Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation
Abstract
:1. Introduction
2. Photocatalysts for Nitrogen Fixation
2.1. Metal Oxides
2.2. Metal Sulfides
2.3. BiOX-Based Materials
2.4. Carbon-Based Materials
2.5. MOFs and Derivatives
3. Other Photocatalytic Nitrogen Fixation Materials
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guo, J.P.; Ping, C. Ammonia history in the making. Nat. Catal. 2021, 4, 734–735. [Google Scholar] [CrossRef]
- Wang, M.; Khan, M.A.; Mohsin, I. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy Environ. Sci. 2021, 14, 2535–2548. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Wang, L.; Xia, M.K.; Wang, H.; Huang, K.F.; Qian, C.X.; Maravelias, C.T.; Ozin, G.A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074. [Google Scholar] [CrossRef]
- Wei, Y.X.; Jiang, W.J.; Liu, Y.; Bai, X.J.; Hao, D.; Ni, B.J. Recent advances in photocatalytic nitrogen fixation and beyond. Nanoscale 2022, 14, 2990–2997. [Google Scholar] [CrossRef] [PubMed]
- Prasidha, K.W.; Widyatama, A. Energy-saving and environmentally-benign integrated ammonia production system. Energy 2021, 235, 121400. [Google Scholar]
- Wang, Y.; Meyer, T.J. A route to renewable energy triggered by the Haber-Bosch process. Chem 2019, 5, 496–497. [Google Scholar] [CrossRef]
- Zuo, C.; Su, Q. Advances in semiconductor-based nanocomposite photo(electro)catalysts for nitrogen reduction to ammonia. Molecules 2023, 28, 2666. [Google Scholar] [CrossRef]
- Rej, S.; Hejazi, S.M.H.; Badura, Z.; Zoppellaro, G.; Kalytchuk, S.; Kment, S.; Fornasiero, P.; Naldoni, A. Light-induced defect formation and Pt single atoms synergistically boost photocatalytic H2 production in 2D TiO2-bronze nanosheets. ACS Sustain. Chem. Eng. 2023, 10, 17286–17296. [Google Scholar] [CrossRef]
- Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633. [Google Scholar] [CrossRef]
- Liang, C.; Niu, H.Y.; Guo, H. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem. Eng. J. 2021, 406, 126868. [Google Scholar] [CrossRef]
- Soria, J.; Conesa, J.C.; Augugliaro, V. Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. C 1991, 22, 274–282. [Google Scholar] [CrossRef]
- Radford, P.P.; Francis, C.G. Photoreduction of nitrogen by metal doped titanium dioxide powders: A novel use for metal vapour techniques. Chem. Commun. 1983, 24, 1520–1521. [Google Scholar] [CrossRef]
- Zhao, W.; Jing, Z.; Xi, Z. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal. B-Environ. 2014, 144, 468–477. [Google Scholar] [CrossRef]
- Song, G.X.; Gao, R.; Zhao, Z. High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B-Environ. 2022, 301, 120809. [Google Scholar] [CrossRef]
- Patil, S.; Basavarajappa, S.B.; Patil, N.G. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar]
- Li, X.H.; Li, J.X.; Zhai, H.J. Efficient catalytic fixation nitrogen activity under visible light by Molybdenum doped mesoporous TiO2. Catal. Lett. 2022, 152, 116–123. [Google Scholar] [CrossRef]
- Zuo, C.; Tai, X.S.; Su, Q.; Jiang, Z.Y.; Guo, Q.J. S-scheme OV-TiO2@Cu7S4 heterojunction on copper mesh for boosting visible-light nitrogen fixation. Opt. Mater. 2023, 137, 113560. [Google Scholar] [CrossRef]
- Khader, M.M.; Lichtin, N.N.; Vurens, G.H. Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 1987, 3, 303–304. [Google Scholar] [CrossRef]
- Licht, S.; Cui, B. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640. [Google Scholar] [CrossRef]
- Sun, S.M.; An, Q.; Wang, W.Z. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209. [Google Scholar] [CrossRef]
- Hou, T.T.; Xiao, Y.; Cui, P.X. Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Adv. Energy Mater. 2019, 9, 1902319. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, W.Z.; Jiang, D. Efficient solar-driven nitrogen fixation over Carbon-Tungstic-Acid hybrids. Chem.-Eur. J. 2016, 22, 13819–13822. [Google Scholar] [CrossRef] [PubMed]
- Janet, C.M.; Navaladian, S.; Viswanathan, B. Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction. J. Phys. Chem. C 2010, 114, 2622–2632. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Mousavi, M.; Ghasemi, J.B. High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/Carbon Dots heterojunction with efficient activity in photocatalytic NH3 production. J. Taiwan Inst. Chem. E 2021, 118, 140–151. [Google Scholar] [CrossRef]
- Zhao, W.R.; Xi, H.P.; Zhang, M. Enhanced quantum yield of nitrogen fixation for hydrogen storage with in situ-formed carbonaceous radicals. Chem. Commun. 2015, 51, 4785–4788. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhou, N.; Gao, F. All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B-Environ. 2017, 218, 600–610. [Google Scholar] [CrossRef]
- Xiao, J.H.; Lv, J.H.; Lu, Q.F. Building Fe2O3/MoO3 nanorod heterojunction enables better tetracycline photocatalysis. Mater. Lett. 2022, 311, 131580. [Google Scholar] [CrossRef]
- Hao, Y.C.; Dong, X.L.; Zhai, S.R. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem.-Eur. J. 2016, 22, 18722–18728. [Google Scholar] [CrossRef]
- Khan, M.; Bhardwaj, R.C.; Bhardwaj, C. Catalytic fixation of nitrogen by the photocatalytic CdS/Pt/RuO2 particulate system in the presence of aqueous [Ru(Hedta)N2] complex. Angew. Chem. Int. Ed. Engl. 1988, 27, 923–925. [Google Scholar] [CrossRef]
- Ye, L.Q.; Han, C.Q.; Ma, Z.Y. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem. Eng. J. 2017, 307, 311–318. [Google Scholar] [CrossRef]
- Bernardo, I.D.; Blyth, J.; Watson, L. Defects, band bending and ionization rings in MoS2. J. Phys. Condens. Matter 2022, 34, 174002. [Google Scholar] [CrossRef]
- Mao, Y.Y.; Fang, Y.Q.; Yuan, K.D. Effect of vanadium doping on the thermoelectric properties of MoS2. J. Alloys Compd. 2022, 903, 163921. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.Z.; Hu, Y. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Li, X.; Wang, W. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B-Environ. 2017, 200, 323–329. [Google Scholar] [CrossRef]
- Brown, K.A.; Harris, D.F.; Wilker, M.B. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450. [Google Scholar] [CrossRef]
- Banerjee, A.; Yuhas, B.D.; Margulies, E.A. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 2015, 137, 2030–2034. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kelley, M.S.; Wu, W. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. USA 2016, 113, 5530–5535. [Google Scholar] [CrossRef]
- Hoffman, B.M.; Dean, D.R.; Seefeldt, L.C. Climbing nitrogenase: Toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 2009, 42, 609–619. [Google Scholar] [CrossRef]
- John, S.; Anderson, J.R.; Jonas, C.P. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87. [Google Scholar]
- Huang, W.L.; Zhu, Q. DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J. Comput. Chem. 2009, 30, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yin, H.F.; Yao, J.C. All-solid-state Z-scheme BiOX(Cl,Br)-Au-CdS heterostructure: Photocatalytic activity and degradation pathway. Colloids Surf. A 2020, 602, 124778. [Google Scholar] [CrossRef]
- Ahern, J.C.; Fairchild, R.; Thomas, J.S. Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal. B-Environ. 2015, 179, 229–238. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Ai, Z.H. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Shi, J.G. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ye, L.Q.; Chen, T. Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 27661–27668. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhe, F.; Wang, Y. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J. Colloid Interfaces Sci. 2019, 539, 563–574. [Google Scholar] [CrossRef]
- Wang, S.Y.; Hai, X.; Ding, X. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Ruther, R.E. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef]
- Bandy, J.A.; Zhu, D.; Hamers, R.J. Photocatalytic reduction of nitrogen to ammonia on diamond thin films grown on metallic substrates. Diam. Relat. Mater. 2016, 64, 34–41. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, S.; Sheng, X.L. Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped Graphene. J. Phys. Chem. Lett. 2018, 9, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Li, Q.K.; Cheng, J. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709. [Google Scholar] [CrossRef]
- Chen, S.; Perathoner, S.; Ampelli, C. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor. ACS Sustain. Chem. Eng. 2017, 5, 7393–7400. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Y.; Quan, X. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous Carbon. ACS Catal. 2018, 8, 1186–1191. [Google Scholar] [CrossRef]
- Dong, G.H.; Ho, W.K.; Wang, C.Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441. [Google Scholar] [CrossRef]
- Wu, G.; Gao, Y.; Zheng, B. Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram. Int. 2016, 42, 6985–6992. [Google Scholar] [CrossRef]
- Cao, S.H.; Chen, H.; Jiang, F. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Appl. Catal. B-Environ. 2018, 224, 222–229. [Google Scholar] [CrossRef]
- Li, X.M.; Sun, X.; Zhang, L. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4. J. Mater. Chem. A 2018, 6, 3005–3011. [Google Scholar] [CrossRef]
- Hu, S.Z.; Chen, X.; Li, Q. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl. Catal. B-Environ. 2017, 201, 58–69. [Google Scholar] [CrossRef]
- Yu, L.; Mo, Z.; Zhu, X.; Deng, J.; Xu, F.; Song, Y.; She, Y.; Li, H.; Xu, H. Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy Environ. 2021, 6, 538–545. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Mousavi, M.; Ghasemi, J.B. In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity. J. Colloid Interfaces Sci. 2021, 587, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.Q.; Huang, Z.W.; Zeng, L.W. Recent advances in MOF-based materials for photocatalytic nitrogen fixation. Eur. J. Inorg. Chem. 2022, e202100748. [Google Scholar] [CrossRef]
- Mohamed, A.M.O.; Bicer, Y. The search for efficient and stable metal-organic frameworks for photocatalysis: Atmospheric fixation of nitrogen. Appl. Surf. Sci. 2022, 583, 152376. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, X.; Wang, Z.H. 1 + 1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chem. Eng. J. 2021, 417, 128022. [Google Scholar] [CrossRef]
- Shang, S.S.; Xiong, W.; Yang, C. Nano-SH-MOF@Self-Assembling Hollow Spherical g-C3N4 Heterojunction for Visible-Light Photocatalytic Nitrogen Fixation. ChemCatChem 2023, 15, e202201605. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.S.; Philo, D. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B-Environ. 2020, 267, 118686. [Google Scholar] [CrossRef]
- Shang, S.S.; Xiong, W.; Yang, C. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano 2021, 15, 9670–9678. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Lv, C. Mimicking π backdonation in Ce-MOFs for solar driven ammonia synthesis. ACS Appl. Mater. Interfaces 2019, 11, 29917–29923. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.M.; Gao, W.G. Bimetallic CeZr5-UiO-66 as a highly efficient photocatalyst for the nitrogen reduction reaction. Sustain. Energy Fuels 2021, 5, 4053–4059. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Yang, D.; Ren, H.J. Nitrogenase-inspired mixed-valence MIL-53(FeⅡ/FeⅢ) for photocatalytic nitrogen fixation. Chem. Eng. J. 2020, 400, 125929. [Google Scholar] [CrossRef]
- Li, C.; Gu, M.Z.; Gao, M.M. N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation. J. Colloid Interfaces Sci. 2020, 609, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Y.; Wang, H.D.; Tang, R. Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation. ACS Appl. Nano Mater. 2021, 4, 8674–8679. [Google Scholar] [CrossRef]
- Wu, S.Q.; Chen, Z.Y.; Yue, W.H. Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 2021, 11, 4362–4371. [Google Scholar] [CrossRef]
- Yu, X.J.; Qiu, H.R.; Wang, Z. Constructing of hybrid structured TiO2/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation. Appl. Surf. Sci. 2021, 556, 149785. [Google Scholar] [CrossRef]
- Zhong, X.; Zhu, Y.X.; Sun, Q.F. Tunable Z-scheme and Type Ⅱ heterojunction of CuxO nanoparticles on carbon nitride nanotubes for enhanced visible-light ammonia synthesis. Chem. Eng. J. 2022, 442, 136156. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, L.Q.; Huang, M.L. Energy band matching WO3/B-doped g-C3N4 Z-scheme photocatalyst to fix nitrogen effectively. Colloid Surf. A 2022, 633, 127830. [Google Scholar] [CrossRef]
- Li, J.X.; Wang, D.D.; Guan, R.Q. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 2020, 8, 18258–18265. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.X.; Shi, R. Sub-3 nm ultrafine Cu2O for visible light-driven nitrogen fixation. Angew. Chem. Int. Ed. 2021, 133, 2584–2590. [Google Scholar] [CrossRef]
- Qian, S.; Wang, W.W.; Zhang, Z.S.; Duan, J.H. Enhanced photocatalytic performance of Cu2O/MoS2/ZnO composites on Cu mesh substrate for nitrogen reduction. Nanotechnology 2021, 32, 285706. [Google Scholar]
- Xue, Y.J.; Wang, X.Y.; Liang, Z.Q. The fabrication of graphitic carbon nitride hollow nanocages with semi-metal 1T’ phase molybdenum disulfide as co-catalysts for excellent photocatalytic nitrogen fixation. J. Colloid Interfaces Sci. 2022, 608, 1229–1237. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Maimaiti, H.; Zhai, P.S. Preparation and photocatalytic N2/H2O to ammonia performance of cadmium sulfide/carbon nanoscrolls. Appl. Surf. Sci. 2021, 542, 148639. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Xing, P.X.; Zhang, J.Y. Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. J. Colloid Interfaces Sci. 2021, 590, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.J.; Qin, J.Z.; Yang, H. MoS2 nano-flowers stacked by ultrathin sheets coupling with oxygen self-doped porous biochar for efficient photocatalytic N2 fixation. ChemCatChem 2020, 12, 5221–5228. [Google Scholar] [CrossRef]
- Dong, W.Y.; Liu, Y.T.; Zeng, G.M. Crystal phase engineering Zn0.8Cd0.2S nanocrystals with twin-induced homojunctions for photocatalytic nitrogen fixation under visible light. J. Photochem. Photobiol. A Chem. 2020, 401, 112766. [Google Scholar] [CrossRef]
- Su, Q.; Wang, W.W.; Zhang, Z.S.; Duan, J.H. Sustainable N2 photofixation promoted by Fe-doped MoSy/CuxS grown on copper mesh. Opt. Mater. 2022, 128, 112373. [Google Scholar] [CrossRef]
- Zhang, G.H.; Meng, Y.; Xie, B. Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO4 single crystals. Appl. Catal. B-Environ. 2021, 296, 120379. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.Q.; Sun, K.L. Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chem. Eng. J. 2021, 411, 128629. [Google Scholar] [CrossRef]
- Lan, M.; Zheng, N.; Dong, X.L. Facile construction of a hierarchical Bi@BiOBr-Bi2MoO6 ternary heterojunction with abundant oxygen vacancies for excellent photocatalytic nitrogen fixation. Sustain. Energy Fuels 2021, 5, 2927–2933. [Google Scholar] [CrossRef]
- Shen, Z.F.; Li, F.F.; Lu, J.R. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(Ⅲ) doped as an activation center. J. Colloid Interfaces Sci. 2021, 584, 174–181. [Google Scholar] [CrossRef]
- Chen, X.; Qi, M.Y.; Li, Y.H. Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies. Chin. J. Catal. 2021, 42, 2020–2026. [Google Scholar] [CrossRef]
- Li, P.S.; Zhou, Z.; Wang, Q. Visible Light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Zhong, X.; Jia, X.T. Geometry-tunable sulfur-doped carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation. Chem. Eng. J. 2022, 431, 133412. [Google Scholar] [CrossRef]
- Li, K.; Cai, W.; Zhang, Z.C. Modified g-C3N5 for photocatalytic nitrogen fixation to ammonia: Key role of Boron in nitrogen activation. Chem. Eng. J. 2022, 435, 135017. [Google Scholar] [CrossRef]
- Liu, W.Z.; Sun, M.X.; Ding, Z.P. Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity. J. Alloys Compd. 2021, 877, 160223. [Google Scholar] [CrossRef]
- de Sá, I.F.; Carvalho, P.H.; Centurion, H.A.; Gonçalves, R.V.; Scholten, J.D. Sustainable Nitrogen Photofixation Promoted by Carbon Nitride Supported Bimetallic RuPd Nanoparticles under Mild Conditions. ACS Sustain. Chem. Eng. 2021, 9, 8721–8730. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zheng, X.L.; Zhang, W.W. Near-infrared-triggered nitrogen fixation over upconversion nanoparticles assembled carbon nitride nanotubes with nitrogen vacancies. ACS Appl. Mater. Interfaces 2021, 13, 32937–32947. [Google Scholar] [CrossRef]
- Ojha, N.; Kumar, S. Tri-phase photocatalysis for CO2 reduction and N2 fixation with efficient electron transfer on a hydrophilic surface of transition-metal-doped MIL-88A (Fe). Appl. Catal. B-Environ. 2021, 292, 120166. [Google Scholar] [CrossRef]
- Chen, L.W.; Hao, Y.C.; Guo, Y. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. J. Am. Chem. Soc. 2021, 143, 5727–5736. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, S.; Xue, C. Nano-MOF@defected film C3N4 Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Adv. 2020, 10, 26246. [Google Scholar] [CrossRef]
- Niu, X.Y.; Zhu, Q.; Jiang, S.L. Photoexcited electron dynamics of nitrogen fixation catalyzed by Ruthenium single-atom catalysts. J Phys. Chem. Lett. 2020, 11, 9579–9586. [Google Scholar] [CrossRef]
- Qiu, P.X.; Xu, C.M.; Zhou, N. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C−P bonds for excellent photocatalytic nitrogen fixation. Appl. Catal. B-Environ. 2018, 221, 27–35. [Google Scholar] [CrossRef]
- Liu, S.Z.; Wang, Y.J.; Wang, S.B. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustain. Chem. Eng. 2019, 7, 6813–6820. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.X.; Shi, R. Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv. Energy Mater. 2020, 10, 1901973. [Google Scholar] [CrossRef]
- Jia, H.L.; Yang, Y.Y.; Dou, Y.R.; Li, F.; Zhao, M.X.; Zhang, C.Y. (Plasmonic gold core)@(ultrathin ruthenium shell) nanostructures as antenna-reactor photocatalysts toward nitrogen photofixation. Chem. Commun. 2022, 58, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Chen, X.; Jin, J.B.; Han, Y.; Chen, S.M.; Ju, H.X.; Cai, J.; Qiu, Y.R.; Gao, C.; Wang, C.M.; et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814. [Google Scholar] [CrossRef]
Haber–Bosh | Photocatalytic Nitrogen Fixation | |
---|---|---|
Reaction equation | N2 + 3H2 → 2NH3 | 2N2 + 6H2O → 4NH3 + 3O2 |
Hydrogen source | Natural gas | Water |
Catalysts | Fe/Ru-based catalysts | Mainly semiconductors |
Temperature | 400–600 °C | Room temperature |
Pressure | 150–300 atm | 1 atm |
Energy source | Fossil fuel | Solar energy |
Type | Photocatalyst | Sacrificial Agent | Light Source | Ammonia Yield/μmol·gcat−1·h−1 | Ref. |
---|---|---|---|---|---|
Metal oxides | N-TiO2 | - | 300 W Xe lamp (λ > 400 nm) | 80.09 | [72] |
Ni-TiO2 | - | 300 W Xe lamp | 46.8 | [73] | |
Rutile TiO2 | Methanol | 300 W Xe lamp (λ > 420 nm) | 116 | [74] | |
Fe-TiO2-SiO2 | - | 300 W Xe lamp | 32 | [75] | |
TiO2-Au-BiOI | - | 300 W Xe lamp | 534.5 | [76] | |
CuxO/CNNTs | Ethanol | 300 W Xe lamp (λ > 420 nm) | 1380 | [77] | |
WO3/B-CN | Methanol | 300 W Xe lamp (λ > 420 nm) | 450.94 | [78] | |
U-Cu2O-0.05 M-2 h | - | 300 W Xe lamp (λ > 400 nm) | 4100 | [79] | |
Cu2O/MoS2/ZnO-cm | - | 350 W Xe lamp (λ > 420 nm) | 111.94 | [80] | |
Metal sulfides | 1T’-MoS2/CNNC | Methanol | 300 W Xe lamp (AM 1.5G filter) | 9800 | [81] |
CdS/CNS | - | 350 W Xe lamp (400–800 nm) | 327 | [82] | |
5%NiS-KNbO3 | Ethanol | 300 W Xe lamp | 155.6 | [83] | |
MoS2/OPC | - | 300 W Xe lamp (λ > 400 nm) | 37.878 | [84] | |
Zn0.8Cd0.2S | Sodium sulfite | 300 W Xe lamp (λ > 420 nm) | 66.91 | [85] | |
Fe-MoSy/CuxS | - | 350 W Xe lamp (λ > 420 nm) | 8171 | [86] | |
BiOX-based materials | BiVO4 | - | 300 W Xe lamp (200–800 nm) | 103.4 | [87] |
P-Bi2WO6 | - | 300 W Xe lamp | 73.6 | [88] | |
Bi@BiOBr-Bi2MoO6 | - | 300 W Xe lamp | 167.2 | [89] | |
Fe-BiOCl | - | 300 W Xe lamp (200–800 nm) | 60 | [90] | |
Mo-Bi5O7Br-1 | - | 300 W Xe lamp (λ > 420 nm) | 122.9 | [91] | |
Bi5O7Br | - | 300 W Xe lamp (λ > 400 nm) | 12700 | [92] | |
Carbon-based materials | S-CNNTs | Ethanol | 300 W Xe lamp (λ > 420 nm) | 640 | [93] |
B-C3N5 | Methanol | 300 W Xe lamp (200–2500 nm) | 421.18 | [94] | |
Ti3C2/g-C3N4 | Methanol | 300 W Xe lamp (λ > 420 nm) | 601 | [95] | |
RuPd NPs/C3N4 | Ethanol | 300 W Xe lamp (λ > 420 nm) | 1389.84 | [96] | |
NYF(15)/NV-CNNTs | Ethanol | 300 W Xe lamp (λ > 420 nm) | 1720 | [97] | |
MOF-based materials | Zn-MIL-88A | - | 300 W Xe lamp | 300 | [98] |
Au@UiO-66/PTFE membrane | - | 300 W Xe lamp (λ > 400 nm) | 360 | [99] | |
MOF@DF-C3N4 | Methanol | 300 W Xe lamp (λ > 400 nm) | 2320 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, C.; Su, Q.; Yu, L. Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation. Molecules 2023, 28, 7277. https://doi.org/10.3390/molecules28217277
Zuo C, Su Q, Yu L. Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation. Molecules. 2023; 28(21):7277. https://doi.org/10.3390/molecules28217277
Chicago/Turabian StyleZuo, Cheng, Qian Su, and Lei Yu. 2023. "Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation" Molecules 28, no. 21: 7277. https://doi.org/10.3390/molecules28217277