51] |
[Zn3(bta)2(H2O)4]n (17) | 4-hydroxy-[1,1′-biphenyl]-3,3′,5,5′-tetracarboxylate (μ2)/water | trinitrotoluene, and Fe(III) detection | [51] |
{[Zn3(eptc)1.5(DMF)3]·C2H7N}n (18) | 1,1′-ethylbiphenyl-3,3′,5,5′-tetracarboxylic acid (μ8)/DMF | trimethylamine, and tetracycline detection at μM level | [52] |
{[Zn(ndic)(H2O)2]·2H2O}n (19) | 5-(5-norbonene-2,3-dicarboximide)isophthalate (μ2)/water | Fe(III) detection at μM level | [53] |
[ZnLi2(cbaiph)(DMF)(H2O)]n (20) | 5-(bis(4-carboxybenzyl)amino)isophthalate (μ3)/DMF, water | Fe(III) detection in 10−4–10−5 M range | [54] |
[Zn(cpma)Cl2]n (21) | 9,10-bis((4-carboxylatopyridinium-1-methylene)anthracene (μ2)/chloride | HCT-15 live cell imaging | [55] |
[Zn2(1,4-bdc)2(4-bpdh)]n⋅3nDMF (22) | 1,4-benzene dicarboxylate (μ2)/2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene | Fe(III), and Cd(II) detection at μM level Selectively detection of CH2Cl2 | [56] |
[Zn2(3-bpat)2(1,3-bdc)2]n·nH2O (23) | 1,3-benzene dicarboxylate (μ2)/N,N’-bis(3-pyridylamide)-3,4-thiophene | Fe(III), and MnO4− detection at μM level | [57] |
[Zn(3-bpat)(5-hip)]n·nH2O (24) | 5-hydroxyisophthalate (μ2)/N,N’-bis(3-pyridylamide)-3,4-thiophene | Fe(III), and MnO4− detection at μM level | [57] |
[Zn(3-bpat)(5-mip)]n (25) | 5-methylisophthalate (μ2)/N,N’-bis(3-pyridylamide)-3,4-thiophene | Fe(III), and MnO4− detection at μM level | [57] |
[Zn2(tpom)(ndc)2]n·3.5nH2O (26) | 2,6-naphthalenedicarboxylate (μ2)/tetrakis(4-pyridyloxymethylene)methane | Fe(III), and Cr2O72− detection at μM level | [58] |
{Zn(dhhpvb)(chdc)}n (27) | 1,4-cyclohexanedicarboxilate (μ2)/E,E-2,5-dihexyloxy-1,4-bis-(2-pyridin-vinyl)-benzene | Fe(III), and Cr2O72− detection | [59] |
{[Zn(dhhpvb)0.5(oba)]·DMF·H2O}n (28) | 4,4′-oxybisbenzoate (μ2)/E,E-2,5-dihexyloxy-1,4-bis-(2-pyridin-vinyl)-benzene | Fe(III), and Cr2O72− detection | [59] |
{[Zn(dhhpvb)0.5(sdb)]·H2O}n (29) | 4,4′-sulfonyldibenzoate (μ2)/E,E-2,5-dihexyloxy-1,4-bis-(2-pyridin-vinyl)-benzene | Fe(III), and Cr2O72− detection | [59] |
{[Zn2(tda)2(azopy)2]·DMF}n (30) | thiophene-2,5-dicarboxylate (μ3)/4,4′-azobispyridine | o/m/p-nitroaniline detection at μM level | [60] |
[Zn2(cpif)2(bpe)(H2O)2]n⋅2nH2O (31) | 5-(2-cyanophenoxy)isophthalate (μ2)/1,2-bis(4-pyridyl)ethane | nitro-antibiotics, Cr2O72− and Fe(III) detection at μM level | [61] |
[Zn(cpif)(bpp)]n (32) | 5-(2-cyanophenoxy)isophthalate (μ2)/1,3-bis(4-pyridyl)propane | nitro-antibiotics, Cr2O72− and Fe(III) detection at μM level | [61] |
{[Zn(bdmsb)(bpp)]·DMF}n (33) | 2,2′-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoate (μ2)/1,3-bis(4-pyridyl)propane | Fe(III) and Cr2O72−detection at μM level | [62] |
{[Zn(bdmsb)(bpe)]·DMF}n (34) | 2,2′-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoate (μ2)/1,2-bis(4-pyridyl)ethane | Fe(III) and Cr2O72−detection at μM level | [62] |
[Zn(bptpa)(1,2-bdc)]n (35) | 1,2-benzene dicarboxylate (μ2)/N,N′-bis(pyridin-3-ylmethyl)-terephthalamide | Selective Fe(III), CrO42−, Cr2O72− and 2,6-DC-4-NA detection in 10−4–10−5 M range | [63] |
[Zn(bptpa)(1,3-bdc)]n·nH2O (36) | 1,3-benzene dicarboxylate (μ2)/N,N′-bis(pyridin-3-ylmethyl)-terephthalamide | Selective Fe(III), CrO42−, Cr2O72− and 2,6-DC-4-NA detection in 10−4–10−5 M range | [63] |
[Zn(bptpa)(1,4-bdc)]n·nH2O (37) | 1,4-benzene dicarboxylate (μ2)/N,N′-bis(pyridin-3-ylmethyl)-terephthalamide | Selective Fe(III), CrO42−, Cr2O72− and 2,6-DC-4-NA detection in 10−4–10−5 M range | [63] |
[Zn2(mpnd)2(1,3-bdc)2]n (38) | 1,3-benzene dicarboxylate (μ2)/N,N’-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide | Selective Fe(III), MnO4−, CrO42−, Cr2O72− and, 2,6-dichloro-4-nitroaniline detection in 10−4–10−5 M range | [64] |
[Zn(mpnd)(hip)]n·3nH2O (39) | 5-hydroxyisophthalate (μ2)/N,N’-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide | Selective Fe(III), CrO42−, Cr2O72− and, 2,6-dichloro-4-nitroaniline detection in 10−4–10−5 M range | [64] |
{Zn2(tpt)2(tad)2·H2O}n (40) | 2,5-thiophene dicarboxylate (μ2)/2,4,6-tri(pyridin-4-yl)-1,3,5-triazine | Selective Fe(III), and picric acid detection at μM level | [65] |
[Zn(ebpba)(Hbtc)]n (41) | 1,3,5-benzenetricarboxylic acid (μ2)/(E)-4,4′-(ethene-1,2-diyl)bis[(N-pyridin-3-yl)benzamide]) | Selective 3-NT detection at mM level | [66] |
[Zn(tbta)(mbp)]n (42) | tetrabromoterephthalate (μ2)/1,5-bis(2-methylbenzimidazol-1-yl)pentane) | Fe(III) detection at μM level | [67] |
{[Zn3(bibz)2.5(ox)3(H2O)]·DMF·H2O}n (43) | oxalate (μ2)/1,4-bis(1-imidazolyl)benzene | Fe(III) detection at μM level luminescence probe for nitroaromatics detection | [68] |
[Zn(opda)(pbib)]n (44) | 1,2-phenylenediacetate (μ2)/1,4-bis(1-imidazolyl)benzene | Cr2O72−, and o-NP detection at sub-μM level | [69] |
[Zn(pda)(pbib)(H2O)]n (45) | 1,4-phenylene-diacetate (μ2)/1,4-bis(1-imidazolyl)benzene | Cr2O72−, and o-NP detection at sub-μM level | [69] |
[Zn(dimb)(H2dobdc)]n·1.5nDMA·2.1nH2O (46) | 2,5-dihydroxyterephthalate (μ2)/1,4-di(1H-imidazol-4-yl)benzene | NB detection at μM level | [70] |
[Zn(dimb)(H2dobpdc)]n·0.87nDMF·nH2O (47) | 4,4′-dioxido-3,3′-biphenyldicarboxylate (μ2)/1,4-di(1H-imidazol-4-yl)benzene | NB detection at μM level | [70] |
[Zn4(OH)2(bdc)3(1,4-bip)2]n (48) | benzene-1,3-dicarboxylate (μ2 and μ4)/1,4-bis(2-methyl-imidazole-yl)-propane | 2,4,6-TNP detection at μM level | [71] |
[Zn2(4,4′-nba)2(1,4-bimb)2]n (49) | 3-nitro-4,4′-biphenyldicarboxylate (μ2)/1,4-bis(imidazole-1-ylmethyl)benzene | Fe(III), Cr2O72−, and CrO42− (water) and NB (ethanol) detection at μM level | [72] |
[Zn(pvbim)(1,2-bdc)]n (50) | 1,2-benzene dicarboxylate (μ3)/2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole | levo and bza detection free and paper impregnated | [73] |
[Zn4(pvbim)2(1,3-bdc)3(OH)2]n (51) | 1,3-benzene dicarboxylate (μ3 and μ4)/2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole | levo and bza detection free and paper impregnated | [73] |
[Zn(pvbim)(1,4-bdc)]n (52) | 1,4-benzene dicarboxylate (μ2)/2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole | levo and bza detection free and paper impregnated | [73] |
[Zn(dptz)(1,4-bdc)(H2O)]n (53) | 1,4-benzene dicarboxylate (μ2)/3,6-di(1H-pyrazol-4-yl)-1,2,4,5-tetrazine | Selective Fe(III), and Cr2O72− detection in 10−5–10−6 M range | [74] |
{[Zn2(tzbt)(trz)]·3.5H2O}n (54) | 1-(triazol-1-yl)-2,4,6-benzene tricarboxylate (μ5)/1,2,4-triazolate | antenna to sensitize Tb(III) ion white-light emission by Eu(III) and Tb(III) incorporation | [75] |
{[Zn2(tzbt)(OH)(phen)]·4H2O}n (55) | 1-(triazol-1-yl)-2,4,6-benzene tricarboxylate (μ5)/1,10-phenathroline | antenna to sensitize Tb(III) white-light emission by Tb(III) incorporation acetone sensing | [75] |
[Zn(dpdc)(btb)0.5]n (56) | 3,3′-diphenyldicarboxylate (μ3 and μ4)/1,4-bis(1,2,4-triazol-1-yl)butane | Fe(III), and Al(III) detection | [76] |
{[Zn2(btec)(tmrb)2]·H2O}n (57) | 1,2,4,5-benzenetetracarboxylate (μ4)/1,3-bis(1,2,4-triazol-4-ylmethyl)benzene | Cr2O72−, CrO42− and Fe(III) detection at μM level | [77] |
[Zn2(1,4-bdc)2(dbpt)]n·2nMeOH (58) | 1,4-benzenedicarboxilate (μ2)/2,7-di(4H-1,2,4-triazol-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone | Selective Cr2O72− detection at μM level | [78] |
[Zn2(Hcnoph)2(2,2′-bipy)2]n (59) | 3-[(1-carboxynaphthalen-2-yl)oxy] phthalate (μ2)/2,2′-bipyridine | Ni(II), MnO4−, Cr2O72−, nitrobenzene detection at μM level | [79] |
[Zn(Hcnoph)(phen)(H2O)]n (60) | 3-[(1-carboxynaphthalen-2-yl)oxy] phthalate (μ2)/1,10-phenathroline | Ni(II), MnO4−, Cr2O72−, nitrobenzene detection at μM level | [79] |
[Zn2(Hddpv)(2,2-bipy)]n (61) | 3,5-di(2′,5′-dicarboxylphenyl)benozoylate (μ3)/2,2′-bipyridine | Selective Fe(III), and Cr2O72− detection at mM level | [80] |
[Zn2(tcpbp)(4,4′-bipy)2]n (62) | 2,2′,6,6′-tetra(4-carboxyphenyl)-4,4′-bipyridine (μ4)/4,4′-bipyridine | pH sensitive detection of 3-nitropropionic acid at μM level | [81] |
[Zn2(cpota)(4,4ʹ-bipy)(OH)]n·nH2O (63) | 2-(4-carboxyphenoxy)terephthalate (μ4)/4,4′-bipyridine, hydroxyl | Cr2O72− detection at μM level | [82] |
{Zn2 (1,4-bdc)(4,4′-bipy)Cl2}n (64) | 1,4-benzene dicarboxylate (μ2)/4,4′-bipyridine, chloride | Fe(III) detection at μM level luminescence probe for nitroaromatics detection | [83] |
[Zn(Hntb)(phen)]n (65) | 4,4′,4″-nitrilotribenzoate (μ2)/1,10-phenathroline | Fe(III) and nitrobenzene detection at 10−5 M level | [84] |
{[Zn(btc)(Hdpa)]·H2O}n (66) | 1,2,4-benzenetricarboxylate (μ3)/4,4′-dipyridylamine | Fe(III) and MnO4− detection at μM level | [85] |
Species developed as catalysts | |||
{[Zn(1,4-bdc)(4,4′-bipy)]n} (67) | 1,4-benzenedicarboxylate (μ2)/4,4′-bipyridine | IBP photocatalytic degradation | [86] |
{[Zn(1,4-bdc)(Hyd)]n} (68) | 1,4-benzenedicarboxylate (μ2)/8-hydroxyquinoline | IBP photocatalytic degradation | [86] |
{[Zn2(1,2-bdc)2(bip)2]∙6H2O]}n (69) | 1,2-benzenedicarboxylate (μ2)/1,3-bis(2-methyl-imidazol-1-yl)propane | MV and RhB photocatalytic degradation | [87] |
[Zn(Hcpip)(2,2′-bipy)(H2O)]n (70) | 5-(4′-carboxylphenoxy)isophthalate (μ2)/2,2′-bipyridine | MV photocatalytic degradation | [88] |
{Zn3(cpip)2(4,4′-bipy)3]n (71) | 5-(4′-carboxylphenoxy)isophthalate (μ3)/4,4′-bipyridine | MV photocatalytic degradation | [89] |
{[Zn(pmbd)(dpb)]∙dpb}n (72) | 3,3′-{[1,3-phenylene-bis(methylene)bis(oxy)}dibenzoate (μ3)/1,4-bis(pyridine-4-yl)benzene | RhB, Rh6G and MR photocatalytic degradation | [89] |
[Zn(pbta)0.5(bpa)]n∙2nH2O (73) | 5,5′-phenylenebis(methylene)-1,1′-3,3′-(benzene-tetracarboxylate) (μ4)/1,2-bis-(4-pyridyl)ethane | MB photocatalytic degradation | [90] |
[Zn(pa)(hmb)]n (74) | phthalate (μ2)/1,1′-hexane-1,6-diylbis(2-methyl-1H-benzimidazole) | MB photocatalytic degradation | [91] |
[Zn(pda)(hb)]n (75) | 1,4-phenylenediacetate (μ2)/1,1′-hexane-1,6-diylbis(1H-benzimidazole) | MB photocatalytic degradation | [91] |
{[Zn4(glu)3(4,4′-bipy)4 (H2O)2](NO3)2}n (76) | glutarate (μ2 + μ4)/4,4′-bipyridine | MO photocatalytic degradation | [92] |
{[Zn(5-mip)(Bzp)]∙EtOH}n (77) | 5-methylisophthalate (μ2)/1,3-bis(benzimidazole-1-yl)-2-propanol | heterogeneous catalyst for CO2 cycloaddition to epoxides under mild conditions | [93,94] |
[Zn(paph)(NMeF)]n∙n(NMeF) (78) | 5-{(pyren-4-ylmethyl)amino} isophthalate (μ2)/N-methylformamide | catalyst for Knoevenagel condensation | [95] |
[Zn2(daba)4(4,4′-bipy)]n (79) | 4-diallylamino-benzoate (μ2)/4,4′-bipyridine | catalyst for electroreduction of CO2 | [96] |
[Zn2(tzpi)(OH)(H2O)2]n∙2nH2O (80) | 5-(4-(1H-tetrazolyl)phenyl)isophthalate (μ6)/hydroxyl, water | electrocatalyst for HER | [97,98] |
Species with biological activity | |||
[Zn1.5(CH3COO)2(4,4′-bipy)2]n(ClO4)n∙nH2O (82) | acetate (μ2)/4,4′-bipyridine | active against S. epidermidis, E. coli | [99] |
[Zn(I3pah)2(H2O)]n (85) | indole-3-propionate (μ2)/water | active against B. subtilis | [100] |
[Zn(5-MeOI2cah)2(H2O)2]n (86) | 5-methoxyindole-2-carboxylate (μ2)/water | active against A. niger | [100] |
[Zn(bfmta)(H2O)2]n (88) | 2,5-bis(furan-2-ylmethylcarbamoyl)terephthalate (μ2)/water | active against B. subtilis, S. aureus, E. coli, S. typhi, P. expansum, B. thiobromine, Nigrospora sp., Trichothesium sp.) | [101] |
[Zn4(bdc)4(ppmh)2(H2O)]n (89) | 1,4-benzene dicarboxylate (μ2)/N-pyridin-2-yl-N’-pyridin-4-ylmethylene-hydrazine | active against E.coli, S. aureus), HepG2 cells | [102] |
[Zn(pab)(OH)(H2O)2]n (90) | 3,5-bis(pyridine-3-ylmethylamino)benzoic acid (μ2)/hydroxyl, water | active against B. subtilis, S. aureus, E. faecalis, P. aeruginosa, E. cloacae), MCF-7, HeLa, NCI-H446 cancer cell lines | [103] |
{Zn5(pmbcd)2(OH)2(H2O)4(DMF)2]∙4DMF}n (91) | 9,9′-(1,4-phenylene bis(methylene))bis(9H-carbazole-3,6-dicarboxylate (μ6)/hydroxyl, water, DMF | active against HepG2 cells | [104] |
{[Zn2(pmbcd)(bpa)2]∙2H2O∙2DMF}n (92) | 9,9′-(1,4-phenylene bis(methylene))bis(9H-carbazole-3,6-dicarboxylate (μ2)/1,2-bis-(4-pyridyl)ethane | active against HepG2 cells | [104] |
{[Zn2(μ-fum)2(Hdmpz)4]∙3H2O}n (93) | fumarate (μ2)/3,5-dimethylpyrazole | active against Dalton’s lymphoma malignant cancer | [105] |
[Zn(pna)2(H2O)]n (94) | 5-(pyrazol-1-yl)nicotinate (μ2)/water | active against HeLa cells | [106] |
[{Zn(H2O)0.5(N3-ipa)(phen)}]n (95) | 5-azidoisophtalate (μ2)/1,10-phenantroline, water | active against HCT 116 | [107] |
[Zn3(bib)(mtb)2]n (96) | 5-methoxybenzene-1,2,3-tricarboxylate (μ2)/1,4-bis(benzimidazol-1-yl)-2-butene | active against lymphoma | [108] |
[Zn(1,4 bdc)(bpybzimH2)]n(DMF)0.5n (97) | 1,4-benzenedicarboxylate (μ2)/6,6′-bis-(1H-benzoimidazol-2-yl)-2,2′-bipyridine | active against spinal tumor cells (OPM-2) | [109] |
[Zn3(ttha)(O)(OH)(H2O)3]n∙2nH2O (98) | 1,3,5-triazine-2,4,6-triamine hexaacetate (μ3)/hydroxyl, water | active against gastrointestinal tumours | [110] |
[Zn(tptc)0.5(2,2′-bipy)(H2O)]n (99) | p-terphenyl-2,2″,5″,5‴-tetracarboxylate (μ4)/2,2′-bipyridine, water | inhibitory effect against thrombus formation in animal models | [111] |
[Zn(H2cpn)2(H2O)2]n (100) | 5-3,4-dicarboxylphenoxy)nicotinate (μ2)/water | activity in coronary heart disease (CHD) | [112] |
[Zn(Hcpn)(2,2′-bipy)]n (101) | 5-3,4-dicarboxylphenoxy)nicotinate (μ3)/2,2′-bipyridine | activity in coronary heart disease (CHD) | [112] |
[Zn(5-pro-ip)(bipr)]n∙2nH2O (102) | 5-propoxyisophtalate (μ2)/1,3-bis(imidazolyl)propane | activity in uterine fibroids | [113] |
Species developed as storage materials | |||
{[Zn(tptc)0.5(phen)]∙dioxane}n (103) | p-terphenyl-2,2″,5″,5‴-tetracarboxylate (μ4)/1,10-phenantroline | CO2 selective adsorption over N2 and CH4 | [114] |
{[Zn3(pzdc)3(vim)6]∙vim∙2H2O}n (104) | pyrazine-2,3-dicarboxylate (μ2)/1-vinylimidazole | H2 adsorption properties | [115] |
[Zn3(Hbptc)2(e-urea)2]n∙2n(e-urea) (105) | biphenyl-3,3′,5,5′-tetracarboxylate (μ3)/ethyleneurea | H2 and CO2 storage | [116] |
{[Zn2(azpy)(aip)2]∙2DMF}n (106) | 5-aminoisophtalate (μ3)/4,4′-azobipyridine | H2 and CO2 storage | [117] |
{[Zn2(dipytz)(aip)2]∙1.15DMF∙0.85MeOH}n (107) | 5-aminoisophtalate (μ3)/di-3,6-(4-pyridyl)-1,2,4,5-tetrazine | H2 and CO2 storage | [117] |
{[Zn2(tpim)(aip)2]∙2.5DMF∙2H2O}n (108) | 5-aminoisophtalate (μ3)/2,4,5-(tri(4-pyridyl)imidazole) | H2 and CO2 storage | [117] |
[Zn2(N3-ipa)(4,4′-bipy)(DMF)1.5]n (109) | 5-azidoisophtalate (μ2)/4,4′-bipyridine, DMF | N2, O2, CO, CO2 and C2H2 storage | [118] |
{[Zn2(pda)2(H2O)(bpa)2]∙4H2O}n (110) | 1,4-phenylenediacetate (μ3)/1,2-bis(4-pyridyl)ethane | CO2 and CO2/CH4 mixture storage | [119] |
{Zn(4-pyac)2}n (111) | trans-3-(4-pyridyl)acrylic acid (μ2) | trap trans-2-butene | [120] |
[Zn2(2-I-Pht)2bpa]n (112) | 2-iodoterephthalate (μ4)/1,2-bis(4-pyridyl)ethane | selective sorption of 1,2-dichloroethane and benzene/cyclohexane mixtures | [121] |
[Zn2(2-I-Pht)2dabco]n (113) | 2-iodoterephthalate (μ4)/1,8-diazabicyclooctane | selective sorption of 1,2-dichloroethane and benzene/cyclohexane mixtures | [122] |
[Zn2(1,4-bdc)2(dabco)]n (114) | 1,4-benzenedicarboxylate (μ4)/1,8-diazabicyclooctane | selective sorption of 1,2-dichloroethane and benzene/cyclohexane mixtures | [122] |
[Zn2dobdc]n (115) | 2,5-dioxido-1,4-benzenedicarboxylate (μ4) | octane adsorption IBP delivery | [123,124] |
[Zn2(H2O)(dobdc)]n·0.5nH2O (116) | 2,5-dioxido-1,4-benzenedicarboxylate (μ4) | acetylene adsorption and selective C2H2/CO2 separation IBP delivery | [124,125] |
[(Zn8(ade)4(bpdc)6O)]n·2nMe2NH2·8nDMF·11nH2O (117) | 4,4′-biphenyl-dicarboxylate (μ3)/adenine | diclofenac sodium delivery | [126] |
Species with miscellaneous applications | |||
[Zn(bcbpy)0.5(1,4-bdc)(H2O)]n (118) | 1,4-benzenedicarboxylate (μ2)/1,1′-bis(3-carboxylatobenzyl)-(4,4′-bipyridinium) | anode material for lithium ion batteries | [127] |
[Zn(H2mpca)2(tfbdc)(H2O)]n (119) | 2,3,5,6-tetrafluoroterephthalate (μ2)/3-methyl-1H-pyrazole-4-carboxylate | anode material for lithium ion batteries | [128] |
{[Zn(pml)0.5(adth)]·5H2O}n (120) | pyromellitate (μ4)/aldrithiol | proton conduction properties | [129] |
{[Zn(pml)0.5(adth)]·2H2O}n (121) | pyromellitate (μ4)/aldrithiol | proton conduction properties | [129] |
{[Zn(npdi)(1,3-bdc)]·H2O}n (122) | 1,3-benzendicarboxylate (μ2)/1,1′-(4-nitro-1,3-phenylene)bis(1H-benzo[d]imidazole | Ag, Au/Au2O3, Pd, Cr/Cr2O3/CrO2, Cu/Cu2O, Fe/FeO nanoparticules fabrication | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasile Scaeteanu, G.; Maxim, C.; Badea, M.; Olar, R. Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules 2023, 28, 1132. https://doi.org/10.3390/molecules28031132
Vasile Scaeteanu G, Maxim C, Badea M, Olar R. Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules. 2023; 28(3):1132. https://doi.org/10.3390/molecules28031132
Chicago/Turabian StyleVasile Scaeteanu, Gina, Catalin Maxim, Mihaela Badea, and Rodica Olar. 2023. "Zinc(II) Carboxylate Coordination Polymers with Versatile Applications" Molecules 28, no. 3: 1132. https://doi.org/10.3390/molecules28031132
APA StyleVasile Scaeteanu, G., Maxim, C., Badea, M., & Olar, R. (2023). Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules, 28(3), 1132. https://doi.org/10.3390/molecules28031132