The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure
Abstract
:1. Introduction
2. Protein Ingredients
2.1. Soy Protein
2.2. Wheat Gluten
3. Structure Formation
3.1. Low/High Moisture Extrusion
3.2. Shear Cell
3.3. 3D Printing
3.4. Protein Spinning
4. Protein–Protein Interactions
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Alfaro-Diaz, A.; Escobedo, A.; Luna-Vital, D.A.; Castillo-Herrera, G.; Mojica, L. Common Beans as a Source of Food Ingredients: Techno-Functional and Biological Potential. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2910–2944. [Google Scholar] [CrossRef] [PubMed]
- Allotey, D.K.; Kwofie, E.M.; Adewale, P.; Lam, E.; Ngadi, M. Life Cycle Sustainability Assessment Outlook of Plant-Based Protein Processing and Product Formulations. Sustain. Prod. Consum. 2023, 36, 108–125. [Google Scholar] [CrossRef]
- Mordor Intelligence Global Soy Protein Market (2017–2029). 2023. Available online: https://www-mordorintelligence-com.webpkgcache.com/doc/-/s/www.mordorintelligence.com/industry-reports/global-soy-protein-market (accessed on 17 October 2023).
- Bashi, Z.; McCullough, R.; Ong, L.; Ramirez, M. Alternative Proteins: The Race for Market Share Is On; McKinsey & Company: New York, NY, USA, 2019; pp. 1–11. [Google Scholar]
- Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R.; Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R.; Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R. Modification Approaches of Plant-Based Proteins to Improve Their Techno-Functionality and Use in Food Products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Rocha-Pizaña, M.D.R.; García-Lara, S.; López-Castillo, L.M.; Serna-Saldívar, S.O. Effect of Thermal Processing and Reducing Agents on Trypsin Inhibitor Activity and Functional Properties of Soybean and Chickpea Protein Concentrates. LWT 2018, 98, 629–634. [Google Scholar] [CrossRef]
- Messina, M.J. Legumes and Soybeans: Overview of Their Nutritional Profiles and Health Effects. Am. J. Clin. Nutr. 2018, 70, 439s–450s. [Google Scholar] [CrossRef]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy Protein: Impacts, Production, and Applications. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 23–45. [Google Scholar]
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Harvey, F.; Phillips, D. A Fifth of Brazilian Soy in Europe Is Result of Deforestation. Environ. Guard. 2020, 16–17. [Google Scholar]
- Amaral, D.F.; de Souza Ferreira Filho, J.B.; Chagas, A.L.S.; Adami, M. Expansion of Soybean Farming into Deforested Areas in the Amazon Biome: The Role and Impact of the Soy Moratorium. Sustain. Sci. 2021, 16, 1295–1312. [Google Scholar] [CrossRef]
- Haidar, C.N.; Coscueta, E.; Cordisco, E.; Nerli, B.B.; Malpiedi, L.P. Aqueous Micellar Two-Phase System as an Alternative Method to Selectively Remove Soy Antinutritional Factors. LWT 2018, 93, 665–672. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat Analogues: Health Promising Sustainable Meat Substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Don, C.; Lichtendonk, W.; Plijter, J.J.; Hamer, R.J. Glutenin Macropolymer: A Gel Formed by Glutenin Particles. J. Cereal Sci. 2003, 37, 1–7. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, V.L.; Emin, M.A.; Schuchmann, H.P. Process Conditions Influencing Wheat Gluten Polymerization during High Moisture Extrusion of Meat Analog Products. J. Food Eng. 2017, 198, 28–35. [Google Scholar] [CrossRef]
- Pietsch, V.L.; Karbstein, H.P.; Emin, M.A. Kinetics of Wheat Gluten Polymerization at Extrusion-like Conditions Relevant for the Production of Meat Analog Products. Food Hydrocoll. 2018, 85, 102–109. [Google Scholar] [CrossRef]
- Rausch, K.D.; Hummel, D.; Johnson, L.A.; May, J.B. Wet Milling: The Basis for Corn Biorefineries. In Corn; Elsevier: Amsterdam, The Netherlands, 2019; pp. 501–535. [Google Scholar]
- Ooms, N.; Jansens, K.J.A.; Pareyt, B.; Reyniers, S.; Brijs, K.; Delcour, J.A. The Impact of Disulfide Bond Dynamics in Wheat Gluten Protein on the Development of Fermented Pastry Crumb. Food Chem. 2018, 242, 68–74. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Nagano, T.; Guo, S.; Wang, R. Soy as a Food Ingredient, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081007297. [Google Scholar]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Tarone, A.G.; Fasolin, L.H.; de Assis Perrechil, F.; Hubinger, M.D.; da Cunha, R.L. Influence of Drying Conditions on the Gelling Properties of the 7S and 11S Soy Protein Fractions. Food Bioprod. Process. 2013, 91, 111–120. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, P.; Xie, T.; Liu, X.; Yang, L.; Wang, S.; Li, J.; Liu, H. Interaction between Soyasaponin and Soy β-Conglycinin or Glycinin: Air-Water Interfacial Behavior and Foaming Property of Their Mixtures. Colloids Surf. B Biointerfaces 2020, 186, 110707. [Google Scholar] [CrossRef]
- Peng, Y.; Kyriakopoulou, K.; Ndiaye, M.; Bianeis, M.; Keppler, J.K.; van der Goot, A.J. Characteristics of Soy Protein Prepared Using an Aqueous Ethanol Washing Process. Foods 2021, 10, 2222. [Google Scholar] [CrossRef]
- Alibhai, Z.; Mondor, M.; Moresoli, C.; Ippersiel, D.; Lamarche, F. Production of Soy Protein Concentrates/Isolates: Traditional and Membrane Technologies. Desalination 2006, 191, 351–358. [Google Scholar] [CrossRef]
- Deak, N.A.; Murphy, P.A.; Johnson, L.A. Characterization of Fractionated Soy Proteins Produced by a New Simplified Procedure. J. Am. Oil Chem. Soc. 2007, 84, 137–149. [Google Scholar] [CrossRef]
- Senti, F.R. Soy Protein Foods in U.S. Assistance Programs. J. Am. Oil Chem. Soc. 1974, 51, 138–140. [Google Scholar] [CrossRef]
- Egbert, W.R. Isolated Soy Protein: Technology, Properties, and Applications. In Soybeans as Functional Foods and Ingredients; AOCS Press: Champaign, IL, USA, 2004; pp. 134–162. [Google Scholar]
- Goldsmith, P.D. Economics of Soybean Production, Marketing, and Utilization. In Soybeans Chemistry, Production, Processing, and Utilization; AOCS Press: Champaign, IL, USA, 2008; pp. 117–150. [Google Scholar]
- Day, L. Wheat Gluten: Production, Properties and Application; Woodhead Publishing Limited: Sawston, UK, 2011. [Google Scholar]
- Menon, V.; Kaur, M.; Gupta, S.; Nadda, A.K.; Singh, G.B.; Sharma, S. Fabrication, Properties and Applications of Gluten Protein; Woodhead Publishing Limited: Sawston, UK, 2022; ISBN 9780323905459. [Google Scholar]
- Veraverbeke, W.S.; Roels, S.P.; Delcour, J.A. Heat-Induced Changes in Sodium Dodecyl Sulphate-Sedimentation Volume and Functionality of Vital Wheat Gluten. J. Cereal Sci. 1997, 26, 177–181. [Google Scholar] [CrossRef]
- Veraverbeke, W.S.; Delcour, J.A.; Bekes, F. Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Delcour, J.A.; Joye, I.J.; Pareyt, B.; Wilderjans, E.; Brijs, K.; Lagrain, B. Wheat Gluten Functionality as a Quality Determinant in Cereal-Based Food Products. Annu. Rev. Food Sci. Technol. 2012, 3, 469–492. [Google Scholar] [CrossRef]
- Gianibelli, M.C.; Larroque, O.R.; MacRitchie, F.; Wrigley, C.W. Biochemical, Genetic, and Molecular Characterization of Wheat Glutenin and Its Component Subunits. Cereal Chem. 2001, 78, 635–646. [Google Scholar] [CrossRef]
- Ng, T.S.K.; McKinley, G.H. Power Law Gels at Finite Strains: The Nonlinear Rheology of Gluten Gels. J. Rheol. 2008, 52, 417–449. [Google Scholar] [CrossRef]
- Sissons, M.J.; Egan, N.E.; Gianibelli, M.C. New Insights into the Role of Gluten on Durum Pasta Quality Using Reconstitution Method. Cereal Chem. 2005, 82, 601–608. [Google Scholar] [CrossRef]
- Grabowska, K.J.; Tekidou, S.; Boom, R.M.; van der Goot, A.J. Shear Structuring as a New Method to Make Anisotropic Structures from Soy–Gluten Blends. Food Res. Int. 2014, 64, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Krintiras, G.A.; Göbel, J.; Van Der Goot, A.J.; Stefanidis, G.D. Production of Structured Soy-Based Meat Analogues Using Simple Shear and Heat in a Couette Cell. J. Food Eng. 2015, 160, 34–41. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Zhang, T.; Zhang, Y.; Jiang, L.; Sui, X. Potential of Hydrolyzed Wheat Protein in Soy-Based Meat Analogues: Rheological, Textural and Functional Properties. Food Chem. X 2023, 20, 100921. [Google Scholar] [CrossRef]
- Hou, Y.; Xia, S.; Ma, C.; Xue, C.; Jiang, X. Effects of the Soy Protein to Wheat Gluten Ratio on the Physicochemical and Structural Properties of Alaska Pollock Surimi-Based Meat Analogs by High Moisture Extrusion. Food Res. Int. 2023, 173, 113469. [Google Scholar] [CrossRef]
- Chiang, J.H.; Loveday, S.M.; Hardacre, A.K.; Parker, M.E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Struct. 2019, 19, 100102. [Google Scholar] [CrossRef]
- Xie, S.H.; Wang, Z.J.; He, Z.Y.; Zeng, M.M.; Qin, F.; Adhikari, B.; Chen, J. The Effects of Maltodextrin/Starch in Soy Protein Isolate–Wheat Gluten on the Thermal Stability of High-Moisture Extrudates. J. Integr. Agric. 2023, 22, 1590–1602. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Zhang, M.; Zheng, H.; Li, L. Preservation of Soy Protein-Based Meat Analogues by Using PLA/PBAT Antimicrobial Packaging Film. Food Chem. 2022, 380, 132022. [Google Scholar] [CrossRef]
- Mateen, A.; Mathpati, M.; Singh, G. A Study on High Moisture Extrusion for Making Whole Cut Meat Analogue: Characterization of System, Process and Product Parameters. Innov. Food Sci. Emerg. Technol. 2023, 85, 103315. [Google Scholar] [CrossRef]
- Samard, S.; Gu, B.Y.; Ryu, G.H. Effects of Extrusion Types, Screw Speed and Addition of Wheat Gluten on Physicochemical Characteristics and Cooking Stability of Meat Analogues. J. Sci. Food Agric. 2019, 99, 4922–4931. [Google Scholar] [CrossRef]
- Liu, K.S.; Hsieh, F.H. Protein-Protein Interactions during High-Moisture Extrusion for Fibrous Meat Analogues and Comparison of Protein Solubility Methods Using Different Solvent Systems. J. Agric. Food Chem. 2008, 56, 2681–2687. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Zhang, T.; Zhang, Y.; Jiang, L.; Sui, X. High Moisture Extrusion of Soy Protein and Wheat Gluten Blend: An Underlying Mechanism for the Formation of Fibrous Structures. LWT 2022, 163, 113561. [Google Scholar] [CrossRef]
- Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Jan Van Der Goot, A.; Stefanidis, G.D. On Characterization of Anisotropic Plant Protein Structures. Food Funct. 2014, 5, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Lesschen, J.; van der Goot, A.J.; van der Sman, R.G.M. Enhancing the Water Holding Capacity of Model Meat Analogues through Marinade Composition. J. Food Eng. 2021, 290, 110283. [Google Scholar] [CrossRef]
- Estrada, P.D.; Berton-Carabin, C.C.; Schlangen, M.; Haagsma, A.; Pierucci, A.P.T.R.; Van Der Goot, A.J. Protein Oxidation in Plant Protein-Based Fibrous Products: Effects of Encapsulated Iron and Process Conditions. J. Agric. Food Chem. 2018, 66, 11105–11112. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, B.L.; Emin, M.A.; Boom, R.M.; van der Goot, A.J. The Phase Properties of Soy Protein and Wheat Gluten in a Blend for Fibrous Structure Formation. Food Hydrocoll. 2018, 79, 273–281. [Google Scholar] [CrossRef]
- Qiu, Y.; McClements, D.J.; Chen, J.; Li, C.; Liu, C.; Dai, T. Construction of 3D Printed Meat Analogs from Plant-Based Proteins: Improving the Printing Performance of Soy Protein- and Gluten-Based Pastes Facilitated by Rice Protein. Food Res. Int. 2023, 167, 112635. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S. 3D Printing of Soy Protein- and Gluten-Based Gels Facilitated by Thermosensitive Cocoa Butter in a Model Study. ACS Food Sci. Technol. 2021, 1, 1990–1996. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Bhandari, B. 3D Printing of Steak-Like Foods Based on Textured Soybean Protein. Foods 2021, 10, 2011. [Google Scholar] [CrossRef]
- Puski, G.; Konwinski, A.H. Process of Making a Soy-Based Meat Substitute. U.S. Patent 3950564A, 13 April 1976. [Google Scholar]
- Verbeek, C.J.R.; Van Den Berg, L.E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2010, 295, 10–21. [Google Scholar] [CrossRef]
- Maurya, A.K.; Said, P.P. Extrusion Processing on Physical and Chemical Properties of Protein Rich Products-An Overview. J. Bioresour. Eng. Technol. 2014, 2, 61–67. [Google Scholar]
- Cuq, B.; Gontard, N.; Guilbert, S. Proteins as Agricultural Polymers for Packaging Production. Cereal Chem. 1998, 75, 1–9. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128148747. [Google Scholar]
- Cheftel, J.C.; Kitagawa, M.; Queguiner, C. New Protein Texturization Processes by Extrusion Cooking at High Moisture Levels. Food Rev. Int. 1992, 8, 235–275. [Google Scholar] [CrossRef]
- Wang, Y.; Lyu, B.; Fu, H.; Li, J.; Ji, L.; Gong, H.; Zhang, R.; Liu, J.; Yu, H. The Development Process of Plant-Based Meat Alternatives: Raw Material Formulations and Processing Strategies. Food Res. Int. 2023, 167, 112689. [Google Scholar] [CrossRef] [PubMed]
- Navale, S.A.; Swami, S.B.; Thakor, N.J. Extrusion Cooking Technology for Foods: A Review. J. Ready Eat Food 2015, 2, 66–80. [Google Scholar]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- Crowe, T.W.; Johnson, L.A. Twin-Screw Extrusion Texturization of Extruded-Expelled Soybean Flour. J. Am. Oil Chem. Soc. 2001, 78, 781–786. [Google Scholar] [CrossRef]
- Basediya, A.L.; Pandey, S.; Shrivastava, S.P.; Khan, K.A.; Nema, A. Effect of Process and Machine Parameters on Physical Properties of Extrudate during Extrusion Cooking of Sorghum, Horse Gram and Defatted Soy Flour Blends. J. Food Sci. Technol. 2013, 50, 44–52. [Google Scholar] [CrossRef]
- Guerrero, P.; Beatty, E.; Kerry, J.P.; De La Caba, K. Extrusion of Soy Protein with Gelatin and Sugars at Low Moisture Content. J. Food Eng. 2012, 110, 53–59. [Google Scholar] [CrossRef]
- Van Den Einde, R.M.; Van Der Goot, A.J.; Boom, R.M. Understanding Molecular Weight Reduction of Starch during Heating-Shearing Processes. J. Food Sci. 2003, 68, 2396–2404. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Van Der Goot, A.J.; Hamer, R.J.; Boom, R.M. A New Method to Study Simple Shear Processing of Wheat Gluten-Starch Mixtures. Cereal Chem. 2004, 81, 714–721. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Schreuders, F.K.G.; van der Sman, R.G.M.; Beyrer, M.; van der Goot, A.J. Thermo-Mechanical Processing of Plant Proteins Using Shear Cell and High-Moisture Extrusion Cooking. Crit. Rev. Food Sci. Nutr. 2022, 62, 3264–3280. [Google Scholar] [CrossRef] [PubMed]
- Manski, J.M.; van der Goot, A.J.; Boom, R.M. Formation of Fibrous Materials from Dense Calcium Caseinate Dispersions. Biomacromolecules 2007, 8, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.J.; Zhu, S.; Dekkers, B.L.; De Ruijter, N.C.A.; Gieteling, J.; van der Goot, A.J. Shear-Induced Structuring as a Tool to Make Anisotropic Materials Using Soy Protein Concentrate. J. Food Eng. 2016, 188, 77–86. [Google Scholar] [CrossRef]
- Bühler, J.M.; Dekkers, B.L.; Bruins, M.E.; van der Goot, A.J. Modifying Faba Bean Protein Concentrate Using Dry Heat to Increase Water Holding Capacity. Foods 2020, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Kyriakopoulou, K.; Roelofs, B.; Ndiaye, M.; Vincken, J.-P.; Keppler, J.K.; van der Goot, A.J. Removal of Phenolic Compounds from De-Oiled Sunflower Kernels by Aqueous Ethanol Washing. Food Chem. 2021, 362, 130204. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Rodriguez-Alonso, E.; Bianeis, M.; Keppler, J.K.; van der Goot, A.J. Assessing Functional Properties of Rapeseed Protein Concentrate versus Isolate for Food Applications. Innov. Food Sci. Emerg. Technol. 2021, 68, 102636. [Google Scholar] [CrossRef]
- Krintiras, G.A.; Diaz, J.G.; Van Der Goot, A.J.; Stankiewicz, A.I.; Stefanidis, G.D. On the Use of the Couette Cell Technology for Large Scale Production of Textured Soy-Based Meat Replacers. J. Food Eng. 2016, 169, 205–213. [Google Scholar] [CrossRef]
- Wegrzyn, T.F.; Golding, M.; Archer, R.H. Food Layered Manufacture: A New Process for Constructing Solid Foods. Trends Food Sci. Technol. 2012, 27, 66–72. [Google Scholar] [CrossRef]
- Uz Zaman, U.K.; Rivette, M.; Siadat, A.; Mousavi, S.M. Integrated Product-Process Design: Material and Manufacturing Process Selection for Additive Manufacturing Using Multi-Criteria Decision Making. Robot. Comput. Integr. Manuf. 2018, 51, 169–180. [Google Scholar] [CrossRef]
- Holland, S.; Foster, T.; MacNaughtan, W.; Tuck, C. Design and Characterisation of Food Grade Powders and Inks for Microstructure Control Using 3D Printing. J. Food Eng. 2018, 220, 12–19. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D Printing: Printing Precision and Application in Food Sector. Trends Food Sci. Technol. 2017, 69, 83–94. [Google Scholar] [CrossRef]
- Wen, Y.; Chao, C.; Che, Q.T.; Kim, H.W.; Park, H.J. Development of Plant-Based Meat Analogs Using 3D Printing: Status and Opportunities. Trends Food Sci. Technol. 2023, 132, 76–92. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Bhandari, B. Recent Development in 3D Food Printing. Crit. Rev. Food Sci. Nutr. 2017, 57, 3145–3153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mu, T.; Goffin, D.; Blecker, C.; Richard, G.; Richel, A.; Haubruge, E. Application of Soy Protein Isolate and Hydrocolloids Based Mixtures as Promising Food Material in 3D Food Printing. J. Food Eng. 2019, 261, 76–86. [Google Scholar] [CrossRef]
- Phuhongsung, P.; Zhang, M.; Devahastin, S. Investigation on 3D Printing Ability of Soybean Protein Isolate Gels and Correlations with Their Rheological and Textural Properties via LF-NMR Spectroscopic Characteristics. LWT 2020, 122, 109019. [Google Scholar] [CrossRef]
- Ko, H.J.; Wen, Y.; Choi, J.H.; Park, B.R.; Kim, H.W.; Park, H.J. Meat Analog Production through Artificial Muscle Fiber Insertion Using Coaxial Nozzle-Assisted Three-Dimensional Food Printing. Food Hydrocoll. 2021, 120, 106898. [Google Scholar] [CrossRef]
- Israeli, D.; Prigat Goldfriend, Y.; Dikovsky, D.; Benjamin, O. Novel Plant Proteins Used in 3D Printed Meat Analogues: Relationship between Protein Physicochemical and Functional Characteristics. Eur. Food Res. Technol. 2023, 249, 2335–2347. [Google Scholar] [CrossRef]
- Zeleny, J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Phys. Rev. 1914, 3, 69–91. [Google Scholar] [CrossRef]
- Formhals, A. Process and Apparatus for Artificial Threads. U.S. Patent 1975504A, 2 October 1934. [Google Scholar]
- Chiffman, J.D.; Schauer, C.L. A Review: Electrospinning of Biopolymer Nanofibers and Their Applications. Polym. Rev. 2008, 48, 317–352. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hsieh, A.J.; Rutledge, G.C. Electrospinning of Poly(MMA-Co-MAA) Copolymers and Their Layered Silicate Nanocomposites for Improved Thermal Properties. Polymer 2005, 46, 3407–3418. [Google Scholar] [CrossRef]
- Nieuwland, M.; Geerdink, P.; Brier, P.; Van Den Eijnden, P.; Henket, J.T.M.M.; Langelaan, M.L.P.; Stroeks, N.; Van Deventer, H.C.; Martin, A.H. Reprint of “Food-Grade Electrospinning of Proteins”. Innov. Food Sci. Emerg. Technol. 2014, 24, 138–144. [Google Scholar] [CrossRef]
- Kanjanapongkul, K.; Wongsasulak, S.; Yoovidhya, T. Investigation and Prevention of Clogging during Electrospinning of Zein Solution. J. Appl. Polym. Sci. 2010, 116, 1821–1829. [Google Scholar] [CrossRef]
- Ziegler, G.R.; Foegeding, E.A. The Gelation of Proteins. Adv. Food Nutr. Res. 1990, 34, 203–298. [Google Scholar] [CrossRef]
- Braudo, E.E.; Gotlieb, A.M.; Plashina, I.G.; Tolstoguzov, V.B. Protein-containing Multicomponent Gels. Food/Nahrung 1986, 30, 355–364. [Google Scholar] [CrossRef]
- Tolstoguzov, V. Some Thermodynamic Considerations in Food Formulation. Food Hydrocoll. 2003, 17, 1–23. [Google Scholar] [CrossRef]
- Tolstoguzov, V.B. Some Physico-Chemical Aspects of Protein Processing in Foods. Multicomponent Gels. Top. Catal. 1995, 9, 317–332. [Google Scholar] [CrossRef]
- Polyakov, V.I.; Popello, I.A.; Grinberg, V.Y.; Tolstoguzov, V.B. Thermodynamic Compatibility of Proteins in Aqueous Medium. Food/Nahrung 1986, 30, 365–368. [Google Scholar] [CrossRef]
- Velichko, E.; Tian, B.; Nikolaeva, T.; Koning, J.; van Duynhoven, J.; Bouwman, W.G. A Versatile Shear Cell for Investigation of Structure of Food Materials under Shear. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 566, 21–28. [Google Scholar] [CrossRef]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Plant Globulins. Curr. Opin. Food Sci. 2019, 27, 18–22. [Google Scholar] [CrossRef]
- Utsumi, S.; Kinsella, J.E. Forces Involved in Soy Protein Gelation: Effects of Various Reagents on the Formation, Hardness and Solubility of Heat-Induced Gels Made from 7S, 11S, and Soy Isolate. J. Food Sci. 1985, 50, 1278–1282. [Google Scholar] [CrossRef]
- Liu, K.S.; Hsieh, F.H. Protein-Protein Interactions in High Moisture-Extruded Meat Analogs and Heat-Induced Soy Protein Gels. J. Am. Oil Chem. Soc. 2007, 84, 741–748. [Google Scholar] [CrossRef]
- Cordier, F.; Grzesiek, S. Temperature-Dependence of Protein Hydrogen Bond Properties as Studied by High-Resolution NMR. J. Mol. Biol. 2002, 317, 739–752. [Google Scholar] [CrossRef]
- van Dijk, E.; Hoogeveen, A.; Abeln, S. The Hydrophobic Temperature Dependence of Amino Acids Directly Calculated from Protein Structures. PLoS Comput. Biol. 2015, 11, e1004277. [Google Scholar] [CrossRef]
- Volkin, D.B.; Klibanov, A.M. Thermal Destruction Processes in Proteins Involving Cystine Residues. J. Biol. Chem. 1987, 262, 2945–2950. [Google Scholar] [CrossRef]
- Schofield, J.D.; Bottomley, R.C.; Timms, M.F.; Booth, M.R. The Effect of Heat on Wheat Gluten and the Involvement of Sulphydryl-Disulphide Interchange Reactions. J. Cereal Sci. 1983, 1, 241–253. [Google Scholar] [CrossRef]
- Evans, E. Probing the Relation between Force-Lifetime-and Chemistry. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 105–128. [Google Scholar] [CrossRef]
- Nagy, P. Kinetics and Mechanisms of Thiol-Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways. Antioxid. Redox Signal. 2013, 18, 1623–1641. [Google Scholar] [CrossRef]
Formulations | Technique | Processing Conditions | Reference |
---|---|---|---|
SPC + WG | HME | Screw length/diameter ratio 44:1, feed rate 7.0 g/min, moisture content 60%. | [42] |
SPI + WG | HME | Screw speed 110 rpm, feed speed 5 kg/h, temperature zones at 30, 35, 40, 45, 50, 55, 60 100, 140, and 170 °C along the extrusion direction. | [43] |
SPC + WG | HME | Moisture content 57%, maximum barrel temperature 170 °C, dry and water feed rate 2.8 kg/h and 3.6 kg/h, respectively. | [44] |
SPI + WG | HME | Screw speed 200 r/min, barrel temperatures 30, 40, 60, 140, 150, and 150 °C sequentially. | [45] |
SPI + WG | HME | Feed speed 6 kg/h, feed moisture 55%, cooling die with a length of 164 mm, the end of the extruder barrel 20 °C. | [46] |
Soy flour + WG | HME | Screw diameter 20 mm, L/D ratio of 40:1, cooling water temperature 30 °C, flow rate of 6.97 L/min. | [47] |
SPI + WG | HME | Moisture content 70%, feed rate 100 g/min, barrel temperatures 100, 160, and 130 °C. | [48] |
SP + WG | HME | Length/diameter ratio 15:1, extrusion temperature 170 °C, three moisture levels 72.12, 66.78, and 60.11%. | [49] |
SPC + WG | HME | Barrel diameter 11 mm, length/diameter ratio 44:1, feed rate 8 g/min, moisture level 60%, at series temperatures of 40, 60, 80, 100, 120, 150, and 150 °C. | [50] |
SPI + WG | Couette Cell | Processing temperature 95 °C for 15 min, shear rate 30 rpm, cooling to 4 °C within 30 min. | [51] |
SPI + WG | Shear cell | Processing temperatures of 95–140 °C for 15 min, HTSC cooled down to 25 °C within 5 min. | [52] |
SPI + WG | Shear cell | Constant shear rate 30 rpm for 15 min, preheated temperature 95 °C, the samples were cooled to 4 °C within 30 min. | [40] |
SPI + WG | Shear cell | Dry matter content 29.4 wt%, pre-heated temperature 95 °C, shear rate 30 rpm for 15 min, cooling to 4 °C within 30 min. | [53] |
SPC + WG | Shear cell | Processing temperature 140 °C, shear rate 30 rpm for 15 min, cooling step at 25 °C for 5 min. | [54] |
SPI + WG | Shear cell | Processing temperature 140 °C, shear rate 30 rpm for 15 min, cooling step at 25 °C for 5 min. | [55] |
SPI + WG | 3D printing | 3D printing inks were printed at 25 °C after being placed at 4 °C for 12 h. | [56] |
SPI + WG | 3D printing | Gelatinization temperature 60 °C for 30 min, preheated temperature 60 °C, extrusion distance 5 mm. | [57] |
SPC + WG | 3D printing | Syringe diameter 22 mm, printing speed 20 mm/s, nozzle diameter 0.8 mm, printing layer height 0.8 mm, printing temperature 25 °C. | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, D.; Li, M.; Wen, X.; Ni, Y. The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules 2023, 28, 7431. https://doi.org/10.3390/molecules28217431
Peng Y, Zhao D, Li M, Wen X, Ni Y. The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules. 2023; 28(21):7431. https://doi.org/10.3390/molecules28217431
Chicago/Turabian StylePeng, Yu, Dandan Zhao, Mo Li, Xin Wen, and Yuanying Ni. 2023. "The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure" Molecules 28, no. 21: 7431. https://doi.org/10.3390/molecules28217431
APA StylePeng, Y., Zhao, D., Li, M., Wen, X., & Ni, Y. (2023). The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules, 28(21), 7431. https://doi.org/10.3390/molecules28217431