Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stable Isotope Labeling-Based Nontargeted Strategy for the Metabolism Analysis
2.2. Metabolic Profile of BPC-157 in Two Kinds of In Vitro Incubation Models
2.3. Method Development and Validation for Doping Control of BPC-157
2.3.1. Selectivity and Limit of Detection (LOD)
2.3.2. Linearity, Repeatability, and Accuracy
2.3.3. Recovery, Matrix Interference, and Carryover
2.3.4. Reliability and Sample Extract Stability
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Standard Solution Preparation
3.3. In Vitro Metabolic Incubation of BPC-157 and Labeled BPC-157
3.4. Urine Sample Preparation
3.5. Instrument Parameters and Data Processing
3.6. Method Validation
3.6.1. Selectivity and LOD
3.6.2. Linearity, Repeatability, and Accuracy
3.6.3. Recovery, Matrix Interference, and Carryover
3.6.4. Reliability and Sample Extract Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Judak, P.; Esposito, S.; Coppieters, G.; Van Eenoo, P.; Deventer, K. Doping control analysis of small peptides: A decade of progress. J. Chromatogr. B 2021, 1173, 122551. [Google Scholar] [CrossRef] [PubMed]
- Minhas, R.S.; Rudd, D.A.; Al Hmoud, H.Z.; Guinan, T.M.; Kirkbride, K.P.; Voelcker, N.H. Rapid detection of anabolic and narcotic doping agents in saliva and urine by means of nanostructured silicon SALDI mass spectrometry. ACS Appl. Mater. Interfaces 2020, 12, 31195–31204. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency (WADA). Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/2022-01/2022list_final_en_0.pdf (accessed on 1 January 2022).
- Sikiric, P.; Petek, M.; Rucman, R.; Seiwerth, S.; Grabarevic, Z.; Rotkvic, I.; Turkovic, B.; Jagic, V.; Mildner, B.; Duvnjak, M.; et al. A new gastric juice peptide, BPC. An overview of the stomach-stress-organoprotection hypothesis and beneficial effects of BPC. J. Physiol. 1993, 87, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Krivic, A.; Anic, T.; Seiwerth, S.; Huljev, D.; Sikiric, P. Achilles detachment in rat and stable gastric pentadecapeptide BPC 157: Promoted tendon-to-bone healing and opposed corticosteroid aggravation. J. Orthop. Res. 2006, 24, 982. [Google Scholar] [CrossRef]
- Chang, C.H.; Tsai, W.C.; Lin, M.S.; Hsu, Y.H.; Pang, J.H. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. J. Appl. Physiol. 2011, 110, 774. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, K.; Sun, L.; Xue, X.; Zhang, C.; Shu, Z.; Mu, N.; Gu, J.; Zhang, W.; Wang, Y.; et al. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro. Drug Des. Devel. Ther. 2015, 9, 2485–2499. [Google Scholar] [CrossRef]
- BioCorp. How to Use BPC-157: A Complete Dummies Guide to Healing the Body. Available online: https://biocorpllc.com/how-to-use-bpc-157-a-complete-dummies-guide-to-healing-the-body/ (accessed on 25 September 2020).
- Cox, H.D.; Miller, G.D.; Eichner, D. Detection and in vitro metabolism of the confiscated peptides BPC 157 and MGF R23H. Drug Test Anal. 2017, 9, 1490–1498. [Google Scholar] [CrossRef]
- Rzeppa, S.; Voss, S.C.; Thieme, D.; Keiler, A.M. Identification of human in vitro metabolites of the haemoglobin S polymerization inhibitor voxelotor for doping control purposes. Drug Test Anal. 2023. early view. [Google Scholar] [CrossRef]
- Di Trana, A.; Brunetti, P.; Giorgetti, R.; Marinelli, E.; Zaami, S.; Busardo, F.P.; Carlier, J. In silico prediction, LC-HRMS/MS analysis, and targeted/untargeted data-mining workflow for the profiling of phenylfentanyl in vitro metabolites. Talanta 2021, 235, 122740. [Google Scholar] [CrossRef]
- Moller, T.; Wen, H.C.; Naumann, N.; Krug, O.; Thevis, M. Identification and synthesis of selected in vitro generated metabolites of the novel selective androgen receptor modulator (SARM) 2f. Molecules 2023, 28, 5541. [Google Scholar] [CrossRef]
- Krombholz, S.; Thomas, A.; Thevis, M. Investigations into the in vitro metabolism of hGH and IGF-I employing stable-isotope-labelled drugs and monitoring diagnostic immonium ions by high-resolution/high-accuracy mass spectrometry. Metabolites 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, T.; Fontaine, F.; Morettoni, L.; Zamora, I. Software-aided workflow for predicting protease-specific cleavage sites using physicochemical properties of the natural and unnatural amino acids in peptide-based drug discovery. PLoS ONE 2019, 14, e0199270. [Google Scholar] [CrossRef] [PubMed]
- Polet, M.; Van Gansbeke, W.; Geldof, L.; Deventer, K.; Van Eenoo, P. Identification and characterization of novel long-term metabolites of oxymesterone and mesterolone in human urine by application of selected reaction monitoring GC-CI-MS/MS. Drug Test Anal. 2017, 9, 1673–1684. [Google Scholar] [CrossRef]
- Saardpun, N.; Songsaeng, R.; Tanratana, P.; Kusamran, T.; Pinthong, D. The finding of new in vivo metabolite triptorelin (5–10) in human urine using liquid chromatography coupled with ion trap/time-of-flight mass spectrometry with dimethyl sulfoxide additives in the mobile phase. Molecules 2023, 28, 4572. [Google Scholar] [CrossRef] [PubMed]
- Pu, Q.; Wang, M.; Jiang, N.; Luo, Y.; Li, X.; Hu, C.; Du, D. Novel isotope-labeled derivatization strategy for the simultaneous analysis of fatty acids and fatty alcohols and its application in idiopathic inflammatory myopathies and pancreatic cancer. Anal Chem 2023, 95, 8197–8205. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Truong, T.; Saxton, A.J.; Boekweg, H.; Payne, S.H.; Van Ry, P.M.; Kelly, R.T. HyperSCP: Combining isotopic and isobaric labeling for higher throughput single-cell proteomics. Anal. Chem. 2023, 95, 8020–8027. [Google Scholar] [CrossRef]
- Huang, L.; Teng, H.; Wang, M.; Fang, J.; Yuan, Y.; Ma, M.; Luo, Z.; Chen, B.; Guo, B. Isotope-coded derivatization with designed Girard-type reagent as charged isobaric mass tags for non-targeted profiling and discovery of natural aldehydes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2023, 1702, 464084. [Google Scholar] [CrossRef]
- Li, X.L.; Li, Y.; Xiao, S.; Li, Q.; Han, C.; Liu, D.; Cui, T.; Rao, X.; Todoroki, K.; Yang, G.; et al. Stable isotope labeling differential glycans discovery in the serum of acute myocardial infarction by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high resolution mass spectrometry. Anal. Chim. Acta 2023, 1264, 341269. [Google Scholar] [CrossRef]
- Liu, L.; Bao, G.Y.; Zhang, S.S.; Qin, Y.; Chen, X.P.; Wang, M.D.; Zhu, J.P.; Yin, H.; Lin, G.Q.; Feng, C.G.; et al. Analysis of the amine submetabolome using novel isotope-coded pyrylium salt derivatization and LC-MS: Herbs and cancer tissues as cases. Anal. Chem. 2022, 94, 17606–17615. [Google Scholar] [CrossRef]
- Geng, Y.; Xu, Z.; Yu, Y.; Yao, J.; Li, W.; Chen, F.; Hu, X.; Ji, J.; Ma, L. Investigation of the quinone-quinone and quinone-catechol products using (13)C labeling, UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS. Food Res. Int. 2023, 164, 112397. [Google Scholar] [CrossRef]
- Thomas, A.; Thevis, M. Identification of metabolites of peptide-derived drugs using an isotope-labeled reporter ion screening strategy. Clin. Chem. Lab. Med. 2020, 58, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Delahaut, P.; Krug, O.; Schanzer, W.; Thevis, M. Metabolism of growth hormone releasing peptides. Anal. Chem. 2012, 84, 10252–10259. [Google Scholar] [CrossRef] [PubMed]
- Semenistaya, E.; Zvereva, I.; Thomas, A.; Thevis, M.; Krotov, G.; Rodchenkov, G. Determination of growth hormone releasing peptides metabolites in human urine after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin. Drug Test Anal. 2015, 7, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Deventer, K.; Geldof, L.; Van Eenoo, P. In vitro models for metabolic studies of small peptide hormones in sport drug testing. J. Pept. Sci. 2015, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H. Pharmacokinetics of biotech drugs: Peptides, proteins and monoclonal antibodies. Curr. Drug Metab. 2009, 10, 661–691. [Google Scholar] [CrossRef]
- Jing, J.; Tian, T.; Wang, Y.; Xu, X.; Shan, Y. Multi-analyte screening of small peptides by alkaline pre-activated solid phase extraction coupled with liquid chromatography-high resolution mass spectrometry in doping controls. J. Chromatogr. A 2022, 1676, 463272. [Google Scholar] [CrossRef]
- World Anti-Doping Agency (WADA). Technical Document TD2022MRPL. Available online: https://www.wada-ama.org/sites/default/files/2022-01/td2022mrpl_v1.1_eng_0.pdf (accessed on 1 January 2022).
No. | Molecular Formula | Molecular Weight | Delta ppm |
---|---|---|---|
1 | C67H104O27N12 | 1508.71339 | −0.015 |
2 | C64H96O21N22 | 1508.71204 | 0.787 |
3 | C68H100O23N16 | 1508.71472 | −0.990 |
4 | C63H100O25N18 | 1508.71070 | 1.673 |
5 | C69H96O19N20 | 1508.71606 | 1.876 |
No. | Compound | Sequence | Molecular Weight | RT (min) | m/z (+2) | Peak Height (Human Skin S9) | Peak Height (Human Liver Microsomes) |
---|---|---|---|---|---|---|---|
1 | BPC-157 (parent) | GEPPPGKPADDAGLV | 1419.53 | 7.45 | 710.35936 | 4.4 × 108 | 4.5 × 108 |
2 | BPC-157 (2–8) free acid (M1) | EPPPGKP | 720.81 | 5.01 | 361.19760 | 9.5 × 105 | 8.3 × 105 |
3 | BPC-157 (1–8) free acid (M2) | GEPPPGKP | 777.86 | 5.14 | 389.70833 | 9.7 × 105 | 7.2 × 106 |
4 | BPC-157 (2–13) free acid (M3) | EPPPGKPADDAG | 1150.19 | 5.16 | 575.77238 | 4.4 × 105 | ND |
5 | BPC-157 (1–13) free acid (M4) | GEPPPGKPADDAG | 1207.24 | 5.23 | 604.28312 | 5.4 × 106 | 5.9 × 104 |
6 | BPC-157 (2–14) free acid (M5) | EPPPGKPADDAGL | 1263.35 | 6.90 | 632.31442 | ND | 5.2 × 104 |
7 | BPC-157 (1–14) free acid (M6) | GEPPPGKPADDAGL | 1320.40 | 6.91 | 660.82515 | 1.8 × 105 | 2.0 × 106 |
8 | BPC-157 (6–15) free acid (M7) | GKPADDAGLV | 942.02 | 7.15 | 471.74818 | ND | 8.9 × 105 |
9 | BPC-157 (2–15) free acid (M8) | EPPPGKPADDAGLV | 1362.48 | 7.46 | 681.84862 | 3.7 × 107 | 9.4 × 106 |
10 | M9 | unknown | see Table 1 | 8.03 | 755.36389 ([M+2H]2+); 763.87708 ([[M+H+NH4]2+]) | 1.0 × 106; 5.2 × 106 | ND |
No. | Compound | LOD (ng/mL) | Linearity (ng/mL) | Repeatability (n = 6, RSD%) (ng/mL) | Accuracy (RE%) (ng/mL) | Recovery (%) | Matrix Effect (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 20 | 1 | 5 | 20 | ||||||
1 | BPC-157 | 0.01 | 0.02–50 | 1.53 | 1.93 | 2.17 | −2.96 | 1.99 | 8.09 | 93.73 | 75.0 |
2 | BPC-157 (2–8) free acid (M1) | 0.07 | 0.1–50 | 2.16 | 3.91 | 1.89 | −0.15 | −2.94 | −0.63 | 109.48 | 74.0 |
3 | BPC-157 (1–8) free acid (M2) | 0.03 | 0.05–50 | 2.87 | 3.62 | 2.34 | −3.91 | −7.74 | 1.71 | 123.01 | 70.0 |
4 | BPC-157 (2–13) free acid (M3) | 0.07 | 0.1–50 | 3.55 | 2.33 | 2.5 | 3.87 | 0.03 | 3.02 | 116.28 | 75.4 |
5 | BPC-157 (1–13) free acid (M4) | 0.07 | 0.1–50 | 2.63 | 3.15 | 2.5 | 3.92 | 3.84 | 4.98 | 110.10 | 73.2 |
6 | BPC-157 (2–15) free acid (M8) | 0.11 | 0.2–20 | 2.2 | 1.77 | 1.39 | 5.92 | 0.81 | 7.81 | 93.79 | 78.9 |
No. | Compound | Molecular Formula | RT (min) | Charge | Precursor Ion 1 | Product Ion 1,2 | NCE |
---|---|---|---|---|---|---|---|
1 | BPC-157 | C62H98N16O22 | 7.45 | 2 | 710.35936 | 617.32733 651.81873 558.78784 | 30 |
2 | BPC-157 (2–8) free acid (M1) | C33H52N8O10 | 5.01 | 2 | 361.1976 | 352.19183 248.14960 398.23975 | 15 |
3 | BPC-157 (1–8) free acid (M2) | C35H55N9O11 | 5.14 | 2 | 389.70833 | 296.67606 592.34412 187.07118 | 15 |
4 | BPC-157 (2–13) free acid (M3) | C49H75N13O19 | 5.16 | 2 | 575.77238 | 462.72519 827.38922 924.44135 | 20 |
5 | BPC-157 (1–13) free acid (M4) | C51H78N14O20 | 5.23 | 2 | 604.28312 | 511.25076 511.75076 462.72427 | 15 |
6 | BPC-157 (2–15) free acid (M8) | C60H95N15O21 | 7.46 | 2 | 681.84862 | 681.84860 1114.51404 568.79956 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Jing, J.; Li, Y.; Wang, Y.; Deng, X.; Shan, Y. Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS. Molecules 2023, 28, 7345. https://doi.org/10.3390/molecules28217345
Tian T, Jing J, Li Y, Wang Y, Deng X, Shan Y. Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS. Molecules. 2023; 28(21):7345. https://doi.org/10.3390/molecules28217345
Chicago/Turabian StyleTian, Tian, Jing Jing, Yuanyuan Li, Yang Wang, Xiaojun Deng, and Yuanhong Shan. 2023. "Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS" Molecules 28, no. 21: 7345. https://doi.org/10.3390/molecules28217345
APA StyleTian, T., Jing, J., Li, Y., Wang, Y., Deng, X., & Shan, Y. (2023). Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS. Molecules, 28(21), 7345. https://doi.org/10.3390/molecules28217345