Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Set of Analyzed Compounds
2.2. HPLC Lipophilicity and % PPB
2.3. Correlation Analysis
2.4. PCA Analysis
3. Materials and Methods
3.1. HPLC Measurements
3.2. C-18 Chromatography
3.3. IAM Chromatography
3.4. Cholesterol Chromatography
3.5. HSA and AGP Chromatography
3.6. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Soares, J.X.; Santos, A.; Fernandes, C.; Pinto, M.M.M. Liquid chromatography on the different methods for the determination of lipophilicity: An essential analytical tool in medicinal chemistry. Chemosensors 2022, 10, 340. [Google Scholar] [CrossRef]
- Valko, K. Biomimetic Chromatography to accelerate drug discovery: Part I. LC GC N. Am. 2018, 36, 397–405. [Google Scholar]
- Valko, K. Biomimetic chromatography to accelerate drug discovery: Part II. LC GC N. Am. 2018, 36, 520–526. [Google Scholar]
- Valko, K.L. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Zuvela, P.; Lovric, M.; Kapica, H.; Baranowski, P.; Sawicki, W.; Wong, M.W.; Saczewski, J. Affinity of antifungal isoxazolo[3,4-b]pyridine-3(1H)-ones to phospholipids in immobilized artificial membrane (IAM) chromatography. Molecules 2020, 25, 4835. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Andric, F.; Greber, K.E.; Gurgielewicz, A.; Sawicki, W.; Saczewski, J. Lipophilicity determination of quaternary (fluoro)quinolones by chromatographic and theoretical approaches. Int. J. Mol. Sci. 2019, 20, 5288. [Google Scholar] [CrossRef]
- Pastewska, M.; Zolnowska, B.; Kovacevic, S.; Kapica, H.; Gromelski, M.; Stolinski, F.; Slawinski, J.; Sawicki, W.; Ciura, K. Modeling of anticancer sulfonamide derivatives lipophilicity by chemometric and quantitative structure-retention relationships approaches. Molecules 2022, 27, 3965. [Google Scholar] [CrossRef]
- Bajda, M.; Gula, A.; Wieckowski, K.; Malawska, B. Determination of lipophilicity of gamma-butyrolactone derivatives with anticonvulsant and analgesic activity using micellar electrokinetic chromatography. Electrophoresis 2013, 34, 3079–3085. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Taillardat-Bertschinger, A.; Carrupt, P.A.; Barbato, F.; Testa, B. Immobilized artificial membrane HPLC in drug research. J. Med. Chem. 2003, 46, 655–665. [Google Scholar] [CrossRef]
- Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Dis. 2010, 5, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Pizon, M.; Plech, T. Chromatographic behavior of new antiepileptic active compounds on different reversed-phase materials. J. Chromatogr. A 2014, 1338, 188–196. [Google Scholar] [CrossRef]
- Welerowicz, T.; Buszewski, B. The effect of stationary phase on lipophilicity determination of beta-blockers using reverse-phase chromatographic systems. Biomed. Chromatogr. BMC 2005, 19, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.; Nunhuck, S.; Bevan, C.; Abraham, M.H.; Reynolds, D.P. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity. J. Pharm. Sci. 2003, 92, 2236–2248. [Google Scholar] [CrossRef]
- Kaliszan, R.; Haber, P.; Baczek, T.; Siluk, D.; Valko, K. Lipophilicity and pKa estimates from gradient high-performance liquid chromatography. J. Chromatogr. A 2002, 965, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Andres, A.; Roses, M.; Rafols, C.; Bosch, E.; Espinosa, S.; Segarra, V.; Huerta, J.M. Setup and validation of shake-flask procedures for the determination of partition coefficients (log D) from low drug amounts. Eur. J Pharm. Sci. 2015, 76, 181–191. [Google Scholar] [CrossRef]
- Pidgeon, C.; Ong, S.; Liu, H.; Qiu, X.; Pidgeon, M.; Dantzig, A.H.; Munroe, J.; Hornback, W.J.; Kasher, J.S.; Glunz, L.; et al. IAM chromatography: An in vitro screen for predicting drug membrane permeability. J. Med. Chem. 1995, 38, 590–594. [Google Scholar] [CrossRef]
- Ong, S.W.; Liu, H.L.; Qiu, X.X.; Bhat, G.; Pidgeon, C. Membrane partition-coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal. Chem. 1995, 67, 755–762. [Google Scholar] [CrossRef]
- Valko, K.; Teague, S.; Pidgeon, C. In vitro membrane binding and protein binding (IAM MB/PB technology) to estimate in vivo distribution: Applications in early drug discovery. ADMET DMPK 2017, 5, 14–38. [Google Scholar] [CrossRef]
- Ward, R.S.; Davies, J.; Hodges, G.; Roberts, D.W. Applications of immobilised artificial membrane chromatography to quaternary alkylammonium sulfobetaines and comparison of chromatographic methods for estimating the octanol-water partition coefficient. J. Chromatogr. A 2003, 1007, 67–75. [Google Scholar] [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. J. Chromatogr. A 2013, 1318, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Pesek, J.J.; Matyska, M.T.; Dawson, G.B.; Wilsdorf, A.; Marc, P.; Padki, M. Cholesterol bonded phase as a separation medium in liquid chromatography—Evaluation of properties and applications. J. Chromatogr. A 2003, 986, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.L.; Zhang, T. Biomimetic properties and estimated in vivo distribution of chloroquine and hydroxy-chloroquine enantiomers. ADMET DMPK 2021, 9, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Mehta, J. Measurement of drug-protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltration. J. Chromatogr. B 2006, 834, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Noctor, T.A.G.; Diazperez, M.J.; Wainer, I.W. Use of a human serum albumin-based stationary phase for high-performance liquid-chromatography as a tool for the rapid-determination of drug plasma-protein binding. J. Pharm. Sci. 1993, 82, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Mornar, A.; Medic-Saric, M.; Jasprica, I.; Krstulovic, A. Interactions of polyphenols with immobilized artificial membrane and human serum albumin determined by high performance liquid chromatography. Planta Med. 2007, 73, 987. [Google Scholar] [CrossRef]
- Kucukguzel, S.G.; Coskun, G.P. Macromolecular drug targets in cancer treatment and thiosemicarbazides as anticancer agents. Anti-Cancer Agents Med. Chem. 2016, 16, 1288–1300. [Google Scholar] [CrossRef]
- Kapron, B.; Czarnomysy, R.; Radomska, D.; Bielawski, K.; Plech, T. Thiosemicarbazide derivatives targeting human topoii alpha and ido-1 as small-molecule drug candidates for breast cancer treatment. Int. J. Mol. Sci. 2023, 24, 5812. [Google Scholar] [CrossRef]
- Malki, A.; Elbayaa, R.Y.; Ashour, H.M.A.; Loffredo, C.A.; Youssef, A.M. Novel thiosemicarbazides induced apoptosis in human MCF-7 breast cancer cells via JNK signaling. J. Enzym. Inhib. Med. Chem. 2015, 30, 786–795. [Google Scholar] [CrossRef]
- Kozyra, P.; Adamczuk, G.; Karczmarzyk, Z.; Matysiak, J.; Podkościelna, B.; Humeniuk, E.; Wysocki, W.; Korga-Plewko, A.; Senczyna, B.; Pitucha, M. Novel phenoxyacetylthiosemicarbazide derivatives as novel ligands in cancer diseases. Toxicol. Appl. Pharmacol. 2023, 475, 116634. [Google Scholar] [CrossRef]
- Soczewinski, E.; Wachtmeister, C.A. Relation between composition of certain ternary 2-phase solvent systems and Rm values. J. Chromatogr. 1962, 7, 311–320. [Google Scholar] [CrossRef]
- Mojzych, M.; Bernat, Z.; Karczmarzyk, Z.; Matysiak, J.; Fruzinski, A. Synthesis, Structural characterization, and biological activity of new pyrazolo[4,3-e][1,2,4]triazine acyclonucleosides. Molecules 2020, 25, 221. [Google Scholar] [CrossRef]
- Niewiadomy, A.; Zabinska, A.; Matysiak, J.; Rozylo, J.K. Influence of modifier and molecular structure of some dihydroxythiobenzanilides on retention in reversed-phase high-performance thin-layer chromatography. J. Chromatogr. A 1997, 791, 237–243. [Google Scholar] [CrossRef]
- Benfenati, E.; Manganaro, A.; Gini, G. VEGA-QSAR: AI inside a platform for predictive toxicology. In Popularize Artificial Intelligence 2013: Proceedings of the Workshop on Popularize Artificial Intelligence (PAI 2013), Italy, Turin, 5 December 2013; CEUR Workshop Proceedings; RWTH Aachen University: Aachen, Germany, 2013; Volume 1107. [Google Scholar]
- Matysiak, J. QSAR of antiproliferative activitv of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles in various human cancer cells. QSAR Comb. Sci. 2008, 27, 607–617. [Google Scholar] [CrossRef]
- Kratochwil, N.A.; Huber, W.; Muller, F.; Kansy, M.; Gerber, P.R. Predicting plasma protein binding of drugs: A new approach. Biochem. Pharmacol. 2002, 64, 1355–1374. [Google Scholar] [CrossRef] [PubMed]
- ChemDraw Ultra, version 10.0; Cambridge Soft Corporation: Cambridge, MA, USA, 2006.
- Percepta, version 2.0; Advanced Chemistry Development, Inc. (ACD/Labs): Toronto, ON, Canada, 2016. Available online: www.acdlabs.com(accessed on 15 August 2020).
- MedChem Designer(TM), version 3.0.0.30; Simulations Plus, Inc.: Lancaster, CA, USA, 2011–2014.
- Abu-Melha, S. Pyridyl thiosemicarbazide: Synthesis, crystal structure, DFT/B3LYP, molecular docking studies and its biological investigations. Chem. Cent. J. 2018, 12, 101. [Google Scholar] [CrossRef]
- Kozyra, P.; Kaczor, A.; Karczmarzyk, Z.; Wysocki, W.; Pitucha, M. Experimental and computational studies of tautomerism pyridine carbonyl thiosemicarbazide derivatives. Struct. Chem. 2023, 34, 1973–1984. [Google Scholar] [CrossRef]
- Lipinski, C.A. Chris Lipinski discusses life and chemistry after the rule of five. Drug Discov. Today 2003, 8, 12–16. [Google Scholar]
- Oprea, T.I.; Gottfries, J.; Sherbukhin, V.; Svensson, P.; Kuhler, T.C. Chemical information management in drug discovery: Otimizing the computational and combinatorial chemistry interfaces. J. Mol. Graph. Model. 2000, 18, 512–524. [Google Scholar] [CrossRef]
- Valko, K. Fast liquid chromatographic method to determine compounds binding to human serum albumin. Acta Pharm. Hung. 2003, 73, 13–22. [Google Scholar]
- Ghose, A.K.; Crippen, G.M. Atomic Physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity-relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comp. Sci. 1987, 27, 21–35. [Google Scholar] [CrossRef]
- Statistica, version 7.1; StatSoft, Inc.: Tulsa, OK, USA, 1984–2005.
- JASP, version 0.17.2.1; JASP Team: Amsterdam, The Netherlands, 2023.
No. | -S C-18 1 | log kw C-18 1 | r2 | -S IAM | log kw IAM | r2 | n | -S Chol | log kw Chol | r2 | n |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | 3.7611 | 1.7866 | 0.9937 | 4.4559 | 1.0288 | 0.9390 | 8 | 4.0307 | 2.2209 | 0.9947 | 7 |
2. | 4.3603 | 2.0774 | 0.9955 | 4.8953 | 1.1961 | 0.9931 | 7 | 3.7822 | 1.9241 | 0.9952 | 6 |
3. | 4.5312 | 2.3929 | 0.9973 | 5.2422 | 1.5588 | 0.9818 | 6 | 4.1573 | 2.3437 | 0.9917 | 7 |
4. | 4.4182 | 2.4824 | 0.9986 | 5.3942 | 1.7099 | 0.9810 | 6 | 4.1215 | 2.3754 | 0.9959 | 7 |
5. | 4.7921 | 2.4592 | 0.9968 | 5.5312 | 1.4283 | 0.9955 | 7 | 4.3726 | 2.4598 | 0.9918 | 6 |
6. | 4.8532 | 2.7672 | 0.9978 | 6.3395 | 1.9101 | 0.9929 | 6 | 4.8849 | 2.9670 | 0.9916 | 6 |
7. | 4.8454 | 2.8451 | 0.9973 | 6.8947 | 2.1389 | 0.9847 | 5 | 5.4314 | 3.4508 | 0.9878 | 6 |
8. | 4.9651 | 3.0072 | 0.9972 | 6.9157 | 2.3083 | 0.9871 | 8 | 5.6623 | 3.7019 | 0.9747 | 6 |
9. | 4.2984 | 2.1145 | 0.9869 | 5.1370 | 1.1652 | 0.9629 | 7 | 4.2398 | 2.4029 | 0.994 | 7 |
10. | 4.5132 | 2.5914 | 0.9977 | 6.0976 | 1.8779 | 0.9920 | 6 | 4.8387 | 2.9842 | 0.9936 | 8 |
11. | 4.6183 | 2.734 | 0.9964 | 6.5856 | 2.1020 | 0.9781 | 5 | 5.0251 | 3.1674 | 0.9925 | 6 |
12. | 4.8352 | 2.9681 | 0.9957 | 6.8364 | 2.3341 | 0.9871 | 6 | 5.0829 | 3.3300 | 0.9908 | 6 |
13. | 5.1803 | 3.2152 | 0.9973 | 6.2034 | 1.5351 | 0.9811 | 6 | 5.4505 | 3.4517 | 0.9802 | |
14. | 5.6376 | 3.7050 | 0.9976 | 7.6211 | 2.6121 | 0.9853 | 6 | 5.1337 | 3.4243 | 0.9624 | 5 |
15. | 5.3305 | 3.3757 | 0.9991 | 7.5617 | 2.5780 | 0.9826 | 6 | 6.2128 | 4.2283 | 0.9626 | 6 |
16. | 5.1865 | 2.7200 | 0.9905 | 6.0875 | 1.5455 | 0.9942 | 7 | 5.2122 | 2.8538 | 0.9748 | 6 |
17. | 4.6859 | 2.6753 | 0.9990 | 5.7908 | 1.6998 | 0.994 | 6 | 5.0386 | 3.1664 | 0.9782 | 6 |
18. | 4.6919 | 2.6769 | 0.9992 | 5.6500 | 1.6606 | 0.9903 | 6 | 5.0400 | 3.0227 | 0.9965 | 6 |
No. | log k HSA | log K HSA | %PPB HSA | log k AGP | log K AGP | %PPB AGP | log K IRFMN 1 |
---|---|---|---|---|---|---|---|
1. | 0.8050 | 1.0986 | 93.5 | 0.2567 | 0.4018 | 72.3 | 0.8835 |
2. | 0.9750 | 1.2775 | 95.9 | 0.2531 | 0.3986 | 72.2 | 1.1352 |
3. | 0.9070 | 1.2059 | 95.1 | 0.4257 | 0.5523 | 78.9 | 1.1203 |
4. | 1.1899 | 1.5037 | 97.9 | 0.5588 | 0.6707 | 83.2 | 1.2404 |
5. | 0.8615 | 1.1581 | 94.4 | 0.4328 | 0.5586 | 79.1 | 1.1834 |
6. | 1.0170 | 1.3217 | 96.4 | 0.4964 | 0.6152 | 81.3 | 1.1166 |
7. | 1.8991 | 2.2501 | 100 | 0.5881 | 0.6968 | 84.1 | 1.1875 |
8. | 1.7890 | 2.1342 | 100 | 0.7664 | 0.8556 | 88.6 | 1.2404 |
9. | 0.9823 | 1.2852 | 96.0 | 0.2424 | 0.3891 | 71.7 | 1.1352 |
10. | 1.5981 | 1.9333 | 99.8 | 0.3754 | 0.5075 | 77.0 | 1.1203 |
11. | 1.685 | 2.0248 | 100 | 0.518 | 0.6344 | 82.0 | 1.178 |
12. | 1.8304 | 2.1778 | 100 | 0.7465 | 0.8378 | 88.2 | 1.2404 |
13. | 1.3649 | 1.6879 | 99.0 | 0.4665 | 0.5886 | 80.3 | 1.2395 |
14. | 1.8689 | 2.2183 | 100 | 0.7971 | 0.8829 | 89.3 | 1.2545 |
15. | 1.5391 | 1.8712 | 99.7 | 0.8332 | 0.9150 | 90.1 | 1.2677 |
16. | 1.4198 | 1.7456 | 99.2 | 0.1994 | 0.3508 | 69.8 | 0.9916 |
17. | 1.3603 | 1.6830 | 98.9 | 0.5548 | 0.6672 | 83.1 | 1.1387 |
18. | 1.2098 | 1.5246 | 98.1 | 0.6494 | 0.7514 | 85.8 | 1.3538 |
Parameter | log kw C-18 | log kw IAM | log kw Chol | log k HSA | log k AGP | -S C-18 | -S IAM | -S Chol |
---|---|---|---|---|---|---|---|---|
Median | 2.698 | 1.705 | 3.003 | 1.363 | 0.507 | 4.742 | 6.093 | 5.032 |
Mean | 2.700 | 1.799 | 2.971 | 1.350 | 0.509 | 4.750 | 6.069 | 4.873 |
Std. deviation | 0.467 | 0.471 | 0.594 | 0.374 | 0.199 | 0.430 | 0.892 | 0.642 |
Range | 1.918 | 1.583 | 2.304 | 1.094 | 0.634 | 1.877 | 3.165 | 2.431 |
No. | log P 1 | C log P 1 | log P (M-K) 2 | M LogP 3 | A Log P 3 | S + logP 4 | S + logD 4 |
---|---|---|---|---|---|---|---|
1. | 2.64 | 2.0362 | 1.77 | 2.34 | 2.73 | 2.173 | 2.171 |
2. | 2.8 | 2.1792 | 1.97 | 2.73 | 2.93 | 2.511 | 2.508 |
3. | 3.2 | 2.7492 | 2.42 | 2.86 | 3.39 | 2.747 | 2.742 |
4. | 4.0 | 3.1592 | 2.94 | 3.10 | 3.31 | 3.111 | 3.108 |
5. | 2.8 | 2.1792 | 1.97 | 2.73 | 2.93 | 2.506 | 2.503 |
6. | 3.2 | 2.7492 | 2.42 | 2.86 | 3.39 | 2.774 | 2.77 |
7. | 3.47 | 2.8992 | 2.66 | 2.98 | 3.48 | 2.867 | 2.864 |
8. | 4.0 | 3.1592 | 2.94 | 3.10 | 3.31 | 3.138 | 3.136 |
9. | 2.8 | 2.1792 | 1.97 | 2.73 | 2.93 | 2.446 | 2.443 |
10. | 3.2 | 2.7492 | 2.42 | 2.86 | 3.39 | 2.759 | 2.756 |
11. | 3.47 | 2.8992 | 2.66 | 2.98 | 3.48 | 2.86 | 2.858 |
12. | 4.0 | 3.15916 | 2.94 | 3.10 | 3.31 | 3.157 | 3.156 |
13. | 3.76 | 3.4622 | 3.06 | 3.37 | 4.06 | 3.388 | 3.380 |
14. | 3.76 | 3.4622 | 3.06 | 3.37 | 4.06 | 3.432 | 3.423 |
15. | 3.76 | 3.3422 | 3.06 | 3.37 | 4.06 | 3.407 | 3.401 |
16. | 1.63 | 1.7792 | 1.59 | 2.35 | 2.62 | 2.268 | 2.263 |
17. | 3.08 | 2.5952 | 2.32 | 2.86 | 3.27 | 2.648 | 2.646 |
18. | 3.64 | 3.2102 | 2.95 | 3.15 | 3.64 | 3.193 | 3.19 |
Descriptor | log kw C-18 | log kw IAM | log kw Chol | log K HSA | log K AGP |
---|---|---|---|---|---|
log P 1 | 0.84 (4, 16) 5 | 0.90 (4, 16) 5 | 0.84 (4, 16) 5 | 0.79 (4, 16) 5 | 0.83 |
C log P 1 | 0.87 (16) 5 | 0.87 (16) 5 | 0.84 (4, 16) 5 | 0.72 (7, 16) 5 | 0.92 (13) 5 |
S + log P 2 | 0.89 (16) 5 | 0.89 (18) 5 | 0.82 (4, 16) 5 | 0.68 (7) 5 | 0.93 (13) 5 |
S + log D 2 | 0.89 (16) 5 | 0.85 | 0.82 (4, 16) 5 | 0.68 (7) 5 | 0.92 (13) 5 |
M log P 3 | 0.90 (16) 5 | 0.85 (16) 5 | 0.81 (4, 16) 5 | 0.60 (7) 5 | 0.91 (13) 5 |
ALogP 3 | 0.89 (16) 5 | 0.81 | 0.82 (8, 16) 5 | 0.56 | 0.83 (13) 5 |
log P (M-K) 4 | 0.89 (4, 16) 5 | 0.83 | 0.86 (4, 16) 5 | 0.70 (16) 5 | 0.94 (13) 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studziński, M.; Kozyra, P.; Pitucha, M.; Senczyna, B.; Matysiak, J. Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations. Molecules 2023, 28, 7107. https://doi.org/10.3390/molecules28207107
Studziński M, Kozyra P, Pitucha M, Senczyna B, Matysiak J. Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations. Molecules. 2023; 28(20):7107. https://doi.org/10.3390/molecules28207107
Chicago/Turabian StyleStudziński, Marek, Paweł Kozyra, Monika Pitucha, Bogusław Senczyna, and Joanna Matysiak. 2023. "Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations" Molecules 28, no. 20: 7107. https://doi.org/10.3390/molecules28207107
APA StyleStudziński, M., Kozyra, P., Pitucha, M., Senczyna, B., & Matysiak, J. (2023). Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations. Molecules, 28(20), 7107. https://doi.org/10.3390/molecules28207107