Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3-d]pyrimidine Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectra Analysis
2.2. Crystal Structure
2.3. Phytotoxic Effects
2.4. Molecular Docking with NtPPO
2.5. Electrolyte-Leakage Assay
2.6. DFT Calculation
2.7. Molecular Structure Comparisons
2.8. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Prediction
3. Materials and Methods
3.1. Instruments
3.2. Synthesis
General Synthesis of Target Compound 2
- 1-(3,5-dimethylphenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2a
- 1-(2,6-dichlorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2b
- 1-(3,4-difluorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2c
- 1-(4-chlorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2d
- 3-methyl-1-phenylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2e
- 3-methyl-1-(2-methyl-3-nitrophenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2f
- 3-methyl-1-(o-tolyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2g
- 1-(2,6-difluorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2h
- 1-(2-chlorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2i
- 1-(2,5-dimethoxyphenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2j
- 3-methyl-1-(4-(trifluoromethyl)phenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2k
- 1-(3-chlorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2l
- 1-(2,4-dichlorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2m
- 1-(2,6-diethylphenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2n
- 3-methyl-1-(2,3,4-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 2o
3.3. Crystal Determination
3.4. Herbicide Bioassays
3.4.1. Bioassays with Lettuce and Bentgrass
3.4.2. Bioassays with Field Mustard and Wheat
Inhibition of the Root Growth of Field Mustard (Brassica campestris)
Inhibition of the Seedling Growth of Wheat (Triticum aestivum)
3.5. Electrolyte Leakage
3.6. Porphyrin-Dependent Activity
3.7. Molecular Docking
3.8. Density Functional Theory Analysis (DFT Analysis)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.Y.; Liu, H.; Yang, N.; Xiong, L.X.; Wang, B.L. Synthesis and evaluation of novel xanthine-acrylamides and xanthine-acrylates as insecticidal agents. Pest Manag. Sci. 2022, 78, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.K.; Sun, X.P.; Han, L.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Shi, J.J.; Liu, X.H. Design, synthesis, insecticidal activity and SAR of aryl isoxazoline derivatives containing pyrazole-5-carboxamide motif. J. Agric. Food Chem. 2023, 71, 14458–14470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, P.W.; Zhao, J.H.; Zhang, H.Y.; Wang, X.Y.; Li, L.S.; Xiong, L.X.; Yang, N.; Li, Y.X.; Yuchi, Z.G.; et al. Design, synthesis and biological activity of diamide compounds based on 3-substituent of the pyrazole ring. Pest Manag. Sci. 2022, 78, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-Q.; Li, X.; Guo, H.-Y.; Shen, Q.-K.; Quan, Z.-S.; Luan, T. Application of Quinoline Ring in Structural Modification of Natural Products. Molecules 2023, 28, 6478. [Google Scholar] [CrossRef]
- Frühauf, A.; Behringer, M.; Meyer-Almes, F.-J. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023, 28, 5686. [Google Scholar] [CrossRef]
- Tang, X.M.; Fan, L.; Zhang, Z.C.; Yang, D.C. Design, Synthesis and Biological Activity of Dipeptide Derivatives Bearing Uracil Unit. Chin. J. Org. Chem. 2019, 39, 1460–1468. [Google Scholar] [CrossRef]
- Diab, H.M.; Salem, M.E.; Abdelhamid, I.A.; Elwahy, A.H.M. Aminouracil and aminothiouracil as versatile precursors for a variety of heterocyclic systems. ARKIVOC 2021, 2021, 329–377. [Google Scholar] [CrossRef]
- Reddy, N.N.; Hung, S.-J.; Swamy, M.K.; Sanjeev, A.; Rao, V.S.; Rohini, R.; Raju, A.K.; Bhaskar, K.; Hu, A.; Reddy, P.M. Synthesis and rational design of new appended 1,2,3-triazole-uracil ensembles as promising anti-yumor agents via on silico VEGFR-2 transferase inhibition. Molecules 2021, 26, 1952. [Google Scholar] [CrossRef]
- Semenov, V.E.; Zueva, I.V.; Lushchekina, S.V.; Suleimanov, E.G.; Gubaidullina, L.M.; Shulaeva, M.M.; Lenina, O.A.; Petrov, K.A. Novel Uracil-Based Inhibitors of Acetylcholinesterase with Potency for Treating Memory Impairment in an Animal Model of Alzheimer’s Disease. Molecules 2022, 27, 7855. [Google Scholar] [CrossRef]
- Tatarinov, D.A.; Garifullin, B.F.; Belenok, M.G.; Andreeva, O.V.; Strobykina, I.Y.; Shepelina, A.V.; Zarubaev, V.V.; Slita, A.V.; Volobueva, A.S.; Saifina, L.F.; et al. The First 5′-Phosphorylated 1,2,3-Triazolyl Nucleoside Analogues with Uracil and Quinazoline-2,4-Dione Moieties: A Synthesis and Antiviral Evaluation. Molecules 2022, 27, 6214. [Google Scholar] [CrossRef]
- Yang, J.C.; Guan, A.Y.; Wu, Q.; Cui, D.L.; Liu, C.L. Design, synthesis and herbicidal evaluation of novel uracil derivatives containing an isoxazoline moiety. Pest Manag. Sci. 2020, 76, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- El-Kalyoubi, S.; Agili, F.; Zordok, W.A.; El-Sayed, A.S.A. Synthesis, In Silico Prediction and In Vitro Evaluation of Antimicrobial Activity, DFT Calculation and Theoretical Investigation of Novel Xanthines and Uracil Containing Imidazolone Derivatives. Int. J. Mol. Sci. 2021, 22, 10979. [Google Scholar] [CrossRef] [PubMed]
- Kezin, V.A.; Matyugina, E.S.; Novikov, M.S.; Chizhov, A.O.; Snoeck, R.; Andrei, G.; Kochetkov, S.N.; Khandazhinskaya, A.L. New Derivatives of 5-Substituted Uracils: Potential Agents with a Wide Spectrum of Biological Activity. Molecules 2022, 27, 2866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, Q.X.; Zeng, L.; Cao, C.W.; Zhang, T.T.; Zhou, Y.; He, H.W. Uracil hydrazones: Design, synthesis, antimicrobial activities, and putative mode of action. Pest Manag. Sci. 2023, 79. [Google Scholar] [CrossRef] [PubMed]
- Mattison, R.L.; Beffa, R.; Bojack, G.; Bollenbach-Wahl, B.; Doernbrack, C.; Dorn, N.; Freigang, J.; Gatzweiler, E.; Getachew, R.; Hartfiel, C.; et al. Design, synthesis and screening of herbicidal activity for new phenyl pyrazole-based protoporphyrinogen oxidase-inhibitors (PPO) overcoming resistance issues. Pest Manag. Sci. 2023, 79, 2264–2280. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ahn, Y.O.; Nam, J.W.; Hong, M.K.; Song, N.; Kim, T.; Yu, G.H.; Sung, S.K. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. Pestic. Biochem. Physiol. 2018, 152, 38–44. [Google Scholar] [CrossRef]
- Theodoridis, G.; Bahr, J.T.; Crawford, S.D.; Dugan, B.; Hotzman, F.W.; Maravetz, L.L.; Sehgel, S.; Suarez, D.P. Synthesis and structure-activity relationships of novel 3-(4,7-substituted-2,3-benzoheterocyclyl)uracil herbicides. Abs. ACS Sym. 2000, 220, 60–61. [Google Scholar]
- Silva, J.N.; Jakelaitis, A.; Zuchi, J.; Pereira, L.S.; Costa, E.M.; Silva, C.H.D.E. Production and quality of cowpea seeds desiccated with saflufenacil and flumioxazin. Rev. Bras. Eng. Agríc. Ambient. 2021, 25, 209–215. [Google Scholar] [CrossRef]
- Wang, D.W.; Li, Q.; Wen, K.; Ismail, I.; Liu, D.D.; Niu, C.W.; Wen, X.; Yang, G.F.; Xi, Z. Synthesis and herbicidal activity of pyrido[2,3-d]pyrimidine-2,4-dione-benzoxazinone hybrids as protoporphyrinogen oxidase inhibitors. J. Agric. Food Chem. 2017, 65, 5278–5286. [Google Scholar] [CrossRef]
- He, B.; Wu, F.X.; Yu, L.K.; Wu, L.; Chen, Q.; Hao, G.F.; Yang, W.C.; Lin, H.Y.; Yang, G.F. Discovery of novel pyrazole–quinazoline-2,4-dione hybrids as 4-hydroxyphenylpyruvate dioxygenase inhibitors. J. Agric. Food Chem. 2020, 68, 5059–5067. [Google Scholar] [CrossRef]
- Yang, L.; Demares, F.; Norris, E.J.; Jiang, S.Y.; Bernier, U.R.; Bloomquist, J.R. Bioactivities and modes of action ofVUAA1. Pest Manag. Sci. 2021, 77, 3685–3692. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, C.; Revathi, B.; Balachandran, V.; Narayana, B.; Salian, V.V.; Shanmugapriya, N.; Vanasundari, K. Molecular structure, spectroscopic, quantum chemical, topological, molecular docking and antimicrobial activity of 3-(4-Chlorophenyl)-5-[4-propan-2-yl) phenyl-4, 5-dihydro-1H-pyrazol-1-yl] (pyridin-4-yl) methanone. J. Mol. Struct. 2021, 1224, 129286. [Google Scholar] [CrossRef]
- Kappenberg, Y.G.; Nogara, P.A.; Stefanello, F.S.; Moretto, L.H.; Santos, P.M.; Rocha, J.B.T.; Zanatta, N.; Martins, M.A.P.; Bonacorso, H.G. Design, synthesis, AChE/BChE inhibitory activity, and molecular docking of spiro[chromeno[4,3-b]thieno[3,2-e]pyridine]-7-amine tacrine hybrids. J. Mol. Struct. 2022, 1266, 133485. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Haukka, M.; Al-Majid, A.M.; Barakat, A.; Badr, A.M.A. Synthesis, X-ray structure, Hirshfeld, and antimicrobial studies of new Ag(I) complexes based on pyridine-type ligands. J. Mol. Struct. 2022, 1264, 133210. [Google Scholar] [CrossRef]
- Zhu, K.; Lu, X.X.; Li, X.; Han, Q.; Zou, R.X.; Yang, Z.K.; Li, H.L.; Duan, H.X. Design and structure optimization of novel butenolide derivatives as low bee-toxicity candidates. J. Mol. Struct. 2023, 1282, 135257. [Google Scholar] [CrossRef]
- Jubete, G.; de la Bellacasa, R.P.; Estrada-Tejedor, R.; Teixido, J.; Borrell, J.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and Biomedical Applications. Molecules 2019, 24, 4161. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Huang, Y.J.; Guo, J.; Yu, L.; Chang, Y.; Wang, X.L.; Luo, J.F.; Huang, Y.H.; Tu, Z.C.; Lu, X.Y.; et al. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur. J. Med. Chem. 2023, 211, 113023. [Google Scholar] [CrossRef]
- Brameld, K.A.; Owens, T.D.; Verner, E.; Venetsanakos, E.; Bradshaw, J.M.; Phan, V.T.; Tam, D.; Leung, K.; Shu, J.; LaStant, J.; et al. Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. J. Med. Chem. 2017, 60, 6516–6527. [Google Scholar] [CrossRef]
- Bagchi, M.C.; Nandi, S.; Bhattacharjee, A.K. In silico evaluation of 6-(2,6-dichlorophenyl)-pyrido[2,3-d] pyrimidin-7(8H)-one compounds: An insight into design of less toxic anticancer drugs. Med. Chem. Res. 2016, 25, 123–134. [Google Scholar] [CrossRef]
- Yu, C.S.; Wang, Q.; Bajsa-Hirschel, J.; Cantrell, C.; Duke, S.O.; Liu, X.H. Synthesis, crystal structure, herbicidal activity and SAR study of novel N-(arylmethoxy)-2-chloronicotinamides derived from nicotinic acid. J. Agric. Food Chem. 2021, 69, 6423–6430. [Google Scholar] [CrossRef]
- Liu, X.H.; Wen, Y.H.; Cheng, L.; Xu, T.M.; Wu, N.J. Design, Synthesis, Pesticidal Activities of Pyrimidin-4-amine Derivatives Bearing a 5-(Trifluoromethyl)-1,2,4-oxadiazole Moiety. J. Agric. Food Chem. 2021, 69, 6968–6980. [Google Scholar] [CrossRef]
- Zhang, P.P.; Wang, Q.; Min, L.J.; Wu, H.K.; Weng, J.Q.; Tan, C.X.; Zhang, Y.G.; Liu, X.H. Synthesis, crystal structure, fungicidal activity and molecular docking of nicotinic acyl urea derivatives. J. Mol. Struct. 2020, 1205, 127485. [Google Scholar] [CrossRef]
- Herbicide Resistance Action Committee. HRAC Mode of Action Classification 2022 Map. 2022. Available online: https://hracglobal.com/tools/hrac-mode-of-action-classification-2022-map (accessed on 15 September 2023).
- Liu, X.H.; Yu, W.; Min, L.J.; Wedge, D.E.; Tan, C.X.; Weng, J.Q.; Wu, H.K.; Cantrell, C.L.; Bajsa-Hischel, J.; Hua, X.W.; et al. Synthesis and pesticidal activities of new quinoxalines. J. Agric. Food Chem. 2020, 68, 7324–7332. [Google Scholar] [CrossRef] [PubMed]
- Willett, P. The calculation of molecular structural similarity: Principles and practice. Mol. Inf. 2014, 33, 403–413. [Google Scholar] [CrossRef]
- Tice, C.M. Selecting the right compounds for screening: Does Lipinski’s Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag. Sci. 2001, 57, 3–16. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- 40. BIOVIA DS. BIOVIA Discovery Studio 2.5; BIOVIA DS: San Diego, CA, USA, 2010. [Google Scholar]
- Fu, Q.; Cai, P.P.; Cheng, L.; Zhong, L.K.; Tan, C.X.; Shen, Z.H.; Han, L.; Liu, X.H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2020, 76, 868–879. [Google Scholar] [CrossRef]
- Koch, M.; Breithaupt, C.; Kiefersauer, R.; Freigang, J.; Huber, R.; Messerschmidt, A. Crystal structure of protoporphyrinogen IX oxidase: A key enzyme in haem and chlorophyll biosynthesis. EMBO J. 2004, 23, 1720–1728. [Google Scholar] [CrossRef]
- Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Montgomery, J.-A., Jr.; Vreven, T.; Kudin, K.-N.; Burant, J.-C.; et al. Gaussian 03, Revision C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
Entry | Solvent | Time/h | Temperature/°C | Yield |
---|---|---|---|---|
1 | THF | 4 | 0 | 0% |
2 | THF | 4 | r.t. | 15% |
3 | THF | 24 | r.t. | 21% |
4 | THF | 4 | 50 | 70% |
5 | DMF | 8 | 40 | 56% |
6 | DMF | 8 | 50 | 82% |
7 | DMF | 8 | 55 | 75% |
Compound | R | Lettuce | Bentgrass |
---|---|---|---|
2a | 3,5-di-CH3 | 0 | 3 |
2b | 2,6-di-Cl | 0 | 3 |
2c | 3,4-di-F | 1 | 4 |
2d | 4-Cl | 1 | 4 |
2e | H | 1 | 4 |
2f | 2-CH3-3-NO2 | 1 | 4 |
2g | 2-CH3 | 1 | 4 |
2h | 2,6-di-F | 0 | 4 |
2i | 2-Cl | 0 | 4 |
2j | 2,5-di-OCH3 | 0 | 2 |
2k | 4-CF3 | 0 | 3 |
2l | 3-Cl | 0 | 4 |
2m | 2,4-di-Cl | 2 | 4 |
2n | 2,6-di-CH2CH3 | 1 | 4 |
2o | 2,3,4-tri-F | 1 | 5 |
Clomazone | 5 | 5 | |
Flumioxazin | 5 | 5 |
No. | Root Length of Field Mustard Seedlings | Shoot Length of Wheat Seedlings | ||
---|---|---|---|---|
100 ppm | 10 ppm | 100 ppm | 10 ppm | |
2a | 53.9 | 43.5 | 28.6 | 3.4 |
2b | 12.8 | 0 | 51.4 | 21.7 |
2c | 45.3 | 17.6 | 72.6 | 55.9 |
2d | 47.3 | 21.4 | 67.6 | 42.4 |
2e | 68.5 | 34.1 | 32.1 | 4.1 |
2f | 33.9 | 26.1 | 37.9 | −2.1 |
2g | 39.9 | 14.5 | 64.6 | 32.1 |
2h | 12.2 | 0 | 77.3 | 52.0 |
2i | 14.8 | 0 | 62.3 | 45.7 |
2j | 15.6 | 0 | 63.5 | 27.8 |
2k | 73.5 | 38.3 | 31.4 | 3.2 |
2l | 14.1 | 0 | 59.8 | 38.5 |
2m | 18.5 | 0 | 49.8 | 21.3 |
2n | 32.7 | 12.3 | 73.2 | 51.7 |
2o | 46.6 | 25.7 | 89.7 | 78.3 |
Water | 0 | 0 | 0 | 0 |
Flumioxazin | 75.0 | 59.8 | 100 | 94.3 |
Energy | 2o | B (Figure 1) | Flumioxazin |
---|---|---|---|
Etotal/Hartree b | −1152.14132348 | −1351.05151151 | −1242.88439254 |
EHOMO/Hartree | −0.23915 | −0.20471 | −0.22754 |
ELUMO/Hartree | −0.07452 | −0.08244 | −0.09954 |
ΔE a/Hartree | 0.16463 | 0.12227 | 0.128 |
CLogP | 3.07961 | 2.69413 | 2.2541 |
tPSA | 52.98 | 82.52 | 66.92 |
2o | B | Flumioxazin | |
---|---|---|---|
Structures | |||
Interaction energy a (kcal/mol) | 28.4152 | 43.7645 | 36.2907 |
MW a | 307.227 | 380.329 | 354.332 |
HBAs a | 3 | 5 | 4 |
HBDs a | 0 | 0 | 0 |
RBs a | 1 | 2 | 2 |
ARs a | 2 | 2 | 1 |
2o | B | Flumioxazin | |
---|---|---|---|
solubility level a | 2 | 2 | 2 |
absorption level b | 0 | 0 | 0 |
CYP2D6 prediction c | false | false | false |
AlogP98 d | 3.082 | 2.955 | 3.835 |
PPB# prediction e | true | true | true |
Ames | Non-Mutagen | Non-Mutagen | Non-Mutagen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, L.; Liang, W.; Bajsa-Hirschel, J.; Ye, P.; Wang, Q.; Sun, X.; Cantrell, C.L.; Han, L.; Sun, N.; Duke, S.O.; et al. Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3-d]pyrimidine Compounds. Molecules 2023, 28, 7363. https://doi.org/10.3390/molecules28217363
Min L, Liang W, Bajsa-Hirschel J, Ye P, Wang Q, Sun X, Cantrell CL, Han L, Sun N, Duke SO, et al. Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3-d]pyrimidine Compounds. Molecules. 2023; 28(21):7363. https://doi.org/10.3390/molecules28217363
Chicago/Turabian StyleMin, Lijing, Wei Liang, Joanna Bajsa-Hirschel, Peng Ye, Qiao Wang, Xinpeng Sun, Charles L. Cantrell, Liang Han, Nabo Sun, Stephen O. Duke, and et al. 2023. "Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3-d]pyrimidine Compounds" Molecules 28, no. 21: 7363. https://doi.org/10.3390/molecules28217363