Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cold-Pressed Chia Oil
2.2. Chia Seeds and Cake
3. Materials and Methods
3.1. Samples
3.2. Chemical Analysis of Cold-Pressed Chia Oil
3.2.1. Oxidative Stability
3.2.2. Color
3.2.3. Peroxide Value
3.2.4. UV Absorbance
3.2.5. Phytochemical Compound Extraction and Analysis
Total Phenolic Compounds
Total Flavonoids Content
Ferric Reducing Antioxidant Power
2,2-Diphenyl-1-Picrylhydrazyl Radical Inhibition
3.2.6. Fatty Acids Profile
3.2.7. Vitamin E Profile
3.3. Chemical Analysis of Chia Seeds and Cake
3.3.1. Moisture Content
3.3.2. Macro Composition
3.3.3. Energy Values
3.3.4. Total Amino Acids
3.3.5. Protein Quality
3.3.6. Lipid Fraction Extraction and Analysis
Fatty Acids Profile
Vitamin E Profile
3.3.7. Phytochemicals Extraction and Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melo, D.; Machado, T.B.; Oliveira, M.B.P.P. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019, 10, 3068–3089. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Fullana-i-Palmer, P.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- Mordor Intelligence-Chia Seed Market-Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027). Available online: https://www.mordorintelligence.com/industry-reports/chia-seeds-market (accessed on 12 October 2022).
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current trends in ancient grains-based foodstuffs: Insights into nutritional aspects and technological applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Ramadan, M.F.; Lucarini, M. Cold Pressed Oils: A Green Source of Specialty Oils. Front. Nutr. 2022, 8, 836651. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Kachrimanidou, V. Advances in food and byproducts processing towards a sustainable bioeconomy. Foods 2019, 8, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomás, M.C. Oxidative stability of chia (Salvia hispanica L.) seed oil: Effect of antioxidants and storage conditions. J. Am. Oil Chem. Soc. 2012, 89, 1077–1090. [Google Scholar] [CrossRef]
- Bordón, M.G.; Meriles, S.P.; Ribotta, P.D.; Martinez, M.L. Enhancement of composition and oxidative stability of chia (Salvia hispanica L.) seed oil by blending with specialty oils. J. Food Sci. 2019, 84, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Marín, M.A.; Faller, C.M.S.; Revol, J.; Penci, M.C.; Ribotta, P.D. Chia (Salvia hispanica L.) oil extraction: Study of processing parameters. LWT-Food Sci. Technol. 2012, 47, 78–82. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Cazarin, C.B.B.; Júnior, M.R.M.; Ferreira, J.P.B.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid components of flax, perilla, and chia seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.K.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Marineli, R.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.M. Chemical characterization of chia (Salvia hispanica L.) for use in food products. J. Food Nutr. Res. 2014, 2, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Villanueva, E.; Cortez, D.; Sanchez, E.; Aguirre, E.; Hidalgo, A. Oxidative stability of chia (Salvia hispanica L.) and Sesame (Sesamum indicum L.) oil blends. J. Am. Oil Chem. Soc. 2020, 97, 729–735. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef]
- Silva, B.P.; Anunciação, P.C.; Matyelka, J.C.S.; Lucia, C.M.D.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Scapin, G.; Schmidt, M.; Prestes, R.; Rosa, C. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. Int. Food Res. J. 2016, 23, 2341. [Google Scholar]
- Coorey, R.; Tjoe, A.; Jayasena, V. Gelling properties of chia seed and flour. J. Food Sci. 2014, 79, E859–E866. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Nichols, R.G.; Davenport, E.R. The relationship between the gut microbiome and host gene expression: A review. Hum. Genet. 2021, 140, 747–760. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, M. Perfil de Aminoácidos de Macroalgas Produzidas num Sistema de Aquacultura Multi-Trófica Integrada. 2020. Available online: https://hdl.handle.net/10216/129810 (accessed on 12 October 2022).
- WHO. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation; 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?sequence=1&isAllowed=y (accessed on 12 October 2022).
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- Saphier, O.; Silberstein, T.; Kamer, H.; Ben-Abu, Y.; Tavor, D. Chia seeds are richer in polyphenols compared to flax seeds. IFNM 2017, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A. 2014, 1346, 43–48. [Google Scholar] [CrossRef]
- Ayerza, R. Seed composition of two chia (Salvia hispanica L.) genotypes which differ in seed color. EJFA 2013, 25, 495–501. [Google Scholar]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.; Viuda-Martos, M. Bioaccessibility of phenolic compounds and antioxidant capacity of chia (Salvia hispanica L.) seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef]
- INSA. Book of Abstracts of the 1st International Congress on Food, Nutrition & Public Health-Towards a Sustainable Future (ICFNH 2022), 1st ed.; Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisboa, Portugal, 2022; p. 117. [Google Scholar]
- Mas, A.L.; Brigante, F.I.; Salvucci, E.; Pigni, N.B.; Martinez, M.L.; Ribotta, P.; Wunderlin, D.A.; Baroni, M.V. Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chem. 2020, 316, 126279. [Google Scholar]
- Guiotto, E.N.; Tomás, M.C.; Haros, C.M. Development of Highly Nutritional Breads with By-Products of Chia (Salvia hispanica L.) Seeds. Foods 2020, 9, 819. [Google Scholar] [CrossRef]
- NP 937:1987; Edible Fats and Oils-Oils Color Determination and Their Chromatic Characteristics. Instituto Português da Qualidade: Lisboa, Portugal, 1987.
- NP 904:1987; Edible Fats and Oils-Determination of Peroxide Value. Instituto Português da Qualidade: Lisboa, Portugal, 1987.
- ISO 3656:2011; Animal and Vegetable Fats and Oils-Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. ISO: Geneva, Switzerland, 2011.
- Capannesi, C.; Palchetti, I.; Mascini, M.; Parenti, A. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 2000, 71, 553–562. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966:2017; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: London, UK, 2017.
- AOAC International. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2019. [Google Scholar]
- Tontisirin, K. Chapter 2: Methods of Food Analysis. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop. Food and Agriculture Organization of the United Nations. 2003. Available online: https://www.sennutricion.org/media/Docs_Consenso/Food_energy_methods_of_analysis_and_conversion_factors-FAO_2002.pdf (accessed on 12 October 2022).
- European Parliament and Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, 18–61. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 12 October 2022).
- Machado, S.; Costa, A.S.G.; Pimentel, F.B.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef] [PubMed]
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. In Protein and Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: Cambridge, MA, USA, 1959; pp. 295–311. [Google Scholar]
Parameter | Results | Literature Data [Ref.] |
---|---|---|
Oxidative stability (h) | 1.0 ± 0.0 (3 g, 120 °C, 20 L/h) | 2.3 (5 g, 98 °C, 20 L/h) [7]; 2.57 (5 g, 100 °C, 20 L/h) [8] |
Color (x, y) | (0.4223, 0.4365) | - |
Transparency (%) | 67.8 | - |
Dominant wavelength (nm) | 576.6 | - |
Purity | 62.2 | - |
K232nm | 0.016 ± 0.001 | 1.35–1.47 [9]; 1.99 [8] |
K270nm | 0.0033 ± 0.0002 | 0.22–0.67 [9]; 0.46 [8] |
Peroxide value (meq O2/kg) | 2.4 ± 0.0 | 0.14–2.67 [9]; 0.45 [8] |
TPC (mg GAE/100 g) | 1.3 ± 0.0 | 2 mg GAE/100 g [10] |
TFC (mg ECE/100 g) | ND | - |
FRAP (μmol FSE/100 g) | 35.4 ± 3.2 | 26 µmol TE/100 g [10] |
DPPH• inhibition (mg TE/100 g) | ND | - |
α-Tocopherol (mg/kg) | 4.9 ± 0.2 | 8 [11]; 0.4–9.9 [12]; traces [8] |
γ-Tocopherol (mg/kg) | 389.0 ± 2.1 | 422 [11]; 330 [8] |
δ-Tocopherol (mg/kg) | 14.7 ± 0.9 | 15 [11]; 14 [8] |
Total vitamin E (mg/kg) | 408.5 ± 0.3 | 445 [11]; 238–427 [12]; 344 [8] |
Fatty Acids | Seeds | Cake | Oil | Seeds | Seeds | Oil | Oil | Oil |
---|---|---|---|---|---|---|---|---|
Reference | - | - | - | [11] | [14] | [13] | [15] | [8] |
C14:0 | - | - | - | 0.06 | 0.03 | 0.07 | - | - |
C15:0 | - | - | - | 0.04 | 0.03 | 0.05 | - | - |
C16:0 | 6.62 ± 0.11 b | 7.67 ± 0.09 a | 6.39 ± 0.11 b | 7.10 | 6.69 | 7.07 | 6.21 | 7.03 |
C16:1 | 0.14 ± 0.01 a | 0.15 ± 0.00 a | 0.10 ± 0.01 b | 0.20 | 0.09 | 0.08 | - | 0.04 |
C17:0 | 0.05 ± 0.01 a | 0.06 ± 0.00 a | - | 0.06 | 0.06 | 0.07 | - | - |
C17:1 | - | - | - | 0.06 | - | 0.03 | - | - |
C18:0 | 2.63 ± 0.03 b | 3.51 ± 0.03 a | 2.46 ± 0.17 b | 3.24 | 2.67 | 3.36 | 1.89 | 3.27 |
C18:1n9c | 5.42 ± 0.09 c | 5.66 ± 0.02 b | 6.19 ± 0.09 a | 10.53 | 10.55 | 7.04 | 5.68 | 7.46 |
C18:2n6c | 18.83 ± 0.17 b | 20.24 ± 0.11 a | 18.82 ± 0.05 b | 20.37 | 17.36 | 18.23 | 21.46 | 19.71 |
C18:3n3c | 65.96 ± 0.37 a | 62.15 ± 0.23 b | 65.98 ± 0.13 a | 59.76 | 62.02 | 62.80 | 64.39 | 60.72 |
C20:0 | 0.25 ± 0.01 b | 0.33 ± 0.01 a | - | 0.24 | - | 0.29 | - | - |
C20:1n9 | - | - | - | 0.16 | 0.09 | 0.14 | - | - |
C20:2 | - | - | - | 0.07 | 0.03 | - | - | - |
C22:0 | - | - | - | 0.08 | 0.09 | 0.09 | - | - |
C24:0 | 0.11 ± 0.01 b | 0.24 ± 0.02 a | 0.07 ± 0.07 c | 0.10 | 0.14 | 0.12 | - | - |
∑SFA | 9.65 ± 0.14 b | 11.80 ± 0.13 a | 8.91 ± 0.15 c | 8.65 | 9.74 | 11.12 | 8.50 | 12.07 |
∑MUFA | 5.57 ± 0.09 c | 5.81 ± 0.02 b | 6.29 ± 0.09 a | 10.95 | 10.76 | 7.29 | 5.68 | 7.50 |
∑PUFA | 84.78 ± 0.22 a | 82.38 ± 0.12 b | 84.80 ± 0.11 a | 80.40 | 79.47 | 81.59 | 85.85 | 80.43 |
18:2n6/18:3n3 | 0.29 ± 0.00 b | 0.33 ± 0.00 a | 0.29 ± 0.00 b | 0.35 | 0.28 | 0.29 | 0.33 | 0.32 |
18:1n9/18:2n6 | 0.29 ± 0.00 b | 0.28 ± 0.00 b | 0.33 ± 0.00 a | 0.52 | 0.61 | 0.39 | 0.26 | 0.38 |
Parameter | Seeds | Cake | Seeds [Ref.] | Defatted Flour [Ref.] |
---|---|---|---|---|
Energy value (kJ/100 g) | 1827 a | 1173 b | - | - |
Energy value (kcal/100 g) | 444 a | 284 b | - | - |
Moisture (%) | 6.57 ± 0.03 b | 7.02 ± 0.20 a | 5.6–7.1 [18]; 3.3 [19] | - |
Ash (%) | 4.67 ± 0.02 b | 6.42 ± 0.04 a | 4.6–5.1 [18]; 5.5 [19]; 5.1 DW [20] | 7.7 DW [20] |
Total protein (%) | 18.08 ± 0.41 b | 26.66 ± 0.09 a | 18.2–19.7 [18]; 23.2 [19]; 21.4 DW [20] | 32.0 DW [20] |
Total fat (%) | 32.85 ± 0.17 a | 6.73 ± 0.43 b | 30.2–32.2 [18]; 28.4 [19]; 33.7 DW [20] | 8.8 DW [20] |
Total dietary fiber (%) | 37.71 ± 0.00 b | 48.11 ± 3.68 a | 33.4–37.2 [18]; 37.4 [19]; 25.6 DW [20] | 29.2 DW [20] |
Insoluble fiber (%) | 35.20 ± 0.00 b | 39.37 ± 0.61 a | - | - |
Soluble fiber (%) | 2.51 ± 0.00 b | 8.74 ± 2.17 a | - | - |
Remaining carbohydrates (%) | 0.12 ± 0.18 b | 5.06 ± 2.39 a | - | - |
Aspartic acid (mg/g) | 17.64 ± 0.61 b | 24.10 ± 0.42 a | - | - |
Glutamic acid (mg/g) | 36.15 ± 1.53 b | 48.93 ± 0.46 a | - | - |
Serine (mg/g) | 12.02 ± 0.36 b | 16.07 ± 0.12 a | - | - |
Glutamine (mg/g) | 2.50 ± 0.67 b | 4.63 ± 0.12 a | - | - |
1 Histidine (mg/g) | 8.17 ± 0.23 b | 10.67 ± 0.17 a | - | - |
Glycine (mg/g) | 11.25 ± 1.24 b | 14.26 ± 0.17 a | - | - |
1 Threonine (mg/g) | 7.58 ± 0.23 b | 10.03 ± 0.07 a | - | - |
Arginine (mg/g) | 25.86 ± 1.12 b | 33.82 ± 0.35 a | - | - |
Alanine (mg/g) | 10.39 ± 0.41 b | 13.82 ± 0.17 a | - | - |
Tyrosine (mg/g) | 5.09 ± 0.37 b | 5.93 ± 0.06 a | - | - |
1 Valine (mg/g) | 8.85 ± 0.24 b | 11.78 ± 0.23 a | - | - |
1 Methionine (mg/g) | 3.68 ± 0.52 a | 3.38 ± 0.22 a | - | - |
1 Tryptophan (mg/g) | 1.38 ± 0.01 a | 1.34 ± 0.19 a | - | - |
1 Phenylalanine (mg/g) | 10.65 ± 0.45 b | 14.06 ± 0.26 a | - | - |
1 Isoleucine (mg/g) | 7.31 ± 0.28 b | 9.61 ± 0.26 a | - | - |
1 Leucine (mg/g) | 13.61 ± 0.51 b | 18.21 ± 0.25 a | - | - |
1 Lysine (mg/g) | 14.22 ± 2.71 a | 17.31 ± 0.40 a | - | - |
Hydroxyproline (mg/g) | 0.75 ± 0.03 b | 1.08 ± 0.01 a | - | - |
Proline (mg/g) | 6.24 ± 0.84 b | 9.48 ± 0.15 a | - | - |
∑Branched-chain amino acids (mg/g) | 29.76 ± 1.00 b | 39.60 ± 0.68 a | - | - |
∑Essential amino acids (mg/g) | 74.07 ± 2.11 b | 96.39 ± 1.45 a | - | - |
∑Total amino acids (mg/g) | 203.33 ± 4.29 b | 268.51 ± 3.13 a | - | - |
α-Tocopherol (mg/kg) | 59.25 ± 0.83 a | 14.03 ± 0.23 b | - | - |
γ-Tocopherol (mg/kg) | 137.42 ± 3.25 a | 29.44 ± 0.40 b | - | - |
δ-Tocopherol (mg/kg) | 3.48 ± 0.16 a | 0.92 ± 0.06 b | - | - |
∑Total vitamin E (mg/kg) | 200.16 ± 3.79 a | 44.38 ± 0.65 b | 82 mg/kg [18] | |
TPC (mg GAE/100 g) | 187.5 ± 9.1 a | 199.2 ± 12.9 a | 1.2 mg GAE/g [10]; 88 mg/100 g [21]; 64 mg/100 g [14]; 2.6 g of GAE/kg DW [19] | 1.1 mg GAE/g [10] |
TFC (mg ECE/100 g) | 221.0 ± 17.3 b | 309.3 ± 6.8 a | - | |
FRAP (mmol FSE/100 g) | 11.1 ± 0.3 b | 15.2 ± 0.9 a | 74 mol TE/g [10]; 45 mmol TE/kg DW [19] | 69 mol TE/g [10] |
DPPH• (mg TE/100 g) | 129.9 ± 21.1 a | 144.2 ± 22.9 a | - | - |
EAA | AAs Estimates for Adults [25] | Seeds | Cake | Seeds AACS | Cake AACS |
---|---|---|---|---|---|
Units | mg/g protein | mg/g protein | mg/g protein | % | % |
His | 15 | 45.21 ± 1.26 a | 40.02 ± 0.63 b | 301.39 ± 8.41 A | 266.79 ± 4.22 B |
Ile | 30 | 40.43 ± 1.54 a | 36.06 ± 0.98 b | 134.75 ± 5.14 A | 120.20 ± 3.27 B |
Leu | 59 | 75.26 ± 2.79 a | 68.29 ± 0.93 b | 127.56 ± 4.74 A | 115.75 ± 1.58 B |
Lys | 45 | 78.66 ± 15.01 a | 64.92 ± 1.52 b | 174.80 ± 33.37 A | 144.26 ± 3.37 B |
Met | 16 | 20.36 ± 2.85 a | 12.67 ± 0.81 b | 127.28 ± 17.83 A | 79.21 ± 5.08 B |
Phe + Tyr | 38 | 87.05 ± 4.49 a | 74.96 ± 1.17 b | 229.07 ± 11.82 A | 197.26 ± 3.08 B |
Tre | 23 | 41.93 ± 1.29 a | 37.64 ± 0.27 b | 182.30 ± 5.61 A | 163.64 ± 1.15 B |
Trp | 6 | 7.61 ± 0.03 a | 5.02 ± 0.72 b | 126.80 ± 0.56 A | 83.72 ± 12.04 B |
Val | 39 | 48.94 ± 1.32 a | 44.19 ± 0.85 b | 125.49 ± 3.40 A | 113.30 ± 2.17 B |
LAA (%) | - | - | - | Val 125.49 ± 3.40 A | Met 79.21 ± 5.08 B |
EAAI (%) | - | 128.05 ± 2.34 a | 106.21 ± 1.57 b | - | - |
Compound | Quantity | Origin | Reference |
---|---|---|---|
Caffeic acid | - | Chile | [10] |
0.030 mg/g | Brazil | [14] | |
0.003–0.006 mg/g | Mexico | [21] | |
0.0274 mg/g | Mexico | [29] | |
0.139–0.149 mg/g | Ecuador | [30] | |
Ferulic acid | - | Chile | [10] |
Traces | Mexico | [29] | |
Chlorogenic acid | 0.004 mg/g | Brazil | [14] |
0.102–0.045 mg/g | Mexico | [21] | |
0.226–0.218 mg/g | Ecuador | [30] | |
Rosmarinic acid | - | Chile | [10] |
0.9267 mg/g | Mexico | [29] | |
Myricetin | 0.115–0.121 mg/g | Ecuador | [30] |
Quercetin | 0.17 µg/g | Brazil | [14] |
0.150–0.268 mg/g | Mexico | [21] | |
0.007–0.006 mg/g | Ecuador | [30] | |
Kaempferol | 0.360–0.509 mg/g | Mexico | [21] |
0.025–0.024 mg/g | Ecuador | [30] | |
Daidzin | 0.006 mg/g | Mexico | [29] |
Glycitein | 0.0005 mg/g | Mexico | [29] |
Glycitin | 0.0014 mg/g | Mexico | [29] |
Genistein | 0.0051 mg/g | Mexico | [29] |
Genistin | 0.0034 mg/g | Mexico | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. https://doi.org/10.3390/molecules28020723
Ferreira DM, Nunes MA, Santo LE, Machado S, Costa ASG, Álvarez-Ortí M, Pardo JE, Oliveira MBPP, Alves RC. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules. 2023; 28(2):723. https://doi.org/10.3390/molecules28020723
Chicago/Turabian StyleFerreira, Diana Melo, Maria Antónia Nunes, Liliana Espírito Santo, Susana Machado, Anabela S. G. Costa, Manuel Álvarez-Ortí, José E. Pardo, Maria Beatriz P. P. Oliveira, and Rita C. Alves. 2023. "Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production" Molecules 28, no. 2: 723. https://doi.org/10.3390/molecules28020723
APA StyleFerreira, D. M., Nunes, M. A., Santo, L. E., Machado, S., Costa, A. S. G., Álvarez-Ortí, M., Pardo, J. E., Oliveira, M. B. P. P., & Alves, R. C. (2023). Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules, 28(2), 723. https://doi.org/10.3390/molecules28020723