Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Pan, L.; Wang, L.; Zou, J.J. Review on Synthesis and Properties of High-Energy-Density Liquid Fuels: Hydrocarbons, Nanofluids and Energetic Ionic Liquids. Chem. Eng. Sci. 2018, 180, 95–125. [Google Scholar]
- Pan, L.; Feng, R.; Peng, H.; Feng E, X.T.; Zou, J.J.; Wang, L.; Zhang, X. A Solar-Energy-Derived Strained Hydrocarbon as an Energetic Hypergolic Fuel. RSC Adv. 2014, 4, 50998–51001. [Google Scholar]
- Li, G.; Hou, B.; Wang, A.; Xin, X.; Cong, Y.; Wang, X.; Li, N.; Zhang, T. Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angew. Chem. Int. Ed. 2019, 58, 12154–12158. [Google Scholar]
- E., X.T.F.; Pan, L.; Zhang, X.; Zou, J.J. Influence of Quadricyclane Additive on Ignition and Combustion Properties of High-Density JP-10 Fuel. Fuel 2020, 276, 118047. [Google Scholar]
- Zhong, B.J.; Zeng, Z.M.; Zhang, H.Z. An Experimental and Kinetic Modeling Study of JP-10 Combustion. Fuel 2022, 312, 122900. [Google Scholar]
- Osmont, A.; Gökalp, I.; Catoire, L. Evaluating Missile Fuels. Propellants Explos. Pyrotech. 2006, 31, 343–354. [Google Scholar]
- Mi, J.; Ye, D.; Dai, Y.; Xie, H.; Wu, D.; Sun, H.; Guo, Y.; Fang, W. Strategically Designed Macromolecules as Additives for High Energy-Density Hydrocarbon Fuels. Fuel 2020, 270, 117433. [Google Scholar]
- Shorunov, S.V.; Zarezin, D.P.; Samoilov, V.O.; Rudakova, M.A.; Borisov, R.S.; Maximov, A.L.; Bermeshev, M.V. Synthesis and Properties of High-Energy-Density Hydrocarbons Based on 5-Vinyl-2-Norbornene. Fuel 2021, 283, 118935. [Google Scholar]
- Alboqami, F.; Van Oudenhoven, V.C.O.; Ahmed, U.; Zahid, U.; Emwas, A.H.; Sarathy, S.M.; Abdul Jameel, A.G. A Methodology for Designing Octane Number of Fuels Using Genetic Algorithms and Artificial Neural Networks. Energy Fuels 2022, 36, 3867–3880. [Google Scholar]
- Dubonosov, A.D.; Bren, V.A.; Chernoivanov, V.A. Norbornadiene–Quadricyclane as an Abiotic System for the Storage of Solar Energy. Russ. Chem. Rev. 2002, 71, 917–927. [Google Scholar] [CrossRef]
- Bren, V.A.; Dubonosov, A.D.; Minkin, V.I.; Chernoivanov, V.A. Norbornadiene–Quadricyclane—An Effective Molecular System for the Storage of Solar Energy. Russ. Chem. Rev. 1991, 60, 451–469. [Google Scholar] [CrossRef]
- Louie, S.G.; Chan, Y.H.; da Jornada, F.H.; Li, Z.; Qiu, D.Y. Discovering and Understanding Materials through Computation. Nat. Mater. 2021, 20, 728–735. [Google Scholar] [CrossRef]
- Friederich, P.; Hase, F.; Proppe, J.; Aspuru-Guzik, A. Machine-Learned Potentials for Next-Generation Matter Simulations. Nat. Mater. 2021, 20, 750–761. [Google Scholar]
- Wen, L.; Yu, T.; Lai, W.; Shi, J.; Liu, M.; Liu, Y.; Wang, B. Accelerating Molecular Design of Cage Energetic Materials with Zero Oxygen Balance through Large-Scale Database Search. J. Phys. Chem. Lett. 2021, 12, 11591–11597. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Wang, B.; Yu, T.; Lai, W.; Shi, J.; Liu, M.; Liu, Y. Accelerating the Search of Chonf-Containing Highly Energetic Materials by Combinatorial Library Design and High-Throughput Screening. Fuel 2022, 310, 122241. [Google Scholar] [CrossRef]
- Wen, L.; Yu, T.; Lai, W.; Liu, M.; Wang, B.; Shi, J.; Liu, Y. Transferring the Available Fused Cyclic Scaffolds for High—Throughput Combinatorial Design of Highly Energetic Materials Via Database Mining. Fuel 2022, 324, 124591. [Google Scholar] [CrossRef]
- Cao, Y.; Song, S.; Shi, J.; Cai, Z.; Qian, W.; Liu, T.; Zhang, Q.; Liu, Y.; Zhang, W. Synthesis and Characterization of Energetic Molecules Based on Pyrimidine Rings: Selection and Verification of Computational-Assisted Synthesis Pathways. Chem. Eng. Sci. 2023, 282, 119281. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, L.; Mo, Z. Alleviating the Stability–Performance Contradiction of Cage-Like High-Energy-Density Materials by a Backbone-Collapse and Branch-Heterolysis Competition Mechanism. Phys. Chem. Chem. Phys. 2022, 24, 19252–19262. [Google Scholar] [CrossRef]
- Lu, Z.J.; Hu, Y.; Dong, W.S.; Cao, W.L.; Wang, T.W.; Zhang, J.G.; Yu, Q.Y. From Concept to Synthesis: Developing Heat-Resistant High Explosives through Automated High-Throughput Virtual Screening. J. Phys. Chem. C 2023, 127, 18832–18842. [Google Scholar] [CrossRef]
- Tamuliene, J.; Sarlauskas, J. Computational Studies of Energetic Property Peculiarities in Trinitrophenyl-Substituted Nitramines. Energies 2023, 16, 5180. [Google Scholar] [CrossRef]
- Bosia, F.; Zheng, P.; Vaucher, A.; Weymuth, T.; Dral, P.O.; Reiher, M. Ultra-Fast Semi-Empirical Quantum Chemistry for High-Throughput Computational Campaigns with Sparrow. J. Chem. Phys. 2023, 158, 054118. [Google Scholar] [CrossRef]
- Qiu, L.M.; Ye, D.Y.; Wei, W.; Chen, K.H.; Hou, J.X.; Zheng, J.; Gong, X.D.; Xiao, H.M. DFT Studies toward the Design and Properties of High-Energy Density Hydrocarbon Fuel. J. Mol. Struct. Thoechem 2008, 866, 63–74. [Google Scholar] [CrossRef]
- Lal, S.; Bhattacharjee, A.; Chowdhury, A.; Kumbhakarna, N.; Namboothiri, I.N.N. Approaches to 1,4-Disubstituted Cubane Derivatives as Energetic Materials: Design, Theoretical Studies and Synthesis. Chem. Asian J. 2022, 17, e202200489. [Google Scholar] [CrossRef] [PubMed]
- Parakhin, V.V.; Pokhvisneva, G.V.; Ternikova, T.V.; Shlykova, N.I.; Samigullina, A.I.; Nikitin, S.V.; Gordeev, P.B.; Smirnov, G.A.; Kon’kova, T.S.; Lempert, D.B.; et al. Linking Polynitro Hexaazaisowurtzitane Cages Via an N,N′-Methylene Bridge: A Promising Strategy for Designing Energetic Ensembles of Cl-20 Derivatives and Adjusting Their Properties. New J. Chem. 2023, 47, 2444–2455. [Google Scholar] [CrossRef]
- Li, G.; Hu, Z.; Hou, F.; Li, X.; Wang, L.; Zhang, X. Machine Learning Enabled High-Throughput Screening of Hydrocarbon Molecules for the Design of Next Generation Fuels. Fuel 2020, 265, 116968. [Google Scholar] [CrossRef]
- Liu, R.; Liu, R.; Liu, Y.; Wang, L.; Zhang, X.; Li, G. Design of Fuel Molecules Based on Variational Autoencoder. Fuel 2022, 316, 123426. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Duan, J.; Hou, F.; Wang, L.; Zhang, X.; Li, G. Ensemble Learning Directed Classification and Regression of Hydrocarbon Fuels. Fuel 2022, 324, 124520. [Google Scholar] [CrossRef]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. Zinc20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Huang, X.; Qian, W.; Liu, J.; Zhou, J.H.; Zhang, C.Y. EM Database V1.0: A Benchmark Informatics Platform for Data-Driven Discovery of Energetic Materials. Energ. Mater. Front. 2023, in press. [Google Scholar] [CrossRef]
- Mannodi-Kanakkithodi, A.; Huan, T.D.; Ramprasad, R. Mining Materials Design Rules from Data: The Example of Polymer Dielectrics. Chem. Mater. 2017, 29, 9001–9010. [Google Scholar] [CrossRef]
- Varley, J.B.; Miglio, A.; Ha, V.A.; Van Setten, M.J.; Rignanese, G.M.; Hautier, G. High-Throughput Design of Non-Oxide P-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide. Chem. Mater. 2017, 29, 2568–2573. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Su, J.; Li, J. Data Mining New Energy Materials from Structure Databases. Renew. Sustain. Energy Rev. 2019, 107, 554–567. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Li, Q.; Xu, L.; Wang, H. High Tension Cyclic Hydrocarbons Synthesized from Biomass-Derived Platform Molecules for Aviation Fuels in Two Steps. Green Energy Environ. 2023, 8, 331–337. [Google Scholar] [CrossRef]
- Xie, S.; Huynh, T.H.; Qin, P.; Tan, T.; Lin, H. Facile Biphasic Catalytic Process for Conversion of Monoterpenoids to Tricyclic Hydrocarbon Biofuels. J. Energy Chem. 2020, 49, 42–50. [Google Scholar] [CrossRef]
- Wang, W.; Li, N.; Li, G.; Li, S.; Wang, W.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. ACS Sustain. Chem. Eng. 2017, 5, 1812–1817. [Google Scholar] [CrossRef]
- Zou, J.J. Prospectives for Improving the Energy Density of Liquid Fuels. Chin. J. Energ. Mater. 2020, 28, 366–368. [Google Scholar]
- Xuan, J.; He, X.K.; Xiao, W.J. Visible Light-Promoted Ring-Opening Functionalization of Three-Membered Carbo- and Heterocycles. Chem. Soc. Rev. 2020, 49, 2546–2556. [Google Scholar] [CrossRef]
- Biletskyi, B.; Colonna, P.; Masson, K.; Parrain, J.L.; Commeiras, L.; Chouraqui, G. Small Rings in the Bigger Picture: Ring Expansion of Three- and Four-Membered Rings to Access Larger All-Carbon Cyclic Systems. Chem. Soc. Rev. 2021, 50, 7513–7538. [Google Scholar] [CrossRef]
- Saldana, D.A.; Starck, L.; Mougin, P.; Rousseau, B.; Pidol, L.; Jeuland, N.; Creton, B. Flash Point and Cetane Number Predictions for Fuel Compounds Using Quantitative Structure Property Relationship (QSPR) Methods. Energy Fuels 2011, 25, 3900–3908. [Google Scholar] [CrossRef]
- Landrum, G. Rdkit: Open-Source Cheminformatics. Available online: http://www.rdkit.org (accessed on 1 September 2023).
- Stewart, J.J. Optimization of Parameters for Semiempirical Methods Vi: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef]
- Tan, B.; Long, X.; Li, J. The Cage Strain Energies of High-Energy Compounds. Comput. Theor. Chem. 2012, 993, 66–72. [Google Scholar] [CrossRef]
- Tan, B.; Huang, M.; Long, X.; Li, J.; Yuan, X.; Xu, R. From Planes to Cluster: The Design of Polynitrogen Molecules. Int. J. Quantum Chem. 2015, 115, 84–89. [Google Scholar] [CrossRef]
- Coley, C.W.; Rogers, L.; Green, W.H.; Jensen, K.F. Scscore: Synthetic Complexity Learned from a Reaction Corpus. J. Chem. Inf. Model. 2018, 58, 252–261. [Google Scholar] [CrossRef]
- Catoire, L.; Naudet, V. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values. J. Phys. Chem. Ref. Data 2004, 33, 1083–1111. [Google Scholar] [CrossRef]
- Savos’ kin, M.V.; Kapkan, L.M.; Vaiman, G.E.; Vdovichenko, A.N.; Gorkunenko, O.A.; Yaroshenko, A.P.; Popov, A.F.; Mashchenko, A.N.; Tkachev, V.A.; Voloshin, M.L.; et al. New Approaches to the Development of High-Performance Hydrocarbon Propellants. Russ. J. Appl. Chem. 2007, 80, 31–37. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef]
Index | ρ (g/cm3) | NHOC (MJ/kg) | Tm (K) | FP (K) | Isp (s) |
---|---|---|---|---|---|
ZD-1 | 1.03 | 47.94 | 127.4 | 229.4 | 371.6 |
ZD-2 | 1.11 | 44.10 | 249.0 | 308.0 | 350.8 |
ZD-3 | 1.14 | 45.27 | 265.9 | 318.6 | 355.5 |
ZD-4 | 1.10 | 44.40 | 267.8 | 319.6 | 352.0 |
ZD-5 | 1.07 | 44.44 | 251.1 | 309.6 | 352.2 |
ZD-6 | 1.14 | 46.05 | 265.9 | 318.6 | 358.5 |
ZD-7 | 1.14 | 44.75 | 265.9 | 318.6 | 353.4 |
ZD-8 | 1.19 | 43.89 | 281.0 | 327.9 | 350.0 |
ZD-9 | 1.11 | 44.86 | 229.4 | 317.1 | 353.9 |
ZD-10 | 1.11 | 45.86 | 249.0 | 308.0 | 357.8 |
ZD-11 | 1.01 | 44.96 | 310.2 | 376.0 | 351.5 |
ZD-12 | 1.01 | 44.92 | 310.2 | 376.0 | 351.3 |
ZD-13 | 1.01 | 44.89 | 273.9 | 366.9 | 351.2 |
ZD-14 | 1.01 | 44.85 | 273.9 | 366.9 | 351.0 |
ZD-15 | 1.01 | 44.91 | 273.9 | 366.9 | 351.3 |
ZD-16 | 1.02 | 44.89 | 288.5 | 366.8 | 351.2 |
ZD-17 | 1.02 | 44.90 | 288.5 | 366.8 | 351.2 |
ZD-18 | 1.04 | 44.85 | 263.0 | 356.3 | 351.0 |
ZD-19 | 1.04 | 44.88 | 263.0 | 356.3 | 351.1 |
ZD-20 | 1.04 | 44.80 | 263.0 | 356.3 | 350.8 |
syntin | 0.88 | 45.34 | 222.9 | 324.1 | 349.8 |
QC | 1.00 | 45.01 | 230.0 | 273.7 | 355.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Shan, S.; Lai, W.; Shi, J.; Li, M.; Liu, Y.; Liu, M.; Zhou, Z. Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data. Molecules 2023, 28, 7361. https://doi.org/10.3390/molecules28217361
Wen L, Shan S, Lai W, Shi J, Li M, Liu Y, Liu M, Zhou Z. Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data. Molecules. 2023; 28(21):7361. https://doi.org/10.3390/molecules28217361
Chicago/Turabian StyleWen, Linyuan, Shiqun Shan, Weipeng Lai, Jinwen Shi, Mingtao Li, Yingzhe Liu, Maochang Liu, and Zhaohui Zhou. 2023. "Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data" Molecules 28, no. 21: 7361. https://doi.org/10.3390/molecules28217361