Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oil of C. wildii and Heptane Isolation
2.2. Heptane from C. wildii as An Extraction Solvent for Perfumery
2.3. C. wildii Essential Oil after Heptane Isolation
2.4. Bioactivities of the Remaining Essential Oil
2.4.1. Bioassays Results
2.4.2. Antimicrobial Tests
3. Discussion
4. Materials and Methods
4.1. Plant Material, Chemicals and Reagents
4.2. Isolation of Natural Heptane
4.3. Fractionation of Residual Essential Oil (Silica Gel Chromatography)
4.4. Extraction and Evaluation of Concretes
4.5. GC-MS and GC/FID Analyses of Complete and Residual Essential Oil
4.6. Identification of Complete and Residual Essential Oil Compounds
4.7. Heptane Assay in Complete Essential Oil
4.8. Activity Tests
4.8.1. Bioassays
Instrumentation
Hyaluronidase Assay
Tyrosinase Assays
DPPH Radical Scavenging Assay
Elastase Assay
Lipoxygenase Assay
4.8.2. Antimicrobial Activity
Antifungal Activity
Antifungal Evaluation
- Disk diffusion testing
Broth Dilution Testing
Antibacterial Activity
Preparation of Bacterial Inocula
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Kerdudo, A.; Gonnot, V.; Ellong, E.N.; Boyer, L.; Chandre, F.; Adenet, S.; Rochefort, K.; Michel, T.; Fernandez, X. Composition and Bioactivity of Pluchea Carolinensis (Jack.) G. Essential Oil from Martinique. Ind. Crops Prod. 2016, 89, 295–302. [Google Scholar] [CrossRef]
- Chemat, S.; Tomao, V.; Chemat, F. Limonene as Green Solvent for Extraction of Natural Products. In Green Solvents I: Properties and Applications in Chemistry; Mohammad, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 175–186. ISBN 978-94-007-1712-1. [Google Scholar]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.-S.F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, E3007. [Google Scholar] [CrossRef] [Green Version]
- Batool, I.; Nisar, S.; Hamrouni, L.; Jilani, M. Extraction, Production and Analysis Techniques for Menthol: A Review. Int. J. Chem. Biochem. Sci. 2018, 14, 71–76. [Google Scholar]
- Sheehama, J.T.; Mukakalisa, C.; Amakali, T.; Uusiku, L.N.; Hans, R.H.; Nott, K.; Nott, A.; Louw, S. Chemical Characterization and in Vitro Antioxidant and Antimicrobial Activities of Essential Oil from Commiphora wildii Merxm. (Omumbiri) Resin. Flavour Fragrance J. 2019, 34, 241–251. [Google Scholar] [CrossRef]
- Arin, E.; Önem, E.; Tabur, M.A. Characterization of Myrrh Essential Oil wıth GC-MS and Investigation Antibacterıal Effects on Salmonella spp. Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Dergisi 2021, 16, 319–327. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Ghavidel, F.; Mohagheghzadeh, A.; Zarshenas, M.M. Analysis of Six Populations of Commiphora myrrha (Nees) Engl. Oleo-Gum Resin. Trends Pharm. Sci. 2017, 3, 7–12. [Google Scholar]
- Mohamed, A.A.; Ali, S.I.; EL-Baz, F.K.; Hegazy, A.K.; Kord, M.A. Chemical Composition of Essential Oil and in Vitro Antioxidant and Antimicrobial Activities of Crude Extracts of Commiphora myrrha Resin. Ind. Crops Prod. 2014, 57, 10–16. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Scorciapino, A. Chemical Composition of the Essential Oil and Supercritical CO2 Extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J. Agric. Food Chem. 2005, 53, 7939–7943. [Google Scholar] [CrossRef]
- Jemmali, Z.; Chartier, A.; Elfakir, C. Development of a Gas Chromatography–Mass Spectrometry Method to Monitor in a Single Run, Mono- to Triterpenoid Compounds Distribution in Resinous Plant Materials. J. Chromatogr. A 2016, 1443, 241–253. [Google Scholar] [CrossRef]
- Adams, R.P.; Wright, J.W. Alkanes and Terpenes in Wood and Leaves of Pinus jeffreyi and P. sabiniana. J. Essent. Oil Res. 2012, 24, 435–440. [Google Scholar] [CrossRef]
- Velásquez, J.; Toro, M.E.; Encinas, O.; Rojas, L.; Usubillaga, A. Chemical Composition of the Essential Oils of Exudates from Pinus oocarpa Schiede. Flavour Fragr. J. 2000, 15, 432–433. [Google Scholar] [CrossRef]
- Bouville, A.-S.; Dieffoldo, C.; Fernandez, X.; Piquart, S. Heptane from a Plant Source, for the Extraction of Natural Products. EP Patent EP3746038, 2020. [Google Scholar]
- Burger, P.; Plainfossé, H.; Brochet, X.; Chemat, F.; Fernandez, X. Extraction of Natural Fragrance Ingredients: History Overview and Future Trends. Chem. Biodivers. 2019, 16, e1900424. [Google Scholar] [CrossRef]
- Burger, P.; Landreau, A.; Watson, M.; Janci, L.; Cassisa, V.; Kempf, M.; Azoulay, S.; Fernandez, X. Vetiver Essential Oil in Cosmetics: What Is New? Medicines 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Carvalhinho, S.; Costa, A.M.; Coelho, A.C.; Martins, E.; Sampaio, A. Susceptibilities of Candida Albicans Mouth Isolates to Antifungal Agents, Essentials Oils and Mouth Rinses. Mycopathologia 2012, 174, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial Activity of Essential Oils and Other Plant Extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, M.; Asres, K.; Bisrat, D.; Mazumder, A.; Lindemann, P.; Bucar, F. Effects of Resin and Essential Oil from Commiphora myrrha Engl. on Wound Healing. Ethiop. Pharm. J. 2016, 32, 85–100. [Google Scholar] [CrossRef]
- Rini, P.; Ohtani, Y.; Ichiura, H. Antioxidant, Anti-Hyaluronidase and Antifungal Activities of Melaleuca leucadendron Linn. Leaf Oils. J. Wood Sci. 2012, 58, 429–436. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic Acid (Hyaluronan): A Review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Jegasothy, S.M.; Zabolotniaia, V.; Bielfeldt, S. Efficacy of a New Topical Nano-Hyaluronic Acid in Humans. J. Clin. Aesthet. Dermatol. 2014, 7, 27–29, PMCID:PMC3970829. [Google Scholar] [PubMed]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, Elastase, Hyaluronidase, Inhibitory and Antioxidant Activity of Sri Lankan Medicinal Plants for Novel Cosmeceuticals. Ind. Crops Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Stern, R.; Jedrzejas, M.J. Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action. Chem. Rev. 2006, 106, 818–839. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Parvez, S.; Kang, M.; Chung, H.-S.; Bae, H. Naturally Occurring Tyrosinase Inhibitors: Mechanism and Applications in Skin Health, Cosmetics and Agriculture Industries. Phytother. Res. 2007, 21, 805–816. [Google Scholar] [CrossRef]
- Tada, M.; Kohno, M.; Niwano, Y. Scavenging or Quenching Effect of Melanin on Superoxide Anion and Singlet Oxygen. J Clin. Biochem. Nutr. 2010, 46, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Anna, B.; Blazej, Z.; Jacqueline, G.; Andrew, C.J.; Jeffrey, R.; Andrzej, S. Mechanism of UV-Related Carcinogenesis and Its Contribution to Nevi/Melanoma. Expert Rev. Dermatol. 2007, 2, 451–469. [Google Scholar]
- Buzek, J.; Ask, B. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union L 2009, 342, 59–209. [Google Scholar]
- Plainfosse, H. Recherche et Développement D’ingrédients Cosmétiques Innovants Favorisant la Réparation Cutanée à Partir de Matières Premieres Naturelles D’origine Méditerranéenne. Ph.D. Thesis, Université Cote d’Azur, Nice, France, 2019. [Google Scholar]
- Baurin, N.; Arnoult, E.; Scior, T.; Do, Q.T.; Bernard, P. Preliminary Screening of Some Tropical Plants for Anti-Tyrosinase Activity. J. Ethnopharmacol. 2002, 82, 155–158. [Google Scholar] [CrossRef]
- Kamkaen, N.; Mulsri, N.; Treesak, C. Screening of Some Tropical Vegetables for Anti-Tyrosinase Activity. Thail. Pharm. Health Sci. J. 2007, 2, 15–19. [Google Scholar]
- Chiari, M.E.; Joray, M.B.; Ruiz, G.; Palacios, S.M.; Carpinella, M.C. Tyrosinase Inhibitory Activity of Native Plants from Central Argentina: Isolation of an Active Principle from Lithrea molleoides. Food Chem. 2010, 120, 10–14. [Google Scholar] [CrossRef]
- Muddathir, A.M.; Yamauchi, K.; Batubara, I.; Mohieldin, E.A.M.; Mitsunaga, T. Anti-Tyrosinase, Total Phenolic Content and Antioxidant Activity of Selected Sudanese Medicinal Plants. S. Afr. J. Bot. 2017, 109, 9–15. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ascrizzi, R. In Vitro Anticollagenase and Antielastase Activities of Essential Oil of Helichrysum italicum subsp. Italicum (Roth) G. Don. J. Med. Food 2019, 22, 1041–1046. [Google Scholar] [CrossRef]
- Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-Inflammatory and Chondroprotective Activity of (+)-α-Pinene: Structural and Enantiomeric Selectivity. J. Nat. Prod. 2014, 77, 264–269. [Google Scholar] [CrossRef]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.; Lee, B.S.; Kim, S.-H.; et al. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-ΚB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Tümen, İ.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the Antioxidant, Wound Healing, and Anti-Inflammatory Activities and the Phytochemical Composition of Maritime Pine (Pinus Pinaster Ait). J. Ethnopharmacol. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Brüggemann, H.; Henne, A.; Hoster, F.; Liesegang, H.; Wiezer, A.; Strittmatter, A.; Hujer, S.; Dürre, P.; Gottschalk, G. The Complete Genome Sequence of Propionibacterium Acnes, a Commensal of Human Skin. Science 2004, 305, 671–673. [Google Scholar] [CrossRef]
- Signoretti, F.G.C.; Gomes, B.P.F.A.; Montagner, F.; Jacinto, R.C. Investigation of Cultivable Bacteria Isolated from Longstanding Retreatment-Resistant Lesions of Teeth with Apical Periodontitis. J. Endodontics 2013, 39, 1240–1244. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Başer, K.H.C.; Tümen, G.; Tabanca, N.; Demirci, F. Composition and Antibacterial Activity of the Essential Oils from Satureja wiedemanniana (Lallem.) Velen. Z. Naturforsch. C 2001, 56, 731–738. [Google Scholar] [CrossRef]
- Barbeni, M.; Guarda, P.A.; Villa, M.; Cabella, P.; Pivetti, F.; Ciaccio, F. Identification and Sensory Analysis of Volatile Constituents of Babaco Fruit (Carica Pentagona Heilborn). Flavour Fragr. J. 1990, 5, 27–32. [Google Scholar] [CrossRef]
- Judzentiene, A.; Butkiene, R.; Budiene, J.; Tomi, F.; Casanova, J. Composition of Seed Essential Oils of Rhododendron tomentosum. Nat. Prod. Commun. 2012, 7, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities of Artemisia Essential Oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Radoias, G.; Bosilcov, A. Composition of the Essential Oil from the Flowers of Solandra maxima (Sessé & Moc.) P.S. Green: Essential Oil from the Flowers of Solandra maxima. Flavour Fragrance J. 2013, 28, 389–392. [Google Scholar] [CrossRef]
- Bouville, A.; Erlich, G.; Azoulay, S.; Fernandez, X. Forgotten Perfumery Plants—Part I: Balm of Judea. Chem. Biodivers. 2019, 16, e190056. [Google Scholar] [CrossRef]
- Kerdudo, A.; Ellong, E.N.; Burger, P.; Gonnot, V.; Boyer, L.; Chandre, F.; Adenet, S.; Rochefort, K.; Michel, T.; Fernandez, X. Chemical Composition, Antimicrobial and Insecticidal Activities of Flowers Essential Oils of Alpinia zerumbet (Pers.) B.L. BURTT & R.M. SM. from Martinique Island. Chem. Biodivers. 2017, 14, e1600344. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatog. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Plainfossé, H.; Burger, P.; Verger-Dubois, G.; Azoulay, S.; Fernandez, X. Design Methodology for the Development of a New Cosmetic Active Based on Prunus domestica L. Leaves Extract. Cosmetics 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Plainfossé, H.; Burger, P.; Azoulay, S.; Landreau, A.; Verger-Dubois, G.; Fernandez, X. Development of a Natural Anti-Age Ingredient Based on Quercus pubescens Willd. Leaves Extract—A Case Study. Cosmetics 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.L.; Brown, S.D. Fluconazole Disk Diffusion Procedure for Determining Susceptibility of Candida Species. J. Clin. Microbiol. 1996, 34, 2154–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; ISBN 978-1-56238-666-5.
- Alomar, K.; Landreau, A.; Kempf, M.; Khan, M.A.; Allain, M.; Bouet, G. Synthesis, Crystal Structure, Characterization of Zinc(II), Cadmium(II) Complexes with 3-Thiophene Aldehyde Thiosemicarbazone (3TTSCH). Biological Activities of 3TTSCH and Its Complexes. J. Inorg. Biochem. 2010, 104, 397–404. [Google Scholar] [CrossRef] [PubMed]
Compounds | Experimental RI | Theorical RI | % |
---|---|---|---|
Heptane | 702 | 700 | 29.5 |
Nonane | 900 | 900 | 0.9 |
α-Thujene | 924 | 930 | 3.7 |
α-Pinene | 934 | 932 | 43.4 |
Camphene | 946 | 955 | 0.7 |
Sabinene | 970 | 969 | 0.5 |
β-Pinene | 976 | 974 | 11.0 |
o-Cymene | 1023 | 1023 | 2.3 |
Limonene | 1027 | 1024 | 1.0 |
γ-Terpinene | 1056 | 1062 | 0.7 |
Species | Heptane from C. wildii | Fossil Heptane | ||
---|---|---|---|---|
Yield | Olfactive Description | Yield | Olfactive Description | |
Rose (Rosa centifolia L.) | 0.47% | Fruity facets (banana), floral, dew, honey | 0.22% | Green smell, floral, sticky, tenacious. |
Lily (Lilium spp.) | 0.41% | Floral scent, stifling, honey, less greasy | 0.36% | Strong smell of lilies, greasy, green, aqueous and iodine. |
Jasmine (Jasminum grandiflorum L.) | 2.60% | Greasy odor, floral, jasmine and minty. | 0.67% | Floral odor, sticky, greasy, animal and heady. |
Compounds | RI Cal. Apolar | RI Lit. Apolar | RI Cal. Polar | RI Lit. Polar | % FID Apolar | SD |
---|---|---|---|---|---|---|
Ethanol * | - | 440 | 946 | 922 | tr | - |
Ethyl formate * | - | 488 | 838 | 823 | tr | - |
Ethyl acetate * | - | 599 | 903 | 876 | tr | - |
Acetic acid * | - | 633 | 1473 | 1446 | tr | - |
Heptane | 700 | 700 | 701 | 700 | 2.31 | ±0.03 |
Toluene | 752 | 750 | 1055 | 1033 | tr | - |
Octane | 799 | 800 | 801 | 800 | tr | - |
Isovaleric acid * | 821 | 880 | - | 1655 | tr | - |
4-Heptanone * | 850 | 853 | 1141 | 1146 | tr | - |
3-Heptanone | 863 | 866 | 1170 | 1175 | tr | - |
2-Heptanone | 866 | 867 | 1199 | 1173 | tr | - |
4-Heptanol | 872 | 874 | 1296 | 1250 | tr | - |
3-Heptanol | 878 | 877 | 1307 | 1270 | tr | - |
2-Heptanol | 882 | 882 | 1332 | 1305 | tr | - |
2,5-Diethyltetrahydrofuran * | 885 | 884 | 1053 | 1051 | tr | - |
Prenyl acetate * | - | 899 | 1272 | 1244 | tr | - |
Nonane | 900 | 900 | 901 | 900 | 0.53 | - |
5,5-Dimethyl-2(5H)-furanone * | 909 | 910 | - | 1585 | tr | - |
Tricyclene | 922 | 920 | 1016 | 1015 | 0.10 | - |
α-Thujene | 925 | 925 | 1038 | 1028 | 4.21 | ±0.04 |
Benzaldehyde * | 929 | 929 | 1556 | 1511 | tr | - |
α-Pinene | 937 | 932 | 1035 | 1021 | 63.55 | ±0.04 |
α-Fenchene | - | 940 | 1068 | 1067 | tr | - |
Camphene | 946 | 946 | 1077 | 1071 | 0.68 | - |
Verbenene * | 948 | 946 | - | 1123 | tr | - |
Thuja-2,4(10)-diene | 949 | 945 | 1139 | 1122 | 0.19 | - |
1-Heptanol * | 951 | 954 | 1471 | 1453 | tr | - |
Methylheptenone | 963 | 963 | 1358 | 1340 | tr | - |
Sabinene | 968 | 968 | 1135 | 1124 | 5.01 | ±0.01 |
β-Pinene | 975 | 972 | 1123 | 1113 | 15.95 | ±0.04 |
6-Methyl-5-hepten-2-ol * | - | 976 | 1478 | 1464 | tr | - |
2-Pentylfuran | 978 | 978 | 1248 | 1230 | tr | - |
Octanal | 980 | 982 | 1308 | 1288 | tr | - |
Myrcene | 982 | 983 | 1176 | 1161 | tr | - |
o-Methyl anisol * | 989 | 983 | 1435 | 1411 | tr | - |
trans-Anhydrolinalooloxide * | 994 | 993 | - | 1253 | tr | - |
α-Phellandrene | 998 | 998 | 1179 | 1170 | tr | - |
n-Decane * | - | 1000 | 1000 | 1000 | tr | - |
ᴪ-Limonene | - | 1004 | 1183 | 1183 | tr | - |
1,4-Cineol * | 1005 | 1006 | 1192 | 1167 | tr | - |
δ-3-Carene * | 1006 | 1006 | 1162 | 1145 | tr | - |
α-Terpinene | 1010 | 1009 | 1194 | 1186 | 0.23 | ±0.01 |
Benzyl alcohol * | - | 1010 | 1908 | 1862 | tr | - |
p-Cymene | 1013 | 1014 | 1289 | 1269 | 2.10 | ±0.04 |
p-1-Menthene | 1018 | 1004 | 1147 | 1150 | tr | - |
Eucalyptol | 1021 | 1022 | 1224 | 1214 | tr | - |
β-Phellandrene * | 1022 | 1021 | 1224 | 1207 | tr | - |
Limonene | 1023 | 1024 | 1214 | 1196 | 1.22 | ±0.01 |
o-Cymene * | 1026 | 1006 | - | 1260 | tr | - |
(Z)-β-Ocimene | 1026 | 1024 | 1250 | 1235 | tr | - |
o-Cresol * | 1034 | 1024 | 2031 | 2016 | tr | - |
5-Methylhexanoic acid * | 1036 | 1038 | - | 1914 | tr | - |
(E)-β-Ocimene | 1037 | 1037 | 1267 | 1250 | 0.18 | - |
γ-Terpinene | 1050 | 1051 | 1263 | 1245 | 0.51 | ±0.01 |
4-Nonanone * | 1053 | 1053 | 1344 | 1390 | tr | - |
1-Octanol * | 1054 | 1055 | 1575 | 1547 | tr | - |
trans-Sabinene hydrate | 1054 | 1058 | 1482 | 1465 | tr | - |
Heptanoic acid * | 1066 | 1074 | 1975 | 1935 | tr | - |
3-Nonanone * | 1066 | 1071 | 1375 | 1354 | tr | - |
2-Nonanone * | - | 1071 | 1408 | 1392 | tr | - |
cis-Linalool oxide (furanoid) * | - | 1062 | 1462 | 1441 | tr | - |
Fenchone * | - | 1072 | 1423 | 1405 | tr | - |
trans-Linalool oxide (furanoid) * | 1073 | 1076 | 1491 | 1463 | tr | - |
p-Cymenene | 1074 | 1077 | 1461 | 1438 | tr | - |
Terpinolene | 1080 | 1080 | 1301 | 1286 | 0.11 | ±0.01 |
Linalool | 1084 | 1087 | 1562 | 1549 | 0.12 | ±0.02 |
α-Pinene oxide | 1085 | 1085 | 1399 | 1364 | tr | - |
cis-Sabinene hydrate * | 1086 | 1095 | 1570 | 1556 | tr | - |
Perillene * | 1087 | 1063 | 1440 | 1425 | tr | - |
α-Thujone | 1088 | 1088 | 1467 | 1431 | tr | - |
Heptyl Acetate * | 1093 | 1095 | - | 1364 | tr | |
β-Thujone | 1099 | 1096 | 1467 | 1443 | tr | - |
Rosefuran | - | 1099 | 1421 | 1415 | tr | |
4,8-Epoxyterpinolene * | - | 1099 | 1491 | 1477 | tr | - |
Chrysanthenone | 1102 | 1102 | 1537 | 1510 | tr | - |
α-Campholenal | 1106 | 1099 | 1517 | 1481 | tr | - |
Terpinen-1-ol * | - | 1107 | 1596 | 1572 | tr | - |
Nopinone | 1110 | 1107 | 1614 | 1565 | tr | - |
Octyl formate | 1111 | 1112 | - | 1560 | tr | - |
cis-Verbenol | - | 1111 | 1681 | 1660 | tr | - |
cis-p-Menth-2,8-dien-1-ol * | 1117 | 1117 | - | 1610 | tr | - |
allo-Ocimene | 1118 | 1117 | 1391 | 1367 | tr | - |
Camphor | 1123 | 1123 | 1548 | 1517 | tr | - |
trans-p-Menth-2-en-1-ol * | 1125 | 1104 | 1584 | 1566 | tr | - |
trans-Pinocarveol | 1126 | 1128 | 1683 | 1654 | 0.38 | - |
Thujanol * | 1126 | 1128 | - | 1622 | tr | - |
trans-Verbenol | 1130 | 1129 | 1704 | 1680 | 0.32 | ±0.01 |
Sabina ketone | - | 1133 | 1668 | 1624 | tr | - |
Pinocarvone | - | 1138 | 1601 | 1567 | tr | - |
trans-Pinocamphone | 1139 | 1146 | - | 1526 | tr | - |
cis-Pinocamphone | 1141 | 1153 | 1578 | 1534 | tr | - |
Isoborneol * | - | 1143 | 1695 | 1669 | tr | - |
α-Phellandren-8-ol | 1147 | 1148 | 1750 | 1710 | tr | - |
Borneol * | 1154 | 1154 | 1729 | 1702 | tr | - |
p-Methylacetophenone | 1155 | 1154 | - | 1759 | tr | - |
m-Methylacetophenone * | - | 1157 | 1812 | 1786 | tr | - |
α-Thujenal * | 1159 | 1167 | 1660 | 1642 | tr | - |
p-Cymen-8-ol | 1161 | 1165 | 1875 | 1849 | tr | - |
Myrtanal * | 1161 | - | - | 1543 | tr | - |
Octanoic acid | 1163 | 1175 | 2080 | 2048 | tr | - |
Terpinene-4-ol | 1164 | 1164 | 1626 | 1600 | 0.64 | - |
β-Pinene oxide * | 1167 | 1153 | - | 1366 | tr | - |
Myrtenal | 1171 | 1171 | 1663 | 1624 | tr | - |
α-Terpineol | 1174 | 1175 | 1721 | 1693 | tr | - |
p-Mentha-1,5-dien-7-ol | 1177 | 1191 | 1827 | 1814 | tr | - |
Myrtenol | 1180 | 1183 | 1821 | 1791 | tr | - |
Verbenone | 1182 | 1182 | 1746 | 1723 | tr | - |
Decanal * | 1184 | 1185 | - | 1492 | tr | - |
cis-Piperitol | 1191 | 1188 | - | 1741 | tr | - |
Octyl acetate * | 1192 | 1187 | 1493 | 1465 | tr | - |
trans-Piperitol * | 1193 | 1187 | - | 1669 | tr | - |
cis-Carveol | 1198 | 1205 | 1861 | 1861 | tr | - |
n-Dodecane * | 1199 | 1200 | - | 1200 | tr | - |
Fenchyl acetate * | 1208 | 1200 | - | 1477 | tr | - |
Bornyl formate * | 1213 | 1190 | - | 1610 | tr | - |
Cuminaldehyde | 1213 | 1217 | 1818 | 1774 | tr | - |
Carvone | 1216 | 1217 | 1770 | 1732 | tr | - |
Isobornyl formate * | 1219 | 1222 | - | 1596 | tr | - |
Carvotanacetone | 1223 | 1220 | 1714 | 1665 | tr | - |
Piperitone | 1229 | 1231 | 1764 | 1733 | tr | - |
Carvenone | 1232 | 1226 | 1753 | 1737 | tr | - |
Perrilaldehyde * | 1248 | 1248 | - | 1787 | tr | - |
Phellandral * | 1252 | 1237 | - | 1727 | tr | - |
(E)-Anethole * | 1262 | 1265 | - | 1827 | tr | - |
p-Cymen-7-ol * | 1264 | 1278 | 2131 | 2101 | tr | - |
Thymol * | 1268 | 1277 | 2215 | 2167 | tr | - |
Bornyl acetate | 1270 | 1273 | 1606 | 1586 | tr | - |
Isobornyl acetate * | 1271 | 1276 | - | 1582 | tr | - |
cis-Verbenyl acetate * | 1275 | 1264 | - | 1655 | tr | - |
Carvacrol * | 1277 | 1287 | 2197 | 2204 | tr | - |
Menthyl acetate * | 1278 | 1280 | - | 1560 | tr | - |
Perillyl alcohol * | - | 1281 | 2035 | 2001 | tr | - |
6-Hydroxycarvotanacetone * | - | 1281 | 1898 | - | tr | - |
trans-Pinocarvyl acetate * | 1281 | 1305 | 1679 | 1661 | tr | - |
4-Terpinenyl acetate * | 1284 | 1284 | 1641 | 1640 | tr | - |
Myrtenyl acetate | 1306 | 1304 | 1717 | 1685 | tr | - |
Syringol * | - | 1307 | 2177 | 2272 | tr | - |
Piperitenone * | 1311 | 1321 | 1965 | 1909 | tr | - |
trans-Carvyl acetate * | 1315 | 1307 | 1761 | 1727 | tr | - |
Geranic acid * | 1316 | 1348 | - | 2328 | tr | - |
δ-Elemene | - | 1337 | 1487 | 1465 | tr | - |
trans-Sobrerol * | 1346 | 1350 | - | 2338 | tr | - |
Decanoic acid * | - | 1362 | 2293 | 2272 | tr | - |
α-Ylangene * | 1378 | 1370 | - | 1468 | tr | - |
β-Elemene * | 1390 | 1386 | 1611 | 1591 | tr | - |
Cuminyl acetate * | 1391 | 1405 | 1998 | 1981 | tr | - |
Tetradecane * | 1399 | 1400 | - | 1400 | tr | - |
α-Gurjunene * | 1413 | 1403 | - | 1510 | tr | - |
α-Cedrene | - | 1411 | 1633 | 1587 | tr | - |
trans-β-Caryophyllene * | 1421 | 1420 | - | 1596 | tr | - |
Aromadendrene | 1441 | 1446 | 1633 | 1615 | tr | - |
Alloaromadendrene * | 1462 | 1461 | - | 1638 | tr | - |
2-Tridecanone * | 1475 | 1478 | - | 1794 | tr | - |
β-Selinene * | 1485 | 1478 | - | 1724 | tr | - |
Valencene * | - | 1485 | 1750 | 1751 | tr | - |
Eremophyllene * | 1485 | 1486 | - | 1743 | tr | - |
β-Himachalene * | 1494 | 1469 | - | 1718 | tr | - |
Dihydro-β-agarofurane * | 1500 | 1495 | 1755 | 1704 | tr | - |
γ-Cadinene | 1509 | 1511 | 1788 | 1758 | tr | - |
δ-Cadinene * | 1516 | 1516 | 1784 | 1755 | tr | - |
(E)-Nerolidol * | 1548 | 1550 | 2056 | 2042 | tr | - |
Spathulenol | 1568 | 1567 | 2155 | 2129 | tr | - |
β-Caryophyllene oxide * | 1575 | 1569 | 2025 | 1977 | tr | - |
Globulol * | 1579 | 1581 | 2107 | 2074 | tr | - |
Viridiflorol * | 1586 | 1583 | 2123 | 2087 | tr | - |
Epi-γ-Eudesmol * | 1612 | 1607 | 2148 | 2100 | tr | - |
Isospathulenol * | 1628 | 1626 | 2290 | 2231 | tr | - |
β-Eudesmol * | 1639 | 1633 | 2275 | 2234 | tr | - |
α-Eudesmol * | 1658 | 1639 | - | 2188 | tr | - |
Octyl caprylate * | 1760 | 1771 | - | 2020 | tr | - |
Cembrene | 1933 | 1928 | 2214 | 2193 | tr | - |
Thunbergol * | 2049 | 2032 | - | 2575 | tr | - |
Compound/Strains | Candida Albicans ATCC 1066 | Candida Glabrata ATCC 90033 |
---|---|---|
Diameter of Inhibition (mm) | ||
Essential oil of C. wildii | 16 | 22 |
Amphotericin B | 30 | 30 |
MIC 80 * | ||
Essential oil of C. wildii | 2.7 mg/mL | 2.7 mg/mL |
Amphotericin B | 0.5 µg/mL | 0.5 µg/mL |
Bacteria (Strains Numbers) | MIC (mg/mL) |
---|---|
Cutibacterium acnes (210–263, 210–762, 210–878, 210–982, 210–088) | >100 |
Prevotella sp. (215–843, 210–722, 215–425) | >100 |
Methicillin-resistant Staphylococcus aureus (210–468, 210–004) | 30 |
Methicillin-suscpetible Staphylococcus aureus (215–254, 210–352, 215–044) | >100 |
Streptococcus pyogenes (215–140, 210–622, 210–951) | 30 |
Corynebacterium tuberculostearicum (215–122, 215–378) | 100 |
Gemella morbillorum (210–137) | >100 |
Gemella haemolysans (215–853) | >100 |
Porphyromonas asaccharolytica (210–873) | 100 |
Assay | Positive Control |
---|---|
Hyaluronidase assay | Hydraberry commercial extract |
Tyrosinase assay | SymWhite ingredient |
DPPH radical scavenging assay | Rosmarinus officinalis L. commercial extract |
Elastase assay | Berryflux vita (VITALAB) |
Lipoxygenase assay | Resveratrol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, D.; Landreau, A.; Michel, T.; De Saint Jores, C.; Razafimandimby, B.; Kempf, M.; Azoulay, S.; Papaiconomou, N.; Fernandez, X. Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization. Molecules 2023, 28, 891. https://doi.org/10.3390/molecules28020891
Mansouri D, Landreau A, Michel T, De Saint Jores C, Razafimandimby B, Kempf M, Azoulay S, Papaiconomou N, Fernandez X. Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization. Molecules. 2023; 28(2):891. https://doi.org/10.3390/molecules28020891
Chicago/Turabian StyleMansouri, Djallel, Anne Landreau, Thomas Michel, Clément De Saint Jores, Bienvenue Razafimandimby, Marie Kempf, Stéphane Azoulay, Nicolas Papaiconomou, and Xavier Fernandez. 2023. "Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization" Molecules 28, no. 2: 891. https://doi.org/10.3390/molecules28020891
APA StyleMansouri, D., Landreau, A., Michel, T., De Saint Jores, C., Razafimandimby, B., Kempf, M., Azoulay, S., Papaiconomou, N., & Fernandez, X. (2023). Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization. Molecules, 28(2), 891. https://doi.org/10.3390/molecules28020891