Chia (Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease
Abstract
:1. Introduction
2. Chemical and Nutritional Composition of Chia
2.1. Proteins
2.2. Fiber
2.3. Fats
2.4. Secondary Metabolites
3. Therapeutic Properties of Chia Related to DM
3.1. Antihyperglycemic Effect
3.2. Prevention of Risk of Cardiovascular Disease
3.3. Inhibition of the Enzymes α-Glucosidase and α-Amylase
3.4. Anti-Inflammatory Effect
3.5. Antioxidant Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global Healthcare Expenditure on Diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef]
- Thottapillil, A.; Kouser, S.; Kukkupuni, S.K.; Vishnuprasad, C.N. An ‘Ayurveda-Biology’ Platform for Integrative Diabetes Management. J. Ethnopharmacol. 2021, 268, 113575. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Sood, A.; Lang, D.K.; Arora, R.; Kumar, N.; Diwan, V.; Saini, B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr. Top. Med. Chem. 2022, 22, 347–365. [Google Scholar] [CrossRef] [PubMed]
- The World Flora Online (WFO). Available online: https://www.worldfloraonline.org/ (accessed on 1 February 2023).
- Sosa, A.; Ruiz, G.; Rana, J.; Gordillo, G.; West, H.; Sharma, M.; Liu, X.; Robles de la Torre, R.R. Chia Crop (Salvia hispanica L.): Its History and Importance as a Source of Polyunsaturated Fatty Acids Omega-3 around the World: A Review. J. Crop Res. Fertil. 2016, 1, 103. [Google Scholar] [CrossRef]
- Cahill, J.P. Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ. Bot. 2003, 57, 604–618. [Google Scholar] [CrossRef]
- Mapes, C.; Basurto, F. Biodiversity and Edible Plants of Mexico. In Ethnobotany of Mexico; Lira, R., Casas, A., Blancas, J., Eds.; Ethnobiology; Springer: New York, NY, USA, 2016; pp. 83–131. ISBN 9781461466680. [Google Scholar]
- Chaudhary, N.; Dangi, P.; Kumar, R.; Bishnoi, S. Chia Seeds—A Renewable Source as a Functional Food. In Handbook of Cereals, Pulses, Roots, and Tubers; Punia, S., Siroha, A.K., Kumar, M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 235–252. ISBN 9781003155508. [Google Scholar]
- Onneken, P. Salvia hispanica L (Chia Seeds) as Brain Superfood: How Seeds Increase Intelligence. J. Nutr. Food Sci. 2018, 8, 2. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Chia—The New Golden Seed for the 21st Century. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 265–281. ISBN 9780128027783. [Google Scholar]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html (accessed on 17 September 2022).
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules 2019, 25, 11. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Anunciação, P.C.; da Silva Matyelka, J.C.; Della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical Composition of Brazilian Chia Seeds Grown in Different Places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Aziz, A.; Rahim, M.A.; Qaisrani, T.B.; Afzal, F.; Ali, A.; Ranjha, M.M.A.N.; Khalid, M.Z.; Anjum, F.M. Chia Seeds (Salvia hispanica L.): A Therapeutic Weapon in Metabolic Disorders. Food Sci. Nutr. 2022, 11, 3–16. [Google Scholar] [CrossRef] [PubMed]
- United States Data Agriculture. Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170554/nutrients (accessed on 17 February 2023).
- Jin, F.; Nieman, D.C.; Sha, W.; Xie, G.; Qiu, Y.; Jia, W. Supplementation of Milled Chia Seeds Increases Plasma ALA and EPA in Postmenopausal Women. Plant Foods Hum. Nutr. 2012, 67, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Silveira Coelho, M.; de las Mercedes Salas-Mellado, M. Chemical Characterization of Chia (Salvia hispanica L.) for Use in Food Products. J. Food Nutr. Res. 2014, 2, 263–269. [Google Scholar] [CrossRef]
- Olivos-Lugo, B.L.; Valdivia-López, M.Á.; Tecante, A. Thermal and Physicochemical Properties and Nutritional Value of the Protein Fraction of Mexican Chia Seed (Salvia hispanica L.). Food Sci. Technol. Int. 2010, 16, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Nitrayová, S.; Brestenský, M.; Heger, J.; Patráš, P.; Rafay, J.; Sirotkin, A. Amino Acids and Fatty Acids Profile of Chia (Salvia hispanica L.) and Flax (Linum usitatissimum L.) Seed. Potravin. Slovak J. Food Sci. 2014, 8, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia hispanica L.): A Review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Ayerza, R.; Coates, W. Protein Content, Oil Content and Fatty Acid Profiles as Potential Criteria to Determine the Origin of Commercially Grown Chia (Salvia hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Barreto, A.D.; Gutierrez, É.M.R.; Silva, M.R.; Silva, F.O.; Couto, N.O.; Lacerda, I.C.A.; Labanca, R.A.; Carreira, R.L. Characterization and Bioaccessibility of Minerals in Seeds of Salvia hispanica L. Am. J. Plant Sci. 2016, 7, 2323–2337. [Google Scholar] [CrossRef]
- Sandoval-Oliveros, M.R.; Paredes-López, O. Isolation and Characterization of Proteins from Chia Seeds (Salvia hispanica L.). J. Agric. Food Chem. 2013, 61, 193–201. [Google Scholar] [CrossRef]
- López, D.N.; Galante, M.; Robson, M.; Boeris, V.; Spelzini, D. Amaranth, Quinoa and Chia Protein Isolates: Physicochemical and Structural Properties. Int. J. Biol. Macromol. 2018, 109, 152–159. [Google Scholar] [CrossRef]
- Julio, L.M.; Ruiz-Ruiz, J.C.; Tomás, M.C.; Segura-Campos, M.R. Chia (Salvia hispanica) Protein Fractions: Characterization and Emulsifying Properties. J. Food Meas. Charact. 2019, 13, 3318–3328. [Google Scholar] [CrossRef]
- de Ariza, E.J.S.; Archila, A.R.B.; Solchaga, I.O.S.; Pérez, S.B.M. Nutritional Composition and Uses of Chia (Salvia hispanica) in Guatemala. In Proceedings of the 2nd International Conference of Ia ValSe-Food Network, Lisbon, Portugal, 10 September 2020; p. 16. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterization, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Valdivia-López, M.Á.; Tecante, A. Chia (Salvia hispanica). In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2015; Volume 75, pp. 53–75. ISBN 9780128022276. [Google Scholar]
- de Falco, B.; Amato, M.; Lanzotti, V. Chia Seeds Products: An Overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary Fibre Content and Antioxidant Activity of Phenolic Compounds Present in Mexican Chia (Salvia hispanica L.) Seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Rheological and Microstructural Properties of the Chia Seed Polysaccharide. Int. J. Biol. Macromol. 2015, 81, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ayerza, R. Effects of Seed Color and Growing Locations on Fatty Acid Content and Composition of Two Chia (Salvia hispanica L.) Genotypes. J. Am. Oil Chem. Soc. 2010, 87, 1161–1165. [Google Scholar] [CrossRef]
- Motyka, S.; Koc, K.; Ekiert, H.; Blicharska, E.; Czarnek, K.; Szopa, A. The Current State of Knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules 2022, 27, 1207. [Google Scholar] [CrossRef]
- Kuznetcova, D.V.; Linder, M.; Jeandel, C.; Paris, C.; Desor, F.; Baranenko, D.A.; Nadtochii, L.A.; Arab-Tehrany, E.; Yen, F.T. Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. Int. J. Mol. Sci. 2020, 21, 9079. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Cardoso, N.S.; de Souza Cruz, J.R.; de Oliveira Paula, R.A.; da Silveira Duarte, S.M.; Rodrigues, M.R.; de Araújo Paula, F.B. Unsaturated Fatty Acid as Functional Food for the Treatment of Diabetes Mellitus Type 2. Res. Soc. Dev. 2021, 10, e41410917231. [Google Scholar] [CrossRef]
- Zong, G.; Liu, G.; Willett, W.C.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Hu, F.B.; Sun, Q. Associations between Linoleic Acid Intake and Incident Type 2 Diabetes among U.S. Men and Women. Diabetes Care 2019, 42, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Ahn, D.; Hwang, J.Y.; Kang, M.J.; Chung, S.J. Linoleic Acid Exerts Antidiabetic Effects by Inhibiting Protein Tyrosine Phosphatases Associated with Insulin Resistance. J. Funct. Foods 2021, 83, 104532. [Google Scholar] [CrossRef]
- Tsuchiya, A.; Nagaya, H.; Kanno, T.; Nishizaki, T. Oleic Acid Stimulates Glucose Uptake into Adipocytes by Enhancing Insulin Receptor Signaling. J. Pharmacol. Sci. 2014, 126, 337–343. [Google Scholar] [CrossRef]
- López-Gómez, C.; Santiago-Fernández, C.; García-Serrano, S.; García-Escobar, E.; Gutiérrez-Repiso, C.; Rodríguez-Díaz, C.; Ho-Plágaro, A.; Martín-Reyes, F.; Garrido-Sánchez, L.; Valdés, S.; et al. Oleic Acid Protects against Insulin Resistance by Regulating the Genes Related to the PI3K Signaling Pathway. J. Clin. Med. 2020, 9, 2615. [Google Scholar] [CrossRef] [PubMed]
- Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Vázquez-Carrera, M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2018, 29, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical Profile and Nutraceutical Potential of Chia Seeds (Salvia hispanica L.) by Ultra High Performance Liquid Chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Lara, A.; Mesa-García, M.D.; Medina, K.A.D.; Quirantes Piné, R.; Casuso, R.A.; Segura Carretero, A.; Huertas, J.R. Assessment of the Phytochemical and Nutrimental Composition of Dark Chia Seed (Salvia hispánica L.). Foods 2021, 10, 3001. [Google Scholar] [CrossRef] [PubMed]
- da Silva Marineli, R.; Lenquiste, S.A.; Moraes, É.A.; Maróstica, M.R., Jr. Antioxidant Potential of Dietary Chia Seed and Oil (Salvia hispanica L.) in Diet-Induced Obese Rats. Food Res. Int. 2015, 76, 666–674. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Composition of Chia (Salvia hispanica) Grown in Six Tropical and Subtropical Ecosystems of South America. Trop. Sci. 2004, 44, 131–135. [Google Scholar] [CrossRef]
- Chicco, A.G.; D’Alessandro, M.E.; Hein, G.J.; Oliva, M.E.; Lombardo, Y.B. Dietary Chia Seed (Salvia hispanica L.) Rich in α-Linolenic Acid Improves Adiposity and Normalises Hypertriacylglycerolaemia and Insulin Resistance in Dyslipaemic Rats. Br. J. Nutr. 2008, 101, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Enes, B.N.; Moreira, L.d.P.D.; Toledo, R.C.L.; Moraes, É.A.; de Castro Moreira, M.E.; Hermsdorff, H.H.M.; Noratto, G.; Mertens-Talcott, S.U.; Talcott, S.; Martino, H.S.D. Effect of Different Fractions of Chia (Salvia hispanica L.) on Glucose Metabolism, In Vivo and In Vitro. J. Funct. Foods 2020, 71, 104026. [Google Scholar] [CrossRef]
- Mihafu, F.D.; Kiage, B.N.; Kimang’a, A.N.; Okoth, J.K. Effect of Chia Seeds (Salvia hispanica) on Postprandial Glycaemia, Body Weight and Hematological Parameters in Rats Fed a High Fat and Fructose Diet. Int. J. Biol. Chem. Sci. 2020, 14, 1752–1762. [Google Scholar] [CrossRef]
- Medina-Urrita, A.X.; Jorge-Galarza, E.; El Hafidi, M.; Reyes-Barrera, J.; Páez-Arenas, A.; Masso-Rojas, F.A.; Martínez-Sánchez, F.D.; López-Uribe, Á.R.; González-Salazar, M.D.C.; Torres-Tamayo, M.; et al. Effect of Dietary Chia Supplementation on Glucose Metabolism and Adipose Tissue Function Markers in Non-Alcoholic Fatty Liver Disease Subjects. Nutr. Hosp. 2022, 39, 1280–1288. [Google Scholar] [CrossRef]
- Alamri, E. The Influence of Two Types of Chia Seed on Some Physiological Parameters in Diabetic Rats. Int. J. Pharm. Res. Allied Sci. 2019, 8, 131–136. [Google Scholar]
- Fadwa, E.; Amssayef, A.; Eddouks, M. Antihyperglycemic and Antidyslipidemic Activities of the Aqueous Salvia hispanica Extract in Diabetic Rat. Cardiovasc. Hematol. Agents Med. Chem. 2022, 20, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Vuksan, V.; Jenkins, A.L.; Dias, A.G.; Lee, A.S.; Jovanovski, E.; Rogovik, A.L.; Hanna, A. Reduction in Postprandial Glucose Excursion and Prolongation of Satiety: Possible Explanation of the Long-Term Effects of Whole Grain Salba (Salvia hispanica L.). Eur. J. Clin. Nutr. 2010, 64, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.; Lee, A.S.; Jovanovski, E.; Jenkins, A.L.; DeSouza, R.; Vuksan, V. Effect of Whole and Ground Salba Seeds (Salvia hispanica L.) on Postprandial Glycemia in Healthy Volunteers: A Randomized Controlled, Dose-Response Trial. Eur. J. Clin. Nutr. 2013, 67, 786–788. [Google Scholar] [CrossRef]
- Vuksan, V.; Choleva, L.; Jovanovski, E.; Jenkins, A.L.; Au-Yeung, F.; Dias, A.G.; Ho, H.V.T.; Zurbau, A.; Duvnjak, L. Comparison of Flax (Linum usitatissimum) and Salba-Chia (Salvia hispanica L.) Seeds on Postprandial Glycemia and Satiety in Healthy Individuals: A Randomized, Controlled, Crossover Study. Eur. J. Clin. Nutr. 2016, 71, 234–238. [Google Scholar] [CrossRef]
- Vuksan, V.; Whitham, D.; Sievenpiper, J.L.; Jenkins, A.L.; Rogovik, A.L.; Bazinet, R.P.; Vidgen, E.; Hanna, A. Supplementation of Conventional Therapy with the Novel Grain Salba (Salvia hispanica L.) Improves Major and Emerging Cardiovascular Risk Factors in Type 2 Diabetes. Diabetes Care 2007, 30, 2804–2810. [Google Scholar] [CrossRef]
- Samuel, V.T. Fructose Induced Lipogenesis: From Sugar to Fat to Insulin Resistance. Trends Endocrinol. Metab. 2011, 22, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Q.-Y.; Zeng, L.-T.; Wang, J.-J.; Liu, Z.; Fan, G.-Q.; Li, J.; Cai, J.-P. Long-Term High-Fat High-Fructose Diet Induces Type 2 Diabetes in Rats through Oxidative Stress. Nutrients 2022, 14, 2181. [Google Scholar] [CrossRef] [PubMed]
- Zilaee, M.; Shirali, S. Heat Shock Proteins and Diabetes. Can. J. Diabetes 2016, 40, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Marineli, R.; Moura, C.S.; Moraes, É.A.; Lenquiste, S.A.; Lollo, P.C.B.; Morato, P.N.; Amaya-Farfan, J.; Maróstica, M.R. Chia (Salvia hispanica L.) Enhances HSP, PGC-1α Expressions and Improves Glucose Tolerance in Diet-Induced Obese Rats. Nutrition 2015, 31, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Crespo, I.; Chel Guerrero, L.; Acevedo-Fernández, J.J.; Negrete León, E.; Betancur Ancona, D. Evaluating the Hypoglycemic Effect of a Peptide Fraction of Chia Seeds (Salvia hispanica L.) in Male Wistar Rats Induced with Alloxan. Nutr. Hosp. 2021, 38, 1257–1262. [Google Scholar] [CrossRef]
- Paneni, F.; Costantino, S.; Cosentino, F. Insulin Resistance, Diabetes, and Cardiovascular Risk. Curr. Atheroscler. Rep. 2014, 16, 419. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Stampfer, M.J.; Hu, F.B.; Giovannucci, E.; Rimm, E.; Manson, J.E.; Hennekens, C.H.; Willett, W.C. Whole-Grain Consumption and Risk of Coronary Heart Disease: Results from the Nurses’ Health Study. Am. J. Clin. Nutr. 1999, 70, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Steffen, L.M.; Jacobs, D.R.; Stevens, J.; Shahar, E.; Carithers, T.; Folsom, A.R. Associations of Whole-Grain, Refined-Grain, and Fruit and Vegetable Consumption with Risks of All-Cause Mortality and Incident Coronary Artery Disease and Ischemic Stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2003, 78, 383–390. [Google Scholar] [CrossRef]
- Whelton, S.P.; Hyre, A.D.; Pedersen, B.; Yi, Y.; Whelton, P.K.; He, J. Effect of Dietary Fiber Intake on Blood Pressure: A Meta-Analysis of Randomized, Controlled Clinical Trials. J. Hypertens. 2005, 23, 475–481. [Google Scholar] [CrossRef]
- Lairon, D.; Arnault, N.; Bertrais, S.; Planells, R.; Clero, E.; Hercberg, S.; Boutron-Ruault, M.-C. Dietary Fiber Intake and Risk Factors for Cardiovascular Disease in French Adults. Am. J. Clin. Nutr. 2005, 82, 1185–1194. [Google Scholar] [CrossRef]
- Jhong, C.; Riyaphan, J.; Lin, S.; Chia, Y.; Weng, C. Screening Alpha-glucosidase and Alpha-amylase Inhibitors from Natural Compounds by Molecular Docking in Silico. BioFactors 2015, 41, 242–251. [Google Scholar] [CrossRef]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Inhibition of α-Amylase and α-Glucosidase Activity by Tea and Grape Seed Extracts and Their Constituent Catechins. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef] [PubMed]
- Moein, S.; Moein, M.; Javid, H. Inhibition of α-Amylase and α-Glucosidase of Anthocyanin Isolated from Berberis integerrima Bunge Fruits: A Model of Antidiabetic Compounds. Evid. Based Complement. Altern. Med. 2022, 2022, 6529590. [Google Scholar] [CrossRef] [PubMed]
- Banu, S.A.; John, S.; Monica, S.J.; Saraswathi, K.; Arumugam, P. Screening of Secondary Metabolites, Bioactive Compounds, in Vitro Antioxidant, Antibacterial, Antidiabetic and Anti-Inflammatory Activities of Chia Seeds (Salvia hispanica L.). Res. J. Pharm. Technol. 2021, 14, 6289–6294. [Google Scholar] [CrossRef]
- Okin, D.; Medzhitov, R. Evolution of Inflammatory Diseases. Curr. Biol. 2012, 22, R733–R740. [Google Scholar] [CrossRef]
- Gautam, R.; Jachak, S.M. Recent Developments in Anti-Inflammatory Natural Products. Med. Res. Rev. 2009, 29, 767–820. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Mohamed, R.S.; Fouda, K. Anti-Inflammatory Potential of Chia Seeds Oil and Mucilage against Adjuvant-Induced Arthritis in Obese and Non-Obese Rats. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190236. [Google Scholar] [CrossRef]
- Cárdenas, M.; Carpio, C.; Welbaum, J.; Vilcacundo, E.; Carrillo, W. Chia Protein Concentrate (Salvia hispanica L.) Anti-Inflammatory and Antioxidant Activity. Asian J. Pharm. Clin. Res. 2018, 11, 382. [Google Scholar] [CrossRef]
- Tiwari, Y.; Kumar, B.; Chauhan, D.; Singh, A. In Vitro Evaluation of Anti-Inflammatory Activity of Woodfordi fruticosa Leaves. Ann. Rom. Soc. Cell Biol. 2021, 25, 4156–4169. [Google Scholar]
- Chan-Zapata, I.; Arana-Argáez, V.E.; Torres-Romero, J.C.; Segura-Campos, M.R. Anti-Inflammatory Effects of the Protein Hydrolysate and Peptide Fractions Isolated from Salvia hispanica L. Seeds. Food Agric. Immunol. 2019, 30, 786–803. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Toledo, R.C.L.; Grancieri, M.; de Castro Moreira, M.E.; Medina, N.R.; Silva, R.R.; Costa, N.M.B.; Martino, H.S.D. Effects of Chia (Salvia hispanica L.) on Calcium Bioavailability and Inflammation in Wistar Rats. Food Res. Int. 2019, 116, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef]
- Kang, G.G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A.B. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int. J. Mol. Sci. 2019, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the Antioxidant Potentials of Six Salvia Species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Uribe, J.A.R.; Perez, J.I.N.; Kauil, H.C.; Rubio, G.R.; Alcocer, C.G. Extraction of Oil from Chia Seeds with Supercritical CO2. J. Supercrit. Fluids 2011, 56, 174–178. [Google Scholar] [CrossRef]
- Nadeem, M.; Abdullah, M.; Khalique, A.; Hussain, I.; Mahmud, A.; Inayat, S. The Effect of Moringa oleifera Leaf Extract as Antioxidant on Stabilization of Butter Oil with Modified Fatty Acid Profile. J. Agric. Sci. Technol. 2013, 15, 919–928. [Google Scholar]
- Alwosais, E.Z.M.; Al-Ozairi, E.; Zafar, T.A.; Alkandari, S. Chia Seed (Salvia hispanica L.) Supplementation to the Diet of Adults with Type 2 Diabetes Improved Systolic Blood Pressure: A Randomized Controlled Trial. Nutr. Health 2021, 27, 181–189. [Google Scholar] [CrossRef]
- Dib, H.; Seladji, M.; Bencheikh, F.Z.; Faradji, M.; Benammar, C.; Belarbi, M. Phytochemical Screening and Antioxidant Activity of Salvia hispanica. J. Pharm. Res. Int. 2021, 33, 167–174. [Google Scholar] [CrossRef]
- Ferreira, M.R.; Alvarez, S.M.; Illesca, P.; Giménez, M.S.; Lombardo, Y.B. Dietary Salba (Salvia hispanica L.) Ameliorates the Adipose Tissue Dysfunction of Dyslipemic Insulin-Resistant Rats through Mechanisms Involving Oxidative Stress, Inflammatory Cytokines and Peroxisome Proliferator-Activated Receptor γ. Eur. J. Nutr. 2018, 57, 83–94. [Google Scholar] [CrossRef]
- da Silva, B.P.; Toledo, R.C.L.; Mishima, M.D.V.; Moreira, M.E.D.C.; Vasconcelos, C.M.; Pereira, C.E.R.; Favarato, L.S.C.; Costa, N.M.B.; Martino, H.S.D. Effects of Chia (Salvia hispanica L.) on Oxidative Stress and Inflammation in Ovariectomized Adult Female Wistar Rats. Food Funct. 2019, 10, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Corona-Jiménez, E.; Martìnez-Navarrete, N.; Ruìz-Espinosa, H.; Carranza-Concha, J. Ultrasound-assisted extraction of phenolics compounds from chia (Salvia hispanica L.) seeds and their antioxidant activity. Agrociencia 2016, 50, 403–412. [Google Scholar]
- Marineli, R.D.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R., Jr. Chemical Characterization and Antioxidant Potential of Chilean Chia Seeds and Oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Colín-Lozano, B.; Estrada-Soto, S.; Chávez-Silva, F.; Gutiérrez-Hernández, A.; Cerón-Romero, L.; Giacoman-Martínez, A.; Almanza-Pérez, J.; Hernández-Núñez, E.; Wang, Z.; Xie, X.; et al. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules 2018, 23, 340. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.; Garzarella, J.; Jandeleit-Dahm, K.A.M.; Jha, J.C. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. Biology 2020, 10, 18. [Google Scholar] [CrossRef]
- Jha, J.C.; Ho, F.; Dan, C.; Jandeleit-Dahm, K. A Causal Link between Oxidative Stress and Inflammation in Cardiovascular and Renal Complications of Diabetes. Clin. Sci. 2018, 132, 1811–1836. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, Oxidative Stress and Therapeutic Strategies. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2709–2729. [Google Scholar] [CrossRef] [PubMed]
- Oguntibeju, O.O. Type 2 Diabetes Mellitus, Oxidative Stress and Inflammation: Examining the Links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45–63. [Google Scholar]
- Dhanya, R. Quercetin for Managing Type 2 Diabetes and Its Complications, an Insight into Multitarget Therapy. Biomed. Pharmacother. 2022, 146, 112560. [Google Scholar] [CrossRef]
- Gull, H.; Ikram, A.; Khalil, A.A.; Ahmed, Z.; Nemat, A. Assessing the Multitargeted Antidiabetic Potential of Three Pomegranate Peel-specific Metabolites: An in Silico and Pharmacokinetics Study. Food Sci. Nutr. 2023, 11, 7188–7205. [Google Scholar] [CrossRef]
- Basnet, P.; Kadota, S.; Shimizu, M.; Namba, T. Bellidifolin: A Potent Hypoglycemic Agent in Streptozotocin (STZ)-Induced Diabetic Rats from Swertia japonica. Planta Med. 1994, 60, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Muruganandan, S.; Srinivasan, K.; Gupta, S.; Gupta, P.K.; Lal, J. Effect of Mangiferin on Hyperglycemia and Atherogenicity in Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2005, 97, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-H.; Luo, C.-T.; Chen, H.; Lin, J.-N.; Ye, C.-L.; Mao, S.-S.; Li, Y.-L. Xanthones from Swertia mussotii as Multitarget-Directed Antidiabetic Agents. ChemMedChem 2014, 9, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alqarni, A.O.; Alyami, B.A.; Jan, M.S.; Ayaz, M.; Ullah, F.; Rashid, U.; Sadiq, A. Crude Extract and Isolated Bioactive Compounds from Notholirion Thomsonianum (Royale) Stapf as Multitargets Antidiabetic Agents: In-Vitro and Molecular Docking Approaches. BMC Complement. Med. Ther. 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Taj, I.; Ajmal, M.; Junaid, M. Omega-3 Fatty Acids, Phenolic Compounds and Antioxidant Characteristics of Chia Oil Supplemented Margarine. Lipids Health Dis. 2017, 16, 102. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Barky, A.; Ezz, A.; Mohammed, A. The Potential Role of Apigenin in Diabetes Mellitus. Int. J. Clin. Case Rep. Rev. 2020, 3, 32. [Google Scholar]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef]
- Georgoulis, M.; Kontogianni, M.; Yiannakouris, N. Mediterranean Diet and Diabetes: Prevention and Treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef]
- Khazrai, Y.M.; Defeudis, G.; Pozzilli, P. Effect of Diet on Type 2 Diabetes Mellitus: A Review. Diabetes Metab. Res. Rev. 2014, 30 (Suppl. 1), 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and Management of Type 2 Diabetes: Dietary Components and Nutritional Strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, J.; Shao, H.; Huang, B.; Kang, X.; Wu, R.; Bian, F.; Hu, M.; Liu, D. Effect of an Intermittent Calorie-Restricted Diet on Type 2 Diabetes Remission: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2023, 108, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, A.; Martin, D.; Navarro del Hierro, J.; Moreno-Arribas, M.V.; Muñoz, L.A. Intake of Soluble Fibre from Chia Seed Reduces Bioaccessibility of Lipids, Cholesterol and Glucose in the Dynamic Gastrointestinal Model Simgi®. Food Res. Int. 2020, 137, 109364. [Google Scholar] [CrossRef]
- Aiassa, V.; del Rosario Ferreira, M.; Villafañe, N.; Eugenia D’Alessandro, M. α-Linolenic Acid Rich-Chia Seed Modulates Visceral Adipose Tissue Collagen Deposition, Lipolytic Enzymes Expression, Insulin Signaling and GLUT-4 Levels in a Diet-Induced Adiposity Rodent Model. Food Res. Int. 2022, 156, 111164. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Applications of Chia (Salvia hispanica L.) in Food Products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- Toscano, L.T.; da Silva, C.S.O.; Toscano, L.T.; de Almeida, A.E.M.; da Cruz Santos, A.; Silva, A.S. Chia Flour Supplementation Reduces Blood Pressure in Hypertensive Subjects. Plant Foods Hum. Nutr. 2014, 69, 392–398. [Google Scholar] [CrossRef]
USDA [1] | Other References | |
---|---|---|
Energy/100 g of seed (kcal) | 486 | 562 [18], 459.9 [19], 359.33–380.59 [15] |
Protein (%) | 16.5 | 24.2 [18], 19.6 [19], 24.6 [20], 18.18–19.72 [15] |
Fat (%) | 30.7 | 40.2 [18], 34.4 [19], 32.2 [20], 30.17–32.16 [15] |
Carbohydrate (%) | 42.1 | 26.9 [18], 17.7 [19], 26.2 [20], 2.23–4.59 [15] |
Fiber (%) | 34.4 | 30.2 [18], 23.7 [19], 33.37–37.18 [15], 34.5 [20] |
Fatty acids, total saturated (%) | 3.3 | 5.0 [18], 9.74 [19] |
Fatty acid (%) | ||
14:0 | 0.03 | 0.06 [13,21], 0.03 [19] |
15:0 | 0.03 | 0.04 [13], 0.03 [19] |
16:0 | 2.17 | 7.10 [13], 7.04 [21], 6.69 [19] |
17:0 | 0.063 | 0.06 [13,19] |
18:0 | 0.912 | 3.24 [13], 2.84 [21], 2.67 [19] |
20:0 | 0.093 | 0.24 [13], 0.02 [21], 0.09 [19] |
22:0 | 0.03 | 0.08 [13] |
Total monounsaturated fatty acids (%) | 2.3 | 2.96 [18], 10.76 [19] |
Fatty acid (%) | ||
14:1 | 0.03 | |
16:1 | 0.029 | 0.03 [21], 0.09 [19] |
18:1 | 2.2 | 10.55 [19] |
20:1 | 0.046 | 0.09 [19] |
Fatty acids, total polyunsaturated (%) | 23.7 | 22.8 [18], 79.47 [19] |
Fatty acid (%) | ||
18:2 | 5.8 | 6.16 [18], 18.89 [21], 17.36 [19] |
18:3 | 17.8 | 16.4 [18], 63.79 [21], 62.02 [19] |
Amino acids (%) | ||
Tryptophan | 0.436 | |
Threonine | 0.709 | 0.54 [21] |
Isoleucine | 0.801 | 0.74 [21] |
Leucine | 1.37 | 1.42 [21] |
Lysine | 0.97 | 0.93 [21] |
Methionine | 0.588 | 0.67 [21] |
Cystine | 0.407 | 0.42 [21] |
Phenylalanine | 1.02 | 1.60 [21] |
Tyrosine | 0.563 | 0.61 [21] |
Valine | 0.95 | 0.79 [21] |
Arginine | 2.14 | 2.0 [21] |
Histidine | 0.531 | 0.61 [21] |
Alanine | 1.04 | 0.94 [21] |
Aspartic acid | 1.69 | 1.28 [21] |
Glutamic acid | 3.5 | 2.87 [21] |
Glycine | 0.943 | 0.91 [21] |
Proline | 0.776 | 1.28 [21] |
Serine | 1.05 | 0.94 [21] |
Minerals (%) | ||
Calcium | 63.1 | 45.60 [18] |
Iron | 0.77 | 0.92 [18] |
Magnesium | 33.5 | 44.90 [18] |
Phosphorus | 86.0 | 91.90 [18] |
Potassium | 40.7 | 72.60 [18] |
Sodium | 1.6 | 0.026 [18] |
Zinc | 0.46 | 0.647 [18] |
Copper | 0.09 | 0.186 [18] |
Manganese | 0.27 | 0.379 [18] |
Selenium | 5.52 | 0.004 [18] |
Vitamins (%) | ||
Vitamin C | 0.16 | |
Thiamin | 0.062 | |
Riboflavin | 0.017 | |
Niacin | 0.88 | |
Vitamin A (IU/100 g of seed) | 54 | |
Vitamin E | 0.05 |
Compound | Concentration (µg/g) | Reference |
---|---|---|
Phenolic acids | ||
Gallic acid | 11.5 | [44] |
42.5 | [47] | |
Caffeic acid | 3.0–6.8 | [32] |
27.4 | [44] | |
30.89 | [19] | |
Chlorogenic acid | 45.9–102.0 | [32] |
4.68 | [19] | |
22.6–21.8 | [48] | |
Protocatechuic ethyl ester | 747.1 | [44] |
Rosmarinic acid | 926.7 | [44] |
1200 | [45] | |
635.98 | [47] | |
Rosmarinic acid glucoside | 3900 | [45] |
Dihydroxybenzoyl glucoside | 189.6 | [45] |
Vanillic acid glucoside | 165.7 | [45] |
Salvianic acid A | 40.1 | [45] |
Fertaric acid | 15.8 | [45] |
Phenols | ||
Oresbiusin A | 15.0 | [45] |
Flavonoids | ||
Apigenin | 0.005 | [18] |
0.16–0.35 | [15] | |
Kaempferol | 360–509 | [32] |
0.013 | [18] | |
24–25 | [48] | |
Kaempferol 3-O-glucoside | 0.028 | [18] |
Quercetin | 0.17 | [19] |
150–268 | [32] | |
285.56 | [47] | |
7–6 | [48] | |
Myricetin | 28.88 | [47] |
115–121 | [48] | |
Rutin | 0.220 | [18] |
99.88 | [47] | |
Luteolin | 5.91–15.79 | [15] |
Naringenin | 0.22–0.39 | [15] |
Eriodictyol | 4.17–8.95 | [15] |
Isoflavonoids | ||
Daidzein | 457.85 | [47] |
6.6 | [44] | |
Glycitein | 0.5 | [44] |
Genistein | 55.69 | [47] |
5.1 | [44] | |
Genistin | 19.58 | [47] |
3.4 | [44] | |
Catechin | ||
Epicatechin | 0.0290 | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavera-Hernández, R.; Jiménez-Estrada, M.; Alvarado-Sansininea, J.J.; Huerta-Reyes, M. Chia (Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023, 28, 8069. https://doi.org/10.3390/molecules28248069
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia (Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules. 2023; 28(24):8069. https://doi.org/10.3390/molecules28248069
Chicago/Turabian StyleTavera-Hernández, Rosario, Manuel Jiménez-Estrada, J. Javier Alvarado-Sansininea, and Maira Huerta-Reyes. 2023. "Chia (Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease" Molecules 28, no. 24: 8069. https://doi.org/10.3390/molecules28248069
APA StyleTavera-Hernández, R., Jiménez-Estrada, M., Alvarado-Sansininea, J. J., & Huerta-Reyes, M. (2023). Chia (Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules, 28(24), 8069. https://doi.org/10.3390/molecules28248069