Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Characterization
2.2. Dynamic Rheological Characterization
2.3. Apparent Viscosity Analysis
2.4. Secondary Structure Analysis
2.5. Tertiary Structural Analysis
2.6. Microstructural Analysis
2.7. In Vitro Simulation of Gastrointestinal Bacterial Viability Analysis
2.8. Effect of TGase Concentration on the Storage Stability of L. plantarum
2.9. Effect of Drying Method on the Crystal Structure of the Encapsulation System
2.10. Effect of Drying Method on the Thermal Stability of the Encapsulation System
2.11. Effect of Drying Method on the Moisture Distribution Status and Storage Stability of the Encapsulation System
3. Materials and Methods
3.1. Materials
3.2. Preparation of Bacterial Suspension
3.3. Preparation of Composite Hydrogel Encapsulants
3.4. Drying of Composite Hydrogel Encapsulation Systems
3.4.1. Vacuum Freeze Drying
3.4.2. Microwave Vacuum Freeze Drying
3.5. Determination of Textural Properties
3.6. Measurement of Rheological Properties
3.6.1. Dynamic Rheological Properties Test
3.6.2. Shear Rate Test
3.7. Measurement of Fourier Transform Infrared Spectra
3.8. Determination of Fluorescence Spectra
3.9. Determination of Microstructure
3.10. Survival under Simulated Gastrointestinal Conditions
3.11. Determination of Crystal Structure
3.12. Measurement of Thermal Stability
3.13. Determination of Moisture Distribution State
3.14. Determination of Storage Stability
3.15. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef]
- Shah, N.P. Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci. 2000, 83, 894–907. [Google Scholar] [CrossRef]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Jose Martin, M.; Lara-Villoslada, F.; Adolfina Ruiz, M.; Encarnacion Morales, M. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef]
- Rajam, R.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lwt-Food Sci. Technol. 2015, 60, 773–780. [Google Scholar] [CrossRef]
- Rodrigues, B.M.; Olivo, P.M.; Osmari, M.P.; Vasconcellos, R.S.; Ribeiro, L.B.; Bankuti, F.I.; Pozza, M.S.S. Microencapsulation of probiotic strains by lyophilization is efficient in maintaining the viability of microorganisms and modulation of fecal microbiota in cats. Int. J. Microbiol. 2020, 2020, 1293481. [Google Scholar] [CrossRef]
- Ambros, S.; Mayer, R.; Schumann, B.; Kulozik, U. Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability. Innov. Food Sci. Emerg. Technol. 2018, 48, 90–98. [Google Scholar] [CrossRef]
- Marcial-Coba, M.S.; Knochel, S.; Nielsen, D.S. Low-moisture food matrices as probiotic carriers. FEMS Microbiol. Lett. 2019, 366, fnz006. [Google Scholar] [CrossRef]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Arshad, M.S.; Khan, M.A.; Saeed, M.; Maan, A.A.; Khan, M.K.; Ismail, Z.; Ahmed, A.; et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci. Nutr. 2020, 8, 1649–1656. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhang, M.H.; Liu, Y.K.; Wang, Y.; Chen, Y.Y.; Guan, W.Y.; Li, X.; Wang, Y.H. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. Carbohyd. Polym. 2021, 260, 117843. [Google Scholar] [CrossRef]
- Niu, Y.G.; Xia, Q.; Li, N.; Wang, Z.Y.; Yu, L.L. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking. Food Chem. 2019, 270, 223–228. [Google Scholar] [CrossRef]
- Mushtaq, F.; Raza, Z.A.; Batool, S.R.; Zahid, M.; Onder, O.C.; Rafique, A.; Nazeer, M.A. Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol. 2022, 218, 601–633. [Google Scholar] [CrossRef]
- Milano, F.; Masi, A.; Madaghiele, M.; Sannino, A.; Salvatore, L.; Gallo, N. Current trends in gelatin-based drug delivery systems. Pharmaceutics 2023, 15, 1499. [Google Scholar] [CrossRef]
- Lu, Y.X.; Liu, M.S.; Cao, Y.F.; Yin, J.J.; Zhou, H.C.; Yu, W.W.; Liu, H.B.; Wang, J.J.; Huang, C.S.; Ma, P.F.; et al. Hydrogel sunscreen based on yeast/gelatin demonstrates excellent UV-shielding and skin protection performance. Colloids Surf. B 2021, 205, 111885. [Google Scholar] [CrossRef]
- Castro-Munoz, R.; Barragan-Huerta, B.E.; Yanez-Fernandez, J. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). Lwt-Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Das, A.; Basu, A.; Halder, A.; Das, S.; Basu, S.; Abdullah, M.F.; Mukherjee, A.; Kundu, S. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int. J. Biol. Macromol. 2018, 120, 1823–1833. [Google Scholar] [CrossRef]
- Bini, R.A.; Silva, M.F.; Varanda, L.C.; da Silva, M.A.; Dreiss, C.A. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids Surf. B 2017, 157, 191–198. [Google Scholar] [CrossRef]
- De Matos, F.E., Jr.; da Silva, M.P.; Consiglio Kasemodel, M.G.; Santos, T.T.; Burns, P.; Reinheimer, J.; Vinderola, G.; Favaro-Trindade, C.S. Evaluation of the viability and the preservation of the functionality of microencapsulated Lactobacillus paracasei BGP1 and Lactobacillus rhamnosus 64 in lipid particles coated by polymer electrostatic interaction. J. Funct. Foods 2019, 54, 98–108. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, X.; Zhang, H.; Zhang, Y.Z.; Ganzle, M.; Yang, N.; Nishinari, K.; Fang, Y.P. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocoll. 2020, 105, 105790. [Google Scholar] [CrossRef]
- Li, Y.B.; Wu, L.; Weng, M.J.; Tang, B.; Lai, P.F.; Chen, J.C. Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum (Prunus salicina lindl.). Powder Technol. 2018, 340, 459–464. [Google Scholar] [CrossRef]
- Xiong, W.F.; Li, Y.; Ren, C.; Li, J.; Li, B.; Geng, F. Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocoll. 2021, 120, 106958. [Google Scholar] [CrossRef]
- Shinde, A.P.; Meena, G.S.; Handge, J.U. Effect of sodium triphosphate and sodium hexametaphosphate on properties of buffalo milk protein concentrate 60 (BMPC60) powder. J. Food Sci. Technol. 2021, 58, 1996–2006. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, N.A.; Power, O.; Wijayanti, H.B.; Kelly, P.M.; Mao, L.; Fenelon, M.A. Effects of calcium chelating agents on the solubility of milk protein concentrate. Int. J. Dairy Technol. 2017, 70, 415–423. [Google Scholar] [CrossRef]
- Rasouli, M.; Abbasi, S.; Azarikia, F.; Ettelaie, R. On the heat stability of whey protein: Effect of sodium hexametaphosphate. Int. J. Dairy Technol. 2020, 73, 46–56. [Google Scholar] [CrossRef]
- Akbari, M.; Razavi, S.H.; Kieliszek, M. Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends Food Sci. Technol. 2021, 110, 458–469. [Google Scholar] [CrossRef]
- Chen, H.R.; Wu, D.; Ma, W.C.; Wu, C.; Liu, J.; Du, M. Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan. Food Chem. 2022, 376, 131873. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.J.; Jia, X.; Zhang, Q.P.; Chen, H.T.; Zhu, Q.M.; Yin, L.J. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocoll. 2021, 113, 106453. [Google Scholar] [CrossRef]
- Marcotte, M.; Hoshahili, A.R.T.; Ramaswamy, H.S. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int. 2001, 34, 695–703. [Google Scholar] [CrossRef]
- Ahammed, S.; Liu, F.; Wu, J.M.; Khin, M.N.; Yokoyama, W.H.; Zhong, F. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocoll. 2021, 116, 106649. [Google Scholar] [CrossRef]
- Fan, H.Y.; Duquette, D.; Dumont, M.-J.; Simpson, B.K. Salmon skin gelatin-corn zein composite films produced via crosslinking with glutaraldehyde: Optimization using response surface methodology and characterization. Int. J. Biol. Macromol. 2018, 120, 263–273. [Google Scholar] [CrossRef]
- Liu, F.; Majeed, H.; Antoniou, J.; Li, Y.; Ma, Y.; Yokoyama, W.; Ma, J.G.; Zhong, F. Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocoll. 2016, 58, 20–28. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Wang, H.; Liu, W.; Zhang, L.; Zhang, Y.; ShangGuan, X.C. Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. J. Food Sci. Technol. 2017, 54, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.L.; Lu, F.; Li, Y.P.; Wang, C.Y. Effects of high pressure and thermal combinations on gel properties and water distribution of pork batters. J. Food Sci. Technol. 2021, 58, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.G.; Tan, L.L.; Chen, Y.F.; Zhang, J.; Li, H.H.; Chen, L.H. Effect of κ-carrageenan addition on protein structure and gel properties of salted duck egg white. J. Sci. Food Agric. 2021, 101, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.C.; Castro, M.H.; Malcata, F.X.; Kirby, R.M. Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray-drying. J. Dairy Sci. 1995, 78, 1025–1031. [Google Scholar] [CrossRef]
- Ananta, E.; Volkert, M.; Knorr, D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 2005, 15, 399–409. [Google Scholar] [CrossRef]
- Cen, S.J.; Zhang, L.Y.; Liu, L.W.; Lou, Q.M.; Wang, C.C.; Huang, T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem. 2022, 380, 132209. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Sha, X.M.; Huang, T.; Zhang, L.; Wang, G.Y.; Tu, Z.C. Microbial transglutaminase (MTGase) modified fish gelatin-γ-polyglutamic acid (γ-PGA): Rheological behavior, gelling properties, and structure. Food Chem. 2021, 348, 129093. [Google Scholar] [CrossRef]
- Chen, H.; Gan, J.; Ji, A.G.; Song, S.L.; Yin, L.J. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef]
- Su, J.Q.; Cai, Y.J.; Zhi, Z.J.; Guo, Q.; Mao, L.K.; Gao, Y.X.; Yuan, F.; Van der Meeren, P. Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohyd. Polym. 2021, 254, 117446. [Google Scholar] [CrossRef] [PubMed]
TGase Concentration (U/gGE) | Hardness (g) | Adhesiveness (g.s) | Springiness (%) | Chewiness (N) | Resilience |
---|---|---|---|---|---|
3 | 677.835 ± 6.290 e | −114.114 ± 0.288 d | 0.957 ± 0.006 c | 383.671 ± 1.228 e | 0.287 ± 0.011 c |
6 | 1408.065 ± 20.913 b | −82.245 ± 7.297 c | 0.964 ± 0.002 c | 1145.251 ± 13.620 b | 0.577 ± 0.008 b |
9 | 2296.01 ± 45.415 a | −10.492 ± 1.029 a | 0.997 ± 0.001 a | 1898.900 ± 1.878 a | 0.567 ± 0.007 b |
12 | 1084.324 ± 9.837 c | −48.062 ± 6.584 b | 0.981 ± 0.015 b | 884.923 ± 5.865 c | 0.591 ± 0.011 b |
15 | 875.680 ± 1.780 d | −18.837 ± 7.047 a | 0.987 ± 0.006 ab | 792.439 ± 4.724 d | 0.638 ± 0.018 a |
TGase Concentration (U/gGE) | Kgel (Pa/s) | R2 | G′Final (Pa) |
---|---|---|---|
3 | 705.677 | 0.9859 | 588.033 |
6 | 795.420 | 0.9844 | 631.113 |
9 | 923.512 | 0.9839 | 774.231 |
12 | 551.837 | 0.9828 | 445.022 |
15 | 536.932 | 0.9882 | 413.111 |
Power-Law Model | TGase Concentration (U/gGE) | ||||
---|---|---|---|---|---|
3 | 6 | 9 | 12 | 15 | |
c | 42.162 | 67.306 | 117.173 | 68.074 | 52.565 |
p | −0.763 | −0.722 | −0.728 | −0.785 | −0.720 |
R2 | 0.999 | 0.994 | 0.991 | 0.996 | 0.994 |
η50 | 1.18682 | 1.88556 | 7.69007 | 4.76029 | 4.15941 |
Time (min) | Viability of L. plantarum (Log CFU/mL) | ||||
---|---|---|---|---|---|
3 U/gGE | 6 U/gGE | 9 U/gGE | 12 U/gGE | 15 U/gGE | |
0 | 8.657 ± 0.049 c | 8.801 ± 0.054 b | 8.697 ± 0.058 ab | 8.786 ± 0.041 b | 8.778 ± 0.050 ab |
60 | 6.521 ± 0.114 c | 8.095 ± 0.030 a | 8.237 ± 0.019 a | 8.103 ± 0.025 a | 7.864 ± 0.078 b |
120 | 6.052 ± 0.279 c | 7.949 ± 0.043 a | 8.129 ± 0.022 a | 7.880 ± 0.072 a | 7.367 ± 0.107 b |
180 | 5.537 ± 0.080 d | 7.091 ± 0.066 b | 7.4114 ± 0.014 a | 7.058 ± 0.035 b | 6.580 ± 0.057 c |
Drying Method | Relaxation Time (ms) | Content (%) | ||||
---|---|---|---|---|---|---|
T21 | T22 | T23 | A21 | A22 | A23 | |
MFD | 0.645 | 5.801 | 98.678 | 30.82 | 7.32 | 61.86 |
FD | 0.857 | 6.67 | 115.896 | 28.10 | 7.45 | 64.45 |
Storage Time (Days) | Bacterial Activity Count (Log CFU/g) | ||||
---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | |
FD | 7.685 ± 0.036 | 7.908 ± 0.040 | 7.430 ± 0.025 | 7.058 ± 0.034 | 6.544 ± 0.060 |
MFD | 7.599 ± 0.046 | 7.687 ± 0.045 | 7.455 ± 0.013 | 7.223 ± 0.017 | 6.827 ± 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, Z.; Ma, S.; Chen, X.; Li, L.; Liu, W.; Ren, G.; Duan, X.; Cao, W.; Xu, Y.; et al. Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel. Molecules 2023, 28, 8070. https://doi.org/10.3390/molecules28248070
Chen J, Liu Z, Ma S, Chen X, Li L, Liu W, Ren G, Duan X, Cao W, Xu Y, et al. Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel. Molecules. 2023; 28(24):8070. https://doi.org/10.3390/molecules28248070
Chicago/Turabian StyleChen, Junliang, Zhiqin Liu, Shuhua Ma, Xin Chen, Linlin Li, Wenchao Liu, Guangyue Ren, Xu Duan, Weiwei Cao, Yunfeng Xu, and et al. 2023. "Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel" Molecules 28, no. 24: 8070. https://doi.org/10.3390/molecules28248070
APA StyleChen, J., Liu, Z., Ma, S., Chen, X., Li, L., Liu, W., Ren, G., Duan, X., Cao, W., Xu, Y., & Xie, Q. (2023). Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel. Molecules, 28(24), 8070. https://doi.org/10.3390/molecules28248070