Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Direct Antimicrobial Activity
2.3. BLI Activity at High Concentrations
2.4. BLI Activity at Low Concentrations
2.5. Synergy Evaluation
2.6. Cytotoxicity Studies
2.7. Molecular Modeling and Hybrid QM/MM Simulations
3. Materials and Methods
3.1. Antimicrobial Activity
3.1.1. Bacterial and Fungal Strains and Their Growth Conditions
3.1.2. Determination of Direct Antimicrobial Activity
3.1.3. Determination of MICs in the Presence of PAβN
3.1.4. Determination of BLI Activity
Combination Disc Tests for Detection of BLI Activity
- CDT-KPC test for detection of KPC-type carbapenemase-producing strain was performed on the recommended strain K. pneumoniae ATCC BAA-1705. Discs with meropenem (MEM-10) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) alone and supplemented with one of the tested agents (TA) at the concentration consistent with the STDA result (0.3 mg or 0.1 mg or 0.03 mg per disc) were utilized. As the reference, the standard KPC inhibitor PBA (Sigma) at the concentration of 0.3 mg per disc was used. In this study, we considered the new compound has KPC-inhibitory activity when the increase in the diameter of the inhibition zone around MEM-TA vs. MEM-10 is at least 4 mm [64].
- CDT-AmpC test for detection class C β-lactamase-producing strain was performed on two clinical isolates: P. aeruginosa MUW 700 overexpressing chromosomally encoded cephalosporinase AmpC and E. coli 77 with plasmid-acquired AmpC cephalosporinase CMY-2. Discs with ceftazidime (CAZ-30) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), ceftazidime with a tested agent (CAZ-TA) at the concentration consistent with the STDA result, and ceftazidime with 0.3 mg of PBA (CAZ-PBA) as the reference AmpC inhibitor were utilized. We assumed the tested agent inhibits AmpC cephalosporinases when the diameter of the inhibition zone around CAZ-TA was at least 5 mm larger than that around CAZ-30 for both tested strains, considering that the same increase should be obtained for CAZ-PBA discs.
- CDT-ESBL EUCAST test for detection of ESBL-producing strain was performed on the recommended strain K. pneumoniae ATCC 700603, utilizing discs with ceftazidime (CAZ-30) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), ceftazidime with a tested agent (CAZ-TA) at the concentration consistent with the STDA result, and ceftazidime with 0.01 mg of clavulanic acid (CAZ-CL) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) as the reference ESBL inhibitor. In the case of clavulanic acid, the diameter of the inhibition zone around CAZ-CL should be at least 5 mm larger than that around CAZ-30 [64]. We consider the tested agent inhibits ESBL when the diameter of the inhibition zone around CAZ-TA is also at least 5 mm larger than that around CAZ-30.
Microdilution Tests for BLI Activity Detection and Synergy Evaluation
3.1.5. Statistical Analysis
3.1.6. Nitrocefin Hydrolysis Test
3.2. Cytotoxicity Studies
3.3. Docking and Time-Dependent Quantum Mechanics/Molecular Mechanics
3.3.1. Structure Preparation and Molecular Docking
3.3.2. Molecular Dynamics Simulations
3.3.3. Quantum Mechanics/Molecular Mechanics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durka, K.; Jarzembska, K.N.; Kamiński, R.; Luliński, S.; Serwatowski, J.; Woźniak, K. Structural and energetic landscape of fluorinated 1,4-phenylenediboronic acids. Cryst. Growth Des. 2012, 12, 3720–3734. [Google Scholar] [CrossRef]
- Waller, P.J.; Gándara, F.; Yaghi, O.M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063. [Google Scholar] [CrossRef]
- Larcher, A.; Nocentini, A.; Supuran, C.T.; Winum, J.Y.; van der Lee, A.; Vasseur, J.J.; Laurencin, D.; Smietana, M. Bis-benzoxaboroles: Design, synthesis, and biological evaluation as carbonic anhydrase inhibitors. ACS Med. Chem. Lett. 2019, 10, 1205–1210. [Google Scholar] [CrossRef]
- Krajnc, A.; Lang, P.A.; Panduwawala, T.D.; Brem, J.; Schofield, C.J. Will morphing boron-based inhibitors beat the β-lactamases? Curr. Opin. Chem. Biol. 2019, 50, 101–110. [Google Scholar] [CrossRef]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The current burden of carbapenemases: Review of significant properties and dissemination among Gram-negative bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Słoczyńska, A.; Wand, M.E.; Tyski, S.; Laudy, A.E. Analysis of blaCHDL genes and insertion sequences related to carbapenem resistance in Acinetobacter baumannii clinical strains isolated in Warsaw, Poland. Int. J. Mol. Sci. 2021, 22, 2486. [Google Scholar] [CrossRef]
- Burillo, A.; Bouza, E. Controversies over the management of infections caused by Amp-C- and ESBL-producing Enterobacterales: What questions remain for future studies? Curr. Opin. Infect. Dis. 2022, 35, 575–582. [Google Scholar] [CrossRef]
- Jackson, N.; Belmont, C.R.; Tarlton, N.J.; Allegretti, Y.H.; Adams-Sapper, S.; Huang, Y.Y.; Borges, C.A.; Frazee, B.W.; Florence-Petrovic, D.; Hufana, C.; et al. Genetic predictive factors for nonsusceptible phenotypes and multidrug resistance in expanded-spectrum cephalosporin-resistant uropathogenic Escherichia coli from a multicenter cohort: Insights into the phenotypic and genetic basis of coresistance. mSphere 2022, 7, e0047122. [Google Scholar] [CrossRef]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. Available online: https://apps.who.int/iris/handle/10665/311820 (accessed on 1 October 2023).
- Adams, J.; Kauffman, M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Investig. 2004, 22, 304–311. [Google Scholar] [CrossRef]
- Krajewska, J.; Laudy, A.E. The European Medicines Agency approved the new antibacterial drugs—response to the 2017 WHO report on the global problem of multi-drug resistance. Adv. Microbiol.-N. Y. 2021, 60, 249–264. [Google Scholar] [CrossRef]
- World Health Organization. 2021 Antibacterial Agents in Clinical and Preclinical Development: An overview and analysis. Available online: https://www.who.int/publications/i/item/9789240047655 (accessed on 1 October 2023).
- Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin. Pharmacother. 2019, 20, 2169–2184. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Approves New Treatment for Pneumonia Caused by Certain Difficult-to-Treat Bacteria. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria (accessed on 1 October 2023).
- Durka, K.; Laudy, A.E.; Charzewski, Ł.; Urban, M.; Stępień, K.; Tyski, S.; Krzyśko, K.A.; Luliński, S. Antimicrobial and KPC/AmpC inhibitory activity of functionalized benzosiloxaboroles. Eur. J. Med. Chem. 2019, 171, 11–24. [Google Scholar] [CrossRef]
- Lang, P.A.; Parkova, A.; Leissing, T.M.; Calvopiña, K.; Cain, R.; Krajnc, A.; Panduwawala, T.D.; Philippe, J.; Fishwick, C.W.G.; Trapencieris, P.; et al. Bicyclic boronates as potent inhibitors of AmpC, the class C β-lactamase from Escherichia coli. Biomolecules 2020, 10, 899. [Google Scholar] [CrossRef]
- Wang, Y.L.; Liu, S.; Yu, Z.J.; Lei, Y.; Huang, M.Y.; Yan, Y.H.; Ma, Q.; Zheng, Y.; Deng, H.; Sun, Y.; et al. Structure-based development of (1-(3’-mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo- and serine-β-lactamases. J. Med. Chem. 2019, 62, 7160–7184. [Google Scholar] [CrossRef]
- Rojas, L.J.; Taracila, M.A.; Papp-Wallace, K.M.; Bethel, C.R.; Caselli, E.; Romagnoli, C.; Winkler, M.L.; Spellberg, B.; Prati, F.; Bonomo, R.A. Boronic acid transition state inhibitors active against KPC and other class A β-lactamases: Structure-activity relationships as a guide to inhibitor design. Antimicrob. Agents Chemother. 2016, 60, 1751–1759. [Google Scholar] [CrossRef]
- Zhou, J.; Stapleton, P.; Haider, S.; Healy, J. Boronic acid inhibitors of the class A β-lactamase KPC-2. Bioorganic Med. Chem. 2018, 26, 2921–2927. [Google Scholar] [CrossRef]
- Celenza, G.; Vicario, M.; Bellio, P.; Linciano, P.; Perilli, M.; Oliver, A.; Blazquez, J.; Cendron, L.; Tondi, D. Phenylboronic acid derivatives as validated leads active in clinical strains overexpressing KPC-2: A step against bacterial resistance. ChemMedChem 2018, 13, 713–724. [Google Scholar] [CrossRef]
- Linciano, P.; Vicario, M.; Kekez, I.; Bellio, P.; Celenza, G.; Martín-Blecua, I.; Blázquez, J.; Cendron, L.; Tondi, D. Phenylboronic acids probing molecular recognition against class A and class C β-lactamases. Antibiotics 2019, 8, 171. [Google Scholar] [CrossRef]
- Zhou, J.; Stapleton, P.; Xavier-Junior, F.H.; Schatzlein, A.; Haider, S.; Healy, J.; Wells, G. Triazole-substituted phenylboronic acids as tunable lead inhibitors of KPC-2 antibiotic resistance. Eur. J. Med. Chem. 2022, 240, 114571. [Google Scholar] [CrossRef] [PubMed]
- Alsenani, T.A.; Rodríguez, M.M.; Ghiglione, B.; Taracila, M.A.; Mojica, M.F.; Rojas, L.J.; Hujer, A.M.; Gutkind, G.; Bethel, C.R.; Rather, P.N.; et al. Boronic acid transition state inhibitors as potent inactivators of KPC and CTX-M β-lactamases: Biochemical and structural snalyses. Antimicrob. Agents Chemother. 2023, 67, e0093022. [Google Scholar] [CrossRef]
- Tondi, D.; Venturelli, A.; Bonnet, R.; Pozzi, C.; Shoichet, B.K.; Costi, M.P. Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. J. Med. Chem. 2014, 57, 5449–5458. [Google Scholar] [CrossRef] [PubMed]
- Tondi, D.; Powers, R.A.; Caselli, E.; Negri, M.C.; Blázquez, J.; Costi, M.P.; Shoichet, B.K. Structure-based design and in-parallel synthesis of inhibitors of AmpC beta-lactamase. Chem. Biol. 2001, 8, 593–611. [Google Scholar] [CrossRef]
- Eidam, O.; Romagnoli, C.; Caselli, E.; Babaoglu, K.; Pohlhaus, D.T.; Karpiak, J.; Bonnet, R.; Shoichet, B.K.; Prati, F. Design, synthesis, crystal structures, and antimicrobial activity of sulfonamide boronic acids as β-lactamase inhibitors. J. Med. Chem. 2010, 53, 7852–7863. [Google Scholar] [CrossRef]
- Buzzoni, V.; Blazquez, J.; Ferrari, S.; Calò, S.; Venturelli, A.; Costi, M.P. Aza-boronic acids as non-beta-lactam inhibitors of AmpC-β-lactamase. Bioorganic Med. Chem. Lett. 2004, 14, 3979–3983. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Romagnoli, C.; Vahabi, R.; Taracila, M.A.; Bonomo, R.A.; Prati, F. Click chemistry in lead optimization of boronic acids as β-lactamase inhibitors. J. Med. Chem. 2015, 58, 5445–5458. [Google Scholar] [CrossRef]
- Xia, Y.; Cao, K.; Zhou, Y.; Alley, M.R.; Rock, F.; Mohan, M.; Meewan, M.; Baker, S.J.; Lux, S.; Ding, C.Z.; et al. Synthesis and SAR of novel benzoxaboroles as a new class of β-lactamase inhibitors. Bioorganic Med. Chem. Lett. 2011, 21, 2533–2536. [Google Scholar] [CrossRef]
- McKinney, D.C.; Zhou, F.; Eyermann, C.J.; Ferguson, A.D.; Prince, D.B.; Breen, J.; Giacobbe, R.A.; Lahiri, S.; Verheijen, J.C. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are broad-spectrum serine β-lactamase inhibitors. ACS Infect. Dis. 2015, 1, 310–316. [Google Scholar] [CrossRef]
- Kiener, P.A.; Waley, S.G. Reversible inhibitors of penicillinases. Biochem. J. 1978, 169, 197–204. [Google Scholar] [CrossRef]
- Durka, K.; Kurach, P.; Luliński, S.; Serwatowski, J. Functionalization of dihalophenylboronic acids by deprotonation of their N-butyldiethanolamine esters. Eur. J. Org. Chem. 2009, 2009, 4325–4332. [Google Scholar] [CrossRef]
- Durka, K.; Luliński, S.; Smętek, J.; Dąbrowski, M.; Serwatowski, J.; Woźniak, K. The influence of boronate groups on the selectivity of the Br–Li exchange in model dibromoaryl boronates. Eur. J. Org. Chem. 2013, 2013, 3023–3032. [Google Scholar] [CrossRef]
- Durka, K.; Górka, J.; Kurach, P.; Luliński, S.; Serwatowski, J. Electrophilic ipso-iodination of silylated arylboronic acids. J. Organomet. Chem. 2010, 695, 2635–2643. [Google Scholar] [CrossRef]
- Faury, T.; Dumur, F.; Clair, S.; Abel, M.; Porte, L.; Gigmes, D. Side functionalization of diboronic acid precursors for covalent organic frameworks. CrystEngComm 2013, 15, 2067–2075. [Google Scholar] [CrossRef]
- Durka, K.; Luliński, S.; Serwatowski, J.; Woźniak, K. Influence of fluorination and boronic group synergy on the acidity and structural behavior of o-phenylenediboronic acids. Organometallics 2014, 33, 1608–1616. [Google Scholar] [CrossRef]
- Borowska, E.; Durka, K.; Luliński, S.; Serwatowski, J.; Woźniak, K. On the directing effect of boronate groups in the lithiation of boronated thiophenes. Eur. J. Org. Chem. 2012, 2012, 2208–2218. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R. Sustainable Passerini-tetrazole three component reaction (PT-3CR): Selective synthesis of oxaborol-tetrazoles. Chem. Commun. 2021, 57, 9708–9711. [Google Scholar] [CrossRef]
- Finlay, J.; Miller, L.; Poupard, J.A. A review of the antimicrobial activity of clavulanate. J. Antimicrob. Chemother. 2003, 52, 18–23. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef]
- Morinaka, A.; Tsutsumi, Y.; Yamada, M.; Suzuki, K.; Watanabe, T.; Abe, T.; Furuuchi, T.; Inamura, S.; Sakamaki, Y.; Mitsuhashi, N.; et al. OP0595, a new diazabicyclooctane: Mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J. Antimicrob. Chemother. 2015, 70, 2779–2786. [Google Scholar] [CrossRef]
- Asli, A.; Brouillette, E.; Krause, K.M.; Nichols, W.W.; Malouin, F. Distinctive binding of avibactam to penicillin-binding proteins of Gram-negative and Gram-positive bacteria. Antimicrob. Agents Chemother. 2016, 60, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. WCK 5107 (Zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrob. Agents Chemother. 2017, 61, e02529-16. [Google Scholar] [CrossRef]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef]
- Sun, D.; Tsivkovski, R.; Pogliano, J.; Tsunemoto, H.; Nelson, K.; Rubio-Aparicio, D.; Lomovskaya, O. Intrinsic antibacterial activity of xeruborbactam in vitro: Assessing spectrum and mode of action. Antimicrob. Agents Chemother. 2022, 66, e0087922. [Google Scholar] [CrossRef] [PubMed]
- Coghi, P.S.; Zhu, Y.; Xie, H.; Hosmane, N.S.; Zhang, Y. Organoboron compounds: Effective antibacterial and antiparasitic agents. Molecules 2021, 26, 3309. [Google Scholar] [CrossRef] [PubMed]
- Mazzantini, D.; Celandroni, F.; Calvigioni, M.; Lupetti, A.; Ghelardi, E. In vitro resistance and evolution of resistance to tavaborole in Trichophyton rubrum. Antimicrob. Agents Chemother. 2021, 65, e02324-20. [Google Scholar] [CrossRef] [PubMed]
- Rock, F.L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crépin, T.; Zhou, H.; Zhang, Y.K.; Hernandez, V.; Akama, T.; Baker, S.J.; et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 2007, 316, 1759–1761. [Google Scholar] [CrossRef]
- Ganapathy, U.S.; Del Rio, R.G.; Cacho-Izquierdo, M.; Ortega, F.; Lelièvre, J.; Barros-Aguirre, D.; Lindman, M.; Dartois, V.; Gengenbacher, M.; Dick, T. A leucyl-tRNA synthetase inhibitor with broad-spectrum antimycobacterial activity. Antimicrob. Agents Chemother. 2021, 65, e02420-20. [Google Scholar] [CrossRef]
- Hu, Q.H.; Liu, R.J.; Fang, Z.P.; Zhang, J.; Ding, Y.Y.; Tan, M.; Wang, M.; Pan, W.; Zhou, H.C.; Wang, E.D. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci. Rep. 2013, 3, 2475. [Google Scholar] [CrossRef]
- Si, Y.; Basak, S.; Li, Y.; Merino, J.; Iuliano, J.N.; Walker, S.G.; Tonge, P.J. Antibacterial activity and mode of action of a sulfonamide-based class of oxaborole leucyl-tRNA-synthetase inhibitors. ACS Infect. Dis. 2019, 5, 1231–1238. [Google Scholar] [CrossRef]
- Purnapatre, K.P.; Rao, M.; Pandya, M.; Khanna, A.; Chaira, T.; Bambal, R.; Upadhyay, D.J.; Masuda, N. In vitro and in vivo activities of DS86760016, a novel leucyl-tRNA synthetase inhibitor for Gram-negative pathogens. Antimicrob. Agents Chemother. 2018, 62, e01987-17. [Google Scholar] [CrossRef]
- Hernandez, V.; Crépin, T.; Palencia, A.; Cusack, S.; Akama, T.; Baker, S.J.; Bu, W.; Feng, L.; Freund, Y.R.; Liu, L.; et al. Discovery of a novel class of boron-based antibacterials with activity against Gram-negative bacteria. Antimicrob. Agents Chemother. 2013, 57, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Pacholak, P.; Krajewska, J.; Wińska, P.; Dunikowska, J.; Gogowska, U.; Mierzejewska, J.; Durka, K.; Woźniak, K.; Laudy, A.E.; Luliński, S. Development of structurally extended benzosiloxaboroles—synthesis and in vitro biological evaluation. RSC Adv. 2021, 11, 25104–25121. [Google Scholar] [CrossRef]
- Borys, K.M.; Wieczorek, D.; Pecura, K.; Lipok, J.; Adamczyk-Woźniak, A. Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids. Bioorganic Chem. 2019, 91, 103081. [Google Scholar] [CrossRef]
- Adamczyk-Woźniak, A.; Gozdalik, J.T.; Wieczorek, D.; Madura, I.D.; Kaczorowska, E.; Brzezińska, E.; Sporzyński, A.; Lipok, J. Synthesis, properties and antimicrobial activity of 5-trifluoromethyl-2-formylphenylboronic acid. Molecules 2020, 25, 799. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk-Woźniak, A.; Gozdalik, J.T.; Kaczorowska, E.; Durka, K.; Wieczorek, D.; Zarzeczańska, D.; Sporzyński, A. (Trifluoromethoxy)phenylboronic acids: Structures, properties, and antibacterial activity. Molecules 2021, 26, 2007. [Google Scholar] [CrossRef] [PubMed]
- Laudy, A.E.; Osińska, P.; Namysłowska, A.; Hare, O.; Tyski, S. Modification of the susceptibility of Gram-negative rods producing ESβLS to β-lactams by the efflux phenomenon. PLoS ONE 2015, 10, e0119997. [Google Scholar] [CrossRef]
- Colclough, A.L.; Alav, I.; Whittle, E.E.; Pugh, H.L.; Darby, E.M.; Legood, S.W.; McNeil, H.E.; Blair, J.M. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol. 2020, 15, 143–157. [Google Scholar] [CrossRef]
- Zając, O.M.; Tyski, S.; Laudy, A.E. The contribution of efflux systems to levofloxacin resistance in Stenotrophomonas maltophilia clinical strains isolated in Warsaw, Poland. Biology 2022, 11, 1044. [Google Scholar] [CrossRef]
- Adamczyk-Woźniak, A.; Tarkowska, M.; Lazar, Z.; Kaczorowska, E.; Madura, I.D.; Maria Dąbrowska, A.; Lipok, J.; Wieczorek, D. Synthesis, structure, properties and antimicrobial activity of para trifluoromethyl phenylboronic derivatives. Bioorganic Chem. 2022, 119, 105560. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Guidelines for detection of resistance mechanisms and specific resistance of clinical and/or epidemiological importance. Document version 2.0. 2017. Available online: https://www.eucast.org/resistance_mechanisms (accessed on 1 October 2023).
- Yagi, T.; Wachino, J.; Kurokawa, H.; Suzuki, S.; Yamane, K.; Doi, Y.; Shibata, N.; Kato, H.; Shibayama, K.; Arakawa, Y. Practical methods using boronic acid compounds for identification of class C beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 2005, 43, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 1 October 2023).
- Bonapace, C.R.; Bosso, J.A.; Friedrich, L.V.; White, R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002, 44, 363–366. [Google Scholar] [CrossRef]
- Ke, W.; Bethel, C.R.; Papp-Wallace, K.M.; Pagadala, S.R.; Nottingham, M.; Fernandez, D.; Buynak, J.D.; Bonomo, R.A.; van den Akker, F. Crystal structures of KPC-2 β-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-3-226. Antimicrob. Agents Chemother. 2012, 56, 2713–2718. [Google Scholar] [CrossRef]
- Charzewski, Ł.; Krzyśko, K.A.; Lesyng, B. Exploring covalent docking mechanisms of boron-based inhibitors to class A, C and D β-lactamases using time-dependent hybrid QM/MM simulations. Front. Mol. Biosci. 2021, 8, 633181. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bonomo, R.A.; Schofield, C.J.; Mulholland, A.J.; Spencer, J. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J. Biol. Chem. 2021, 296, 100126. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Method for the Determination of Broth Dilution MIC of Antifungal Agents for Yeasts. Document E.DEF 7.3.2. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7.3.2_Yeast_testing_definitive_revised_2020.pdf (accessed on 1 October 2023).
- European Committee on Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing. Document version 11.0. 2023. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2023_manuals/Manual_v_11.0_EUCAST_Disk_Test_2023.pdf (accessed on 1 October 2023).
- Clinical and Laboratory Standards Institute (CLSI). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 2nd ed.; Approved Standard, CLSI Dokument M44-A2; CLSI: Wayne, PA, USA, 2009. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI Dokument M27-A3; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 9th ed.; Approved Standard, CLSI Dokument M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Determining Bactericidal Activity of Antimicrobial Agents. CLSI Dokument M26-A; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Cantón, E.; Pemán, J.; Viudes, A.; Quindós, G.; Gobernado, M.; Espinel-Ingroff, A. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn. Microbiol. Infect. Dis. 2003, 45, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Morrison, K.D.; Cho, H.J.; Khuu, T. Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J. Bacteriol. 2015, 197, 2479–2488. [Google Scholar] [CrossRef]
- Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE 2013, 8, e60666. [Google Scholar] [CrossRef]
- Laudy, A.E.; Kulińska, E.; Tyski, S. The impact of efflux pump inhibitors on the activity of selected non-antibiotic medicinal products against Gram-negative bacteria. Molecules 2017, 22, 114. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Labute, P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009, 75, 187–205. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham III, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.; Walker, R.C.; Zhang, W.; et al. AMBER 10. University of California, San Francisco, 2008. Available online: https://infoscience.epfl.ch/record/121435 (accessed on 1 October 2023).
- Chemical Computing Group ULC, Molecular Operating Environment (MOE). 1010 Sherbrooke St.West 910, Montreal, QC, Canada, 2018. Available online: https://www.chemcomp.com/Products.htm (accessed on 1 October 2023).
- Labute, P. The generalized Born/volume integral implicit solvent model: Estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 2008, 29, 1693–1698. [Google Scholar] [CrossRef]
- Bond, S.D.; Leimkuhler, B.J.; Laird, B.B. The Nosé–Poincaré method for constant temperature molecular dynamics. J. Comp. Phys. 1999, 151, 114–134. [Google Scholar] [CrossRef]
- Meroueh, S.O.; Fisher, J.F.; Schlegel, H.B.; Mobashery, S. Ab initio QM/MM study of class A β-lactamase acylation: Dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. J. Am. Chem. Soc. 2005, 127, 15397–15407. [Google Scholar] [CrossRef] [PubMed]
- Chudyk, E.I.; Limb, M.A.; Jones, C.; Spencer, J.; van der Kamp, M.W.; Mulholland, A.J. QM/MM simulations as an assay for carbapenemase activity in class A β-lactamases. Chem. Commun. 2014, 50, 14736–14739. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC 2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., 3rd; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Bazan, G.C. Trifluoromethyl-substituted conjugated oligoelectrolytes. Chemistry 2010, 16, 11028–11036. [Google Scholar] [CrossRef]
- ETEST. Application Guide. Available online: https://www.biomerieux-usa.com/sites/subsidiary_us/files/supplementary_inserts_-_16273_-_b_-_en_-_eag_-_etest_application_guide-3.pdf (accessed on 1 October 2023).
- Espinel-Ingroff, A. Etest for antifungal susceptibility testing of yeasts. Diagn. Microbiol. Infect. Dis. 1994, 19, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Bale, M.; Buschelman, B.; Lancaster, M.; Espinel-Ingroff, A.; Rex, J.H.; Rinaldi, M.G. Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods. J. Clin. Microbiol. 1994, 32, 1650–1653. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Reading guide. EUCAST disk diffusion method for antimicrobial susceptibility testing. Document version 9.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Reading_guide_v_9.0_EUCAST_Disk_Test_2022.pdf (accessed on 1 October 2023).
Disc with Antibiotic ± Tested Agent a | Diameter of Inhibition Zone (mm) b | |||
---|---|---|---|---|
K. pneumoniae ATCC BAA 1705 KPC-2-Positive | P. aeruginosa MUW 700 cAmpC-Positive | E. coli 77 CMY-2-Positive | K. pneumoniae ATCC 700603 ESBL-Positive | |
MEM-10 | CAZ-30 | CAZ-30 | CAZ-30 | |
without agent | 6 | 11 | 13 | 14 |
PBA | 21 | 24 | 24 | 14 |
1a | 19 | 23 | 21 | 17 |
1b | 11 c | 20 c | 20 c | 15 c |
1c | 6 c | 18 c | 20 c | 14 c |
1d | 12 c | 17 c | 20 c | 14 c |
1e | 11 c | 18 c | 20 c | 15 c |
1f | 6 c | 17 c | 21 c | 15 c |
1i | 6 c | 16 c | 16 c | 14 c |
2a | 15 | 21 | 22 | 16 |
2b | 19 | 18 c | 21 c | 16 |
2c | 6 c | 20 c | 19 c | 13 c |
2d | 6 c | 18 c | 21 c | 13 c |
2e | 6 | 16 | 19 | 16 |
2f | 6 | 21 | 19 | 15 |
2g | 6 | 19 | 20 | 13 |
3a | 17 | 22 | 23 | 18 |
3b | 14 | 22 | 25 | 16 |
3c | 12 | 20 | 20 | 16 |
3d | 6 | 14 | 21 | 15 |
3e | 6 | 17 | 17 | 14 |
4a | 6 | 16 | 20 | 14 |
4b | 14 | 21 | 21 | 14 |
5a | 15 | 22 | 20 | 16 |
5c | 6 | 21 | 22 | 16 |
7a | 13 d | 17 d | 19 d | 15 d |
7c | 13 | 11 | 16 | 15 |
Strain | MICs (mg/L) of Antibiotics in the Presence of Tested Agents at the Concentration of 16/8/4 mg per L | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotic | MIC (mg/L) | +PBA | +1a | +1b | +1d | +1e | +3a | +3c | +7a |
K. pneumoniae ATCC BAA-1705 KPC-2-positive | |||||||||
MEM | 32 | 8/16/16 | 4/8/16 | 8/16/16 | 8/16/16 | 8/16/16 | 4/8/16 | 16/16/16 | 8/16/16 |
IMI | 16 | 4/8/8 | 4/8/8 | 4/8/8 | 8/8/16 | 8/8/16 | 2/2/4 | 4/4/8 | 4/4/8 |
ERT | 64 | 32/64/64 | 16/32/32 | 32/32/32 | 32/64/64 | 32/64/64 | 8/16/32 | 16/32/32 | 32/32/64 |
E. coli 76 KPC-2-positive | |||||||||
MEM | 64 | 16/16/16 | 8/16/32 | 16/16/32 | 16/32/32 | 16/32/32 | 4/8/16 | 16/32/32 | 16/32/32 |
IMI | 128 | 16/32/32 | 16/32/64 | 16/32/64 | 32/64/64 | 32/64/64 | 8/16/16 | 16/32/32 | 16/32/32 |
ERT | 256 | 64/64/128 | 32/64/64 | 32/64/128 | 64/64/128 | 32/64/128 | 32/64/64 | 64/128/128 | 64/128/128 |
K. pneumoniae 81 KPC-3-positive | |||||||||
MEM | 16 | 8/8/8 | 1/2/8 | 1/4/8 | 1/4/8 | 4/8/8 | 0.5/1/2 | 2/2/4 | 1/4/4 |
IMI | 8 | 2/4/4 | 1/2/2 | 2/2/4 | 2/2/4 | 2/2/4 | 0.5/1/1 | 1/1/2 | 1/1/2 |
ERT | 32 | 16/16/16 | 2/8/8 | 8/16/16 | 4/16/16 | 16/16/16 | 1/2/8 | 4/8/8 | 8/16/16 |
K. pneumoniae 83 KPC-3-positive, CTX-M-3-positive | |||||||||
MEM | 32 | 8/8/16 | 4/16/16 | 8/16/32 | 8/16/32 | 8/16/32 | 0.5/2/8 | 4/8/8 | 4/16/16 |
IMI | 8 | 4/4/8 | 2/2/4 | 2/4/4 | 4/4/4 | 4/4/4 | 0.5/1/2 | 2/2/4 | 1/2/2 |
ERT | 64 | 32/32/32 | 16/16/32 | 16/32/32 | 32/32/64 | 16/32/64 | 4/8/16 | 16/32/32 | 16/32/32 |
E. coli 77 CMY-2-positive | |||||||||
CAZ | 64 | 8/16/32 | 8/16/32 | 4/8/16 | 8/16/16 | 2/4/8 | 16/32/32 | 32/32/32 | 2/4/8 |
P. aeruginosa MUW 700 cAmpC-positive | |||||||||
CAZ | 128 | 8/8/16 | 8/16/32 | 16/16/32 | 32/64/64 | 32/32/64 | 32/64/128 | 128/128/128 | 8/16/32 |
Agent Concentration in mg/L | MICs in mg/L of Meropenem Alone or in Combination with a Tested Agent [Reduction in the Relative Absorbance in the Nitrocefin Hydrolysis Test] * | |||
---|---|---|---|---|
+PBA | +1a | +2a | +3a | |
E. coli 82 TR(pl 81) | ||||
0 | 2 | 2 | 2 | 2 |
4 | 0.50 [44%] | 0.50 [27%] | 1 [13%] | 0.50 [30%] |
8 | 0.25 [43%] | 0.25 [35%] | 1 [18%] | 0.125 [35%] |
16 | 0.25 [53%] | 0.125 [42%] | 1 [29%] | 0.062 [44%] |
E. coli DH5α ** | ||||
0 | 0.016 | 0.016 | 0.016 | 0.016 |
16 | 0.016 | 0.016 | 0.016 | 0.016 |
Agent Tested in Combination with CAZ a | The Lowest FICI/Interpretation [Average FICI/Interpretation] b | |
---|---|---|
E. coli 77 CMY-2-Positive | P. aeruginosa MUW 700 AmpC-Positive | |
PBA | 0.15/S [0.30/S] | 0.07/S [0.10/S] |
1a | 0.15/S [0.30/S] | 0.08/S [0.16/S] |
1b | 0.10/S [0.17/S] | 0.14/S [0.18/S] |
1c | 0.14/S [0.19/S] | 0.17/S [0.32/S] |
1d | 0.17/S [0.23/S] | 0.27/S [0.43/S] |
1e | 0.14/S [0.17/S] | 0.29/S [0.38/S] |
1f | 0.21/S [0.24/S] | 0.27/S [0.43/S] |
2a | 0.15/S [0.22/S] | 0.14/S [0.18/S] |
2b | 0.10/S [0.17/S] | 0.26/S [0.35/S] |
2c | 0.17/S [0.21/S] | 0.15/S [0.22/S] |
2d | 0.14/S [0.19/S] | 0.26/S [0.35/S] |
3a | 0.29/S [0.44/S] | 0.29/S [0.61/I] |
3b | 0.27/S [0.43/S] | 0.27/S [0.60/I] |
4b | 0.27/S [0.43/S] | 0.15/S [0.30/S] |
5a | 0.27/S [0.43/S] | 0.15/S [0.30/S] |
5c | 0.27/S [0.43/S] | 0.27/S [0.43/S] |
7a | 0.14/S [0.17/S] | 0.10/S [0.17/S] |
Strain | Agent Tested | The Lowest FICI/Interpretation [Average FICI/Interpretation] a | ||
---|---|---|---|---|
MEM | IMI | ERT | ||
K. pneumoniae ATCC BAA-1705 KPC-2-positive | ||||
PBA | 0.27/S [0.43/S] | 0.27/S [0.43/S] | 0.52/I [0.85/I] | |
1a | 0.15/S [0.30/S] | 0.27/S [0.43/S] | 0.27/S [0.43/S] | |
1b | 0.27/S [0.43/S] | 0.27/S [0.43/S] | 0.51/I [0.51/I] | |
1d | 0.29/S [0.44/S] | 0.52/I [0.69/I] | 0.54/I [0.86/I] | |
1e | 0.33/S [0.46/S] | 0.54/I [0.71/I] | 0.58/I [0.88/I] | |
3a | 0.17/S [0.32/S] | 0.15/S [0.19/S] | 0.17/S [0.32/S] | |
3c | 0.51/I [0.51/I] | 0.26/S [0.35/S] | 0.27/S [0.43/S] | |
7a | 0.41/S [0.51/I] | 0.33/S [0.43/S] | 0.58/I [0.76/I] | |
E. coli 76 KPC-2-positive | ||||
PBA | 0.26/S [0.26/S] | 0.15/S [0.22/S] | 0.26/S [0.35/S] | |
1a | 0.15/S [0.31/S] | 0.15/S [0.30/S] | 0.15/S [0.22/S] | |
1b | 0.27/S [0.36/S] | 0.17/S [0.32/S] | 0.17/S [0.32/S] | |
1d | 0.29/S [0.44/S] | 0.29/S [0.44/S] | 0.27/S [0.36/S] | |
1e | 0.41/S [0.51/I] | 0.41/S [0.51/I] | 0.29/S [0.39/S] | |
3a | 0.10/S [0.17/S] | 0.10/S [0.13/S] | 0.17/S [0.23/S] | |
3c | 0.27/S [0.43/S] | 0.15/S [0.22/S] | 0.27/S [0.43/S] | |
7a | 0.41/S [0.51/I] | 0.29/S [0.30/S] | 0.41/S [0.51/I] | |
K. pneumoniae 81 KPC-3-positive | ||||
PBA | 0.51/I [0.51/I] | 0.27/S [0.43/S] | 0.51/I [0.51/I] | |
1a | 0.08/S [0.24/S] | 0.15/S [0.22/S] | 0.08/S [0.20/S] | |
1b | 0.08/S [0.28/S] | 0.26/S [0.35/S] | 0.27/S [0.43/S] | |
1d | 0.10/S [0.29/S] | 0.27/S [0.36/S] | 0.17/S [0.40/S] | |
1e | 0.33/S [0.46/S] | 0.29/S [0.38/S] | 0.52/I [0.55/I] | |
3a | 0.07/S [0.10/S] | 0.10/S [0.13/S] | 0.07/S [0.14/S] | |
3c | 0.14/S [0.18/S] | 0.14/S [0.18/S] | 0.15/S [0.22/S] | |
7a | 0.14/S [0.23/S] | 0.17/S [0.21/S] | 0.33/S [0.46/S] | |
K. pneumoniae 83 KPC-3-positive, CTX-M-3-positive | ||||
PBA | 0.26/S [0.35/S] | 0.51/I [0.68/I] | 0.51/I [0.51/I] | |
1a | 0.15/S [0.39/S] | 0.26/S [0.35/S] | 0.26/S [0.35/S] | |
1b | 0.27/S [0.60/I] | 0.27/S [0.43/S] | 0.27/S [0.43/S] | |
1d | 0.29/S [0.61/I] | 0.51/I [0.52/I] | 0.52/I [0.69/I] | |
1e | 0.33/S [0.63/I] | 0.52/I [0.55/I] | 0.33/S [0.63/I] | |
3a | 0.06/S [0.13/S] | 0.10/S [0.17/S] | 0.10/S [0.17/S] | |
3c | 0.15/S [0.22/S] | 0.26/S [0.35/S] | 0.27/S [0.43/S] | |
7a | 0.29/S [0.47/S] | 0.29/S [0.30/S] | 0.41/S [0.51/I] |
Molecular Docking | MD | QM/MM | PFAVORABLE [%] | ||||
---|---|---|---|---|---|---|---|
S [kcal/mol] | dSer70(O)–B [Å] | Filling the Active Site | Average for dSer70(O)–B [Å] | PNECESSARY [%] | PSUFFICIENT | ||
PBA | –3.78 | 3.46 | S1, S1′ | 3.08 ± 0.20 | 40.4 | 2/8 | 10.1 |
1a | –3.79 | 3.55 | S1, S1′ | 4.77 ± 0.51 | - | - | - |
1a | –4.38 | 3.74 | S1, S3 | 3.52 ± 0.28 | 2.6 | 2/8 | 0.65 |
1a | –4.18 | 4.28 | S2, S3 | 3.62 ± 0.32 | 0.6 | - | - |
2a | –4.34 | 3.34 | S1, S2, S1′ | 6.81 ± 0.66 | - | - | - |
2a | –4.22 | 3.33 | S1, S2 | 3.57 ± 0.29 | 1.2 | - | - |
2a | –4.00 | 3.45 | S1, S2 | 3.50 ± 0.26 | 1.2 | 2/8 | 0.3 |
3a_I | –4.36 | 3.28 | S1, S2 | 3.22 ± 0.19 | 11 | 2/8 | 2.75 |
3a_I | –4.28 | 3.10 | S1, S2, S1′ | 5.09 ± 0.93 | - | - | - |
3a_I | –4.16 | 3.22 | S1, S2 | 4.21 ± 0.40 | - | - | - |
3a_III | –4.48 | 3.08 | S1, S3 | 4.21 ± 0.40 | - | - | - |
3a_III | –4.26 | 3.22 | S1, S2 | 3.23 ± 0.28 | 22.4 | 4/8 | 11.2 |
3a_III | –3.96 | 3.31 | S1, S2 | 3.30 ± 0.28 | 14.2 | - | - |
3a_IV | –4.21 | 3.30 | S1, S2, S3, S1′ | 3.27 ± 0.18 | 6.8 | 6/8 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, J.; Chyży, P.; Durka, K.; Wińska, P.; Krzyśko, K.A.; Luliński, S.; Laudy, A.E. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023, 28, 7362. https://doi.org/10.3390/molecules28217362
Krajewska J, Chyży P, Durka K, Wińska P, Krzyśko KA, Luliński S, Laudy AE. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules. 2023; 28(21):7362. https://doi.org/10.3390/molecules28217362
Chicago/Turabian StyleKrajewska, Joanna, Piotr Chyży, Krzysztof Durka, Patrycja Wińska, Krystiana A. Krzyśko, Sergiusz Luliński, and Agnieszka E. Laudy. 2023. "Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors" Molecules 28, no. 21: 7362. https://doi.org/10.3390/molecules28217362
APA StyleKrajewska, J., Chyży, P., Durka, K., Wińska, P., Krzyśko, K. A., Luliński, S., & Laudy, A. E. (2023). Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules, 28(21), 7362. https://doi.org/10.3390/molecules28217362