Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4963 KiB  
Article
Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate
by Ke Deng, Yafei Wang, Lei Wang, Xianli Fan, Zhenyu Wu, Xue Wen, Wen Xie, Hong Wang, Zheng Zhou, Pengfei Chen and Xianggui Chen
Molecules 2023, 28(23), 7823; https://doi.org/10.3390/molecules28237823 - 28 Nov 2023
Cited by 5 | Viewed by 1771
Abstract
Phase transition behaviors of poly(N-isopropylacrylamide) nanogels with different compositions induced by (−)-epigallocatechin-3-gallate (EGCG) and ethyl gallate (EG) has been investigated systematically. Monodisperse poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (P(NIPAM-co-NMAM)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM- [...] Read more.
Phase transition behaviors of poly(N-isopropylacrylamide) nanogels with different compositions induced by (−)-epigallocatechin-3-gallate (EGCG) and ethyl gallate (EG) has been investigated systematically. Monodisperse poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (P(NIPAM-co-NMAM)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)) nanogels with different feeding monomer ratios were prepared by emulsion polymerization. P(NIPAM-co-NMAM) nanogels exhibit rapid isothermal phase transition behavior in EGCG solutions with low concentration (10−3 mol/L) in less than 10 minutes. The thermosensitive phase transition behaviors of nanogels are affected not only by the copolymerized monomers but also by the concentrations of EGCG and EG in aqueous solutions. Nanogels remain in a shrunken state and do not exhibit thermosensitive phase transition behaviors in EGCG solutions (≥5 mmol/L), whereas they display thermo-responsive phase transition behaviors in EG solutions. The volume phase transition temperature (VPTT) shifts to lower temperatures with increasing EG concentration. The diameters of P(NIPAM-co-NMAM) nanogels decrease with increasing EG concentration at temperatures between 29 and 33 °C. In contrast, the diameters of P(NIPAM-co-HEMA) nanogels increase with increasing EGCG concentration at temperatures between 37 and 45 °C. The results demonstrate the potential of nanogels for simple detection of EG and EGCG concentrations in aqueous solutions over a wide temperature range, and EGCG can serve as a signal for the burst-release of drugs from the P(NIPAM-co-NMAM)-based carriers at physiological temperature. Full article
(This article belongs to the Special Issue Synthesis and Application of Nanoparticles and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 1668 KiB  
Article
Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles
by Tao Chen, Qisheng Fang, Qi Zhong, Yangyi Chen and Jiping Wang
Polymers 2015, 7(5), 909-920; https://doi.org/10.3390/polym7050909 - 6 May 2015
Cited by 46 | Viewed by 9584
Abstract
We tuned the lower critical solution temperature (LCST) of amphiphilic poly(N-isopropylacrylamide) (PNIPAAm) via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm). A series of copolymers P(NIPAAm-co-NHMAAm) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/(N [...] Read more.
We tuned the lower critical solution temperature (LCST) of amphiphilic poly(N-isopropylacrylamide) (PNIPAAm) via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm). A series of copolymers P(NIPAAm-co-NHMAAm) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine) (PMDETA) as a catalyst system and 2-bromo ethyl isobutyrate (EBiB) as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR), 1H Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA). The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA) as a crosslinking agent and sodium hypophosphite (SHP) as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications. Full article
Show Figures

Graphical abstract

Back to TopTop