Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Long- and Short-Range Molecular Order
2.2. Rheological Measurements
2.3. Digestible and Resistant Starch Contents
2.4. Morphological Structure
2.5. Thermal Properties
2.6. Mechanical Properties of Starch Gels
3. Materials and Methods
3.1. Starch Non-Conventional Source
3.2. Treatments
3.3. Starch Isolation
3.4. X-ray Diffraction
3.5. Fourier-Transform Infrared Spectroscopy
3.6. Rheological Measurements
3.7. Thermal Analyses
3.8. Morphological Properties and Size of Chestnut Starch Granules
3.9. In Vitro Digestibility of Starch
3.10. Mechanical Properties of Starch Gels
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- European Starch Industry Association. Available online: https://starch.eu/ (accessed on 11 September 2022).
- Tarahi, M.; Shahidi, F.; Hedayati, S. A Novel Starch from Bitter Vetch (Vicia ervilia) Seeds: A Comparison of Its Physicochemical, Structural, Thermal, Rheological and Pasting Properties with Conventional Starches. Int. J. Food Sci. Technol. 2022, 57, 6833–6842. [Google Scholar] [CrossRef]
- FAOSTAT. Statistics Data of Food and Agriculture Organization of the United Nations Crops. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 September 2022).
- Liu, W.; Wang, R.; Li, J.; Xiao, W.; Rong, L.; Yang, J.; Wen, H.; Xie, J. Effects of Different Hydrocolloids on Gelatinization and Gels Structure of Chestnut Starch. Food Hydrocoll. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Wang, R.; Li, J.; Pan, W.; Zhang, X.; Xiao, W.; Wen, H.; Xie, J. Chestnut Starch Modification with Dry Heat Treatment and Addition of Xanthan Gum: Gelatinization, Structural and Functional Properties. Food Hydrocoll. 2022, 124, 107205. [Google Scholar] [CrossRef]
- Correia, P.R.; Nunes, M.C.; Beirão-da-Costa, M.L. The Effect of Starch Isolation Method on Physical and Functional Properties of Portuguese Nuts Starches. I. Chestnuts (Castanea sativa Mill. Var. Martainha and Longal) Fruits. Food Hydrocoll. 2012, 27, 256–263. [Google Scholar] [CrossRef]
- Shah, U.; Gani, A.; Ashwar, B.A.; Shah, A.; Wani, I.A.; Masoodi, F.A. Effect of Infrared and Microwave Radiations on Properties of Indian Horse Chestnut Starch. Int. J. Biol. Macromol. 2016, 84, 166–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Wu, Y.; Yang, Z.; Ouyang, J. Influence of Amylose on the Pasting and Gel Texture Properties of Chestnut Starch during Thermal Processing. Food Chem. 2019, 294, 378–383. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Attar, H. Structural Properties of High-Pressure-Treated Chestnut Flour Dispersions. Int. J. Food Prop. 2017, 20, S766–S778. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Wei, C. Progress in C-Type Starches from Different Plant Sources. Food Hydrocoll. 2017, 73, 162–175. [Google Scholar] [CrossRef]
- Acevedo, B.A.; Villanueva, M.; Chaves, M.G.; Avanza, M.V.; Ronda, F. Modification of Structural and Physicochemical Properties of Cowpea (Vigna unguiculata) Starch by Hydrothermal and Ultrasound Treatments. Food Hydrocoll. 2022, 124, 107266. [Google Scholar] [CrossRef]
- Liu, W.; Pan, W.; Li, J.; Chen, Y.; Yu, Q.; Rong, L.; Xiao, W.; Wen, H.; Xie, J. Dry Heat Treatment Induced the Gelatinization, Rheology and Gel Properties Changes of Chestnut Starch. Curr. Res. Food Sci. 2022, 5, 28–33. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Liu, Y.; Ouyang, J. Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut Starch. Polymers 2020, 12, 1718. [Google Scholar] [CrossRef]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Colussi, R.; Kaur, L.; da Rosa Zavareze, E.; Dias, A.R.G.; Stewart, R.B.; Singh, J. High Pressure Processing and Retrogradation of Potato Starch: Influence on Functional Properties and Gastro-Small Intestinal Digestion in Vitro. Food Hydrocoll. 2018, 75, 131–137. [Google Scholar] [CrossRef]
- Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of Pressure on Physicochemical Properties of Starch Dispersions. Food Hydrocoll. 2017, 68, 164–177. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Fasolin, L.H.; Avelar, Z.; Petersen, S.B.; Vicente, A.A.; Pereira, R.N. Effects of Moderate Electric Fields on Cold-Set Gelation of Whey Proteins—From Molecular Interactions to Functional Properties. Food Hydrocoll. 2020, 101, 105505. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, J.; Thomas, L.; Taher, A.; Joseph, A. Impact of High Pressure Treatment on Functional, Rheological, Pasting, and Structural Properties of Lentil Starch Dispersions. Carbohydr. Polym. 2016, 152, 639–647. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Effect of High Pressure on Rheological and Thermal Properties of Quinoa and Maize Starches. Food Chem. 2018, 241, 380–386. [Google Scholar] [CrossRef]
- Hedayati, S.; Shahidi, F.; Majzoobi, M.; Koocheki, A.; Farahnaky, A. Structural, Rheological, Pasting and Textural Properties of Granular Cold Water Swelling Maize Starch: Effect of NaCl and CaCl2. Carbohydr. Polym. 2020, 242, 116406. [Google Scholar] [CrossRef]
- Leite, T.S.; de Jesus, A.L.T.; Schmiele, M.; Tribst, A.A.L.; Cristianini, M. High Pressure Processing (HPP) of Pea Starch: Effect on the Gelatinization Properties. LWT—Food Sci. Technol. 2017, 76, 361–369. [Google Scholar] [CrossRef]
- Cai, J.; Cai, C.; Man, J.; Zhou, W.; Wei, C. Structural and Functional Properties of C-Type Starches. Carbohydr. Polym. 2014, 101, 289–300. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Cao, R.; Fan, H.; Wang, M. In Vitro Digestibility and Changes in Physicochemical and Structural Properties of Common Buckwheat Starch Affected by High Hydrostatic Pressure. Carbohydr. Polym. 2016, 144, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Li, Y.; Li, H.; Fan, H.; Wang, M. In Vitro Digestibility and Changes in Physicochemical and Textural Properties of Tartary Buckwheat Starch under High Hydrostatic Pressure. J. Food Eng. 2016, 189, 64–71. [Google Scholar] [CrossRef]
- Alsalman, F.B.; Ramaswamy, H.S. Changes in Carbohydrate Quality of High-Pressure Treated Aqueous Aquafaba. Food Hydrocoll. 2021, 113, 106417. [Google Scholar] [CrossRef]
- Liu, Y.; Selomulyo, V.O.; Zhou, W. Effect of High Pressure on Some Physicochemical Properties of Several Native Starches. J. Food Eng. 2008, 88, 126–136. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Mousaa, S.A.S.; Zhang, Q.; Shen, Q. Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food Bioprocess Technol. 2012, 5, 2233–2241. [Google Scholar] [CrossRef]
- Kan, L.; Li, Q.; Xie, S.; Hu, J.; Wu, Y.; Ouyang, J. Effect of Thermal Processing on the Physicochemical Properties of Chestnut Starch and Textural Profile of Chestnut Kernel. Carbohydr. Polym. 2016, 151, 614–623. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Dávila, I.; Moreira, M.T.; Labidi, J.; Gullón, P. Hydrothermal Treatment of Chestnut Shells (Castanea sativa) to Produce Oligosaccharides and Antioxidant Compounds. Carbohydr. Polym. 2018, 192, 75–83. [Google Scholar] [CrossRef]
- Lemos, A.M.; Abraão, A.S.; Cruz, B.R.; Morgado, M.L.; Rebelo, M.; Nunes, F.M. Effect of Granular Characteristics on the Viscoelastic and Mechanical Properties of Native Chestnut Starch (Castanea sativa Mill). Food Hydrocoll. 2015, 51, 305–317. [Google Scholar] [CrossRef]
- Pino-Hernández, E.; Pinto, C.A.; Abrunhosa, L.; Teixeira, J.A.; Saraiva, J.A. Hydrothermal and High-Pressure Processing of Chestnuts—Dependence on the Storage Conditions. Postharvest Biol. Technol. 2022, 185, 111773. [Google Scholar] [CrossRef]
- Cruz, B.R.; Abraão, A.S.; Lemos, A.M.; Nunes, F.M. Chemical Composition and Functional Properties of Native Chestnut Starch (Castanea sativa Mill). Carbohydr. Polym. 2013, 94, 594–602. [Google Scholar] [CrossRef]
- Hao, H.; Li, Q.; Bao, W.; Wu, Y.; Ouyang, J. Relationship between Physicochemical Characteristics and In Vitro Digestibility of Chestnut (Castanea mollissima) Starch. Food Hydrocoll. 2018, 84, 193–199. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Wu, Y.; Wang, M.; Ouyang, J. Processing of Air-Dried Chestnut and Physicochemical Properties of Its Starch with Low Digestibility. Food Hydrocoll. 2020, 108, 106051. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wu, Y.; Liu, L.; Ouyang, J. Physicochemical Properties and in Vitro Digestibility of Starch from Naturally Air-Dried Chestnut. Int. J. Biol. Macromol. 2018, 117, 1074–1080. [Google Scholar] [CrossRef]
- Gómez, J.A.; Pino-Hernández, E.; Abrunhosa, L.; Matallana, L.G.; Sánchez, Ó.J.; Teixeira, J.A.; Nobre, C. Valorisation of Rejected Unripe Plantain Fruits of Musa AAB Simmonds: From Nutritional Characterisation to the Conceptual Process Design for Prebiotic Production. Food Funct. 2021, 12, 3009–3021. [Google Scholar] [CrossRef]
- Guo, J.; Kong, L. Inhibition of in Vitro Starch Digestion by Ascorbyl Palmitate and Its Inclusion Complex with Starch. Food Hydrocoll. 2021, 121, 107032. [Google Scholar] [CrossRef]
- Fasolin, L.H.; Picone, C.S.F.; Santana, R.C.; Cunha, R.L. Production of Hybrid Gels from Polysorbate and Gellan Gum. Food Res. Int. 2013, 54, 501–507. [Google Scholar] [CrossRef]
Parameters | Samples | ||||
---|---|---|---|---|---|
Native | HT | HPP (MPa) | |||
400 | 500 | 600 | |||
Pasting temperature (°C) | 66.0 ± 0.3 a | 66.8 ± 0.2 a | 63.9 ± 0.0 b | 62.7 ± 0.2 b | 62.7 ± 0.3 b |
Gelatinization time (s) | 290.8 ± 0.7 a | 298.5 ± 0.2 a | 272.5 ± 2.4 b | 257.7 ± 2.0 c | 257.5 ± 2.5 c |
Peak viscosity (Pa·s) | 30.7 ± 0.6 d | 31.8 ± 1.0 d | 36.3 ± 2.1 c | 62.6 ± 1.7 b | 70.5 ± 1.5 a |
Peak time (s) | 494.0 ± 4.2 b | 552.7 ± 7.5 a | 480.0 ± 2.0 c | 340.0 ± 5.0 e | 372.5 ± 4.5 d |
Trough viscosity (Pa·s) | 14.3 ± 0.3 d | 23.1 ± 0.7 c | 20.6 ± 2.4 c | 35.2 ± 0.5 b | 42.7 ± 0.4 a |
Final viscosity (Pa·s) | 26.8 ± 1.6 e | 30.5 ± 1.5 d | 40.5 ± 3.9 c | 65.2 ± 0.6 b | 74.0 ± 1.0 a |
Setback (Pa·s) | 12.4 ± 1.4 c | 7.4 ± 1.6 d | 19.9 ± 0.5 b | 30.0 ± 2.0 a | 31.3 ± 1.4 a |
Breakdown viscosity (Pa·s) | 16.4 ± 0.6 b | 9.0 ± 0.3 c | 15.7 ± 0.3 b | 27.4 ± 2.2 a | 27.8 ± 1.1 a |
Parameters | Samples | |||||
---|---|---|---|---|---|---|
Native | HT | HPP (MPa) | ||||
400 | 500 | 600 | ||||
DSC | To (℃) | 57.5 ± 0.1 a | 57.9 ± 0.2 a | 56.2 ± 0.0 b | 56.2 ± 0.0 b | 56.2 ± 0.1 b |
Tp (℃) | 61.6 ± 0.1 b | 62.4 ± 0.3 a | 60.4 ± 0.1 c | 60.8 ± 0.1 c | 60.8 ± 0.1 c | |
Tc (℃) | 66.7 ± 0.1 a | 67.0 ± 0.3 a | 66.1 ± 0.1 a | 66.4 ± 0.1 a | 66.3 ± 0.2 a | |
∆Hgel (J/g) | 3.8 ± 0.1 a | 3.2 ± 0.1 b | 4.1 ± 0.1 a | 3.9 ± 0.1 a | 3.7 ± 0.1 a | |
TGA | To (℃) | 72.2 ± 0.0 b,c | 69.8 ± 1.3 c | 72.0 ± 1.3 b,c | 78.3 ± 1.7 a,b | 79.9 ± 1.1 a |
MLFDS (%) | 9.3 ± 0.1 b | 11.5 ± 0.2 a | 9.6 ± 0.0 b | 9.4 ± 0.3 b | 8.9 ± 0.2 b | |
T1 (℃) | 298.5 ± 0.7 a | 296.8 ± 0.6 a | 277.0 ± 0.7 b | 280.2 ± 0.4 b | 277.8 ± 0.0 b | |
Td (℃) | 315.1 ± 0.5 a | 314.0 ± 1.0 a | 317.6 ± 0.1 a | 315.2 ± 0.2 a | 315.0 ± 0.2 a | |
MLSDS (%) | 64.5 ± 0.0 a | 64.8 ± 1.6 a | 64.0 ± 0.9 a | 65.5 ± 0.6 a | 66.3 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pino-Hernández, E.; Fasolin, L.H.; Ballesteros, L.F.; Pinto, C.A.; Saraiva, J.A.; Abrunhosa, L.; Teixeira, J.A. Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence. Molecules 2023, 28, 700. https://doi.org/10.3390/molecules28020700
Pino-Hernández E, Fasolin LH, Ballesteros LF, Pinto CA, Saraiva JA, Abrunhosa L, Teixeira JA. Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence. Molecules. 2023; 28(2):700. https://doi.org/10.3390/molecules28020700
Chicago/Turabian StylePino-Hernández, Enrique, Luiz Henrique Fasolin, Lina F. Ballesteros, Carlos A. Pinto, Jorge A. Saraiva, Luís Abrunhosa, and José António Teixeira. 2023. "Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence" Molecules 28, no. 2: 700. https://doi.org/10.3390/molecules28020700
APA StylePino-Hernández, E., Fasolin, L. H., Ballesteros, L. F., Pinto, C. A., Saraiva, J. A., Abrunhosa, L., & Teixeira, J. A. (2023). Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence. Molecules, 28(2), 700. https://doi.org/10.3390/molecules28020700