Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Hydrophobicity (H0) Analysis
2.2. Intrinsic Viscosity Analysis
2.3. Thermal Stability (DSC) Analysis
2.4. Size Exclusion Chromatography (SEC) Analysis (Relative Molecular Mass Distribution)
2.5. Mercaptol and Disulfide Bond Content
2.6. Secondary Structure—Circular Dichroism (CD) Analysis
2.7. Tertiary Structure—Endogenous Fluorescence Spectroscopy
2.8. Protein Particle Size Analysis
2.9. Zeta Potential Analysis
2.10. Mechanism of SFE Treatment on RBPI from HTDDRB
3. Materials and Methods
3.1. Materials
3.2. HTDDRB Steam Flash-Explosion (SFE) Treatment
3.3. Preparation of Rice Bran Protein Isolate (RBPI)
3.4. Determination of Surface Hydrophobicity (H0)
3.5. Determination of Intrinsic Viscosity
3.6. Differential Scanning Calorimetry (DSC) Analysis
3.7. Size Exclusion Chromatography (SEC)
3.8. Determination of Sulfhydryl and Disulfide Bonding Content
3.8.1. Free Sulfhydryl (SHF) Determination
3.8.2. Total Sulfhydryl Determination (SHT)
3.9. Circular Dichroic (CD) Spectrum
3.10. Determination of Endogenous Fluorescence of RBPI
3.11. Dynamic Laser Light Scattering (DLS) Determines Protein Particle Size
3.12. Determination of Zeta Potential
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.M.; Hu, Z.X.; Zhang, W.N.; Qi, Y.T.; Zhang, Y.P.; Du, Y.; Zuo, C. Characterization and application of carbon dots from rice bran protein. Chinese Grease 2022, 47, 58–64. [Google Scholar]
- Chen, J.S.; Liu, C.C.; Shi, B.; Chai, Y.; Han, N.; Zhu, M.; Bian, H. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley. J. Agric. Food. Chem. 2017, 65, 5181–5187. [Google Scholar] [CrossRef]
- Li, X.F.; Shen, D.; Huang, J.K.; Lu, Y.J. Research progress on functional active components and its efficacy in rice bran. Food Industry Technology 2022, 43, 466–474. [Google Scholar]
- Lian, Z.; Liu, X.L. Extraction and functional properties of four proteins from reeling silkworm pupa. Food Sci. Technol. 2018, 43, 280–285. [Google Scholar]
- Zhou, X.T.; Liu, L.; Wang, L.; Liu, T.; Wu, X. Proteomic study of Chinese black-bone silky fowl and the ring-necked pheasant egg white by iTRAQ technique. LWT 2021, 150, 111936. [Google Scholar] [CrossRef]
- Xiao, D.Z.; Chong, H.Y.; Yu, X.W.; Mei, L.S.; Guo, P.Y. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019, 85, 168–174. [Google Scholar]
- Li, G.T.; Fan, Z. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohyd. Polym. 2017, 164, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Mu, D.C.; Feng, Y.Y.; Xu, Z.; Wen, L.; Chen, M.L.; Ye, J. Glycosylation of rice protein with dextran via the Maillard reaction in a macromolecular crowding condition to improve solubility. J. Cereal Sci. 2022, 103, 103374. [Google Scholar] [CrossRef]
- Wang, L.; Pang, T.R.; Kong, F.; Chen, H.Z. Steam Explosion Pretreatment for Improving Wheat Bran Extrusion Capacity. Foods 2022, 11, 2850. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.C.; Hou, C.Y.; Luo, K.Y.; Cheng, A.W. Steam explosion enhances phenolic profiles and antioxidant activity in mung beans. Food Sci. Nutr. 2022, 10, 1039–1050. [Google Scholar] [CrossRef]
- Orevi, T.; Sørensen, S.J.; Kashtan, N. Droplet size and surface hydrophobicity enhance bacterial plasmid transfer rates in microscopic surface wetness. ISME Comm. 2022, 2, 72. [Google Scholar] [CrossRef]
- Dela Cruz-Torres, L.F.; Rodríguez-Celestino, V.; Centeno-Leija, S.; Serrano-Posada, H.; Ceballos-Mangana, S.G.; Aguilar-Padilla, J.; Mancilla-Margalli, N.A.; Osuna-Castro, J.A. Development of a rapid, high-sensitivity, low-cost fluorescence method for protein surface hydrophobicity determination using a Nanodrop fluorospectrometer. Food Chem. 2022, 396, 133681. [Google Scholar] [CrossRef]
- Sun, C.L.; Du, W.; Wang, B.Q.; Dong, B.; Wang, B.G. Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro. BMC Chem. 2020, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Yang, R.J.; Zhao, W.; Hua, X.; Zhang, W.B. Application of high density steam flash-explosion in protein extraction of soybean meal. J. Food Eng. 2013, 116, 430–435. [Google Scholar] [CrossRef]
- Nayak, A.; Genot, C.; Meynier, A.; Dorlando, A.; Capron, I. Impact of process and physico-chemical conditions on the formation of curcumin-whey protein composite particles capable to stabilize food-compatible oil in water emulsions. LWT 2022, 153, 112421. [Google Scholar] [CrossRef]
- Na, Z.G.; Wang, H.M.; Yan, B.J.; Zhang, L.; Ma, Y.Q. Effect of Steam Flash Explosion on Maillard Reaction of High-Temperature Denatured Defatted Rice Bran. Food. Industry 2020, 41, 76–82. [Google Scholar]
- Achour, A.; Boye, J.I.; Yaylayan, V.A.; Yeboah, F.K. Functional Properties of Glycated Soy 11S Glycinin. J. Food Sci. 2005, 70, 269–274. [Google Scholar]
- Gasymov, O.K.; Glasgow, B.J. ANS fluorescence: Potential to augment the identification of the external binding: Sites of proteins. Acta Biochim. Biophys. Sin. 2007, 1774, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.F.; Hao, Y.; Wang, Y.; Song, H.J.; Hussain, S.; Gao, R.X.; Gao, L.Y.; He, Y.L.; Zheng, G.D.; Tang, Y.H. Multiwall Carbon Nanotubes Non-covalently Functionalized by Porphyrin-Sn Networks for Protein Adsorption. ACS Appl. Nano Mater. 2021, 4, 2345–2350. [Google Scholar] [CrossRef]
- Jia, Y.J.; Yan, X.Y.; Li, X.T.; Zhang, S.; Huang, Y.Y.; Zhang, D.M.; Li, Y.; Qi, B.K. Soy protein–phlorizin conjugate prepared by tyrosinase catalysis: Identification of covalent binding sites and alterations in protein structure and functionality. Food Chem. 2023, 404, 134610. [Google Scholar] [CrossRef]
- Kinsella, J.E. Functional properties of proteins: Possible relationships between structure and function infoams. Food Chem. 1981, 7, 273–288. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Yang, R.J.; Zhang, W.N.; Hu, Z.X.; Zhao, W. Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking. Food Chem. 2017, 219, 48–53. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties. Food Struct. 2021, 28, 100189. [Google Scholar] [CrossRef]
- Gao, Y.X.; Sun, Y.; Zhang, Y.; Sun, Y.K.; Jin, T. Extrusion Modification: Effect of Extrusion on the Functional Properties and Structure of Rice Protein. Processes 2022, 10, 1871. [Google Scholar] [CrossRef]
- Wu, W.; Cai, Y.J.; Wu, X.J.; Meng, Q.; Ye, J.F. Effect of Rice Bran Storage Time on the Structure of Rice Bran Protein. Mod. Food Technol. 2017, 33, 1–9. [Google Scholar]
- Xia, N.; Wang, J.; Yang, X.; Yin, S.; Qi, J.; Hu, L.; Zhou, X. Preparation and characterization of protein from heat-stabilized rice bran using hydrothermal cooking combined with amylase pretreatment. J. Food Eng. 2012, 110, 95–101. [Google Scholar] [CrossRef]
- David, M.R.; Sarah, B.J.; Naomi, T.D.; Francois, A.; Matthieu, R.; Jonathan, D. Electronic Circular Dichroism Spectroscopy of Proteins. Chem 2019, 5, 2751–2774. [Google Scholar]
- Sze, K.W.C.; Kshirsagar, H.H.; Venkatachalam, M.; Sathe, S.K. A circular dichroism and fluorescence spectrometric assessment of effects of selected chemical denaturants on soybean (Glycine max L.) storage proteins glycinin (11S)and β-conglycinin(7S). J. Agric. Food Chem. 2007, 55, 8745–8753. [Google Scholar]
- Damodaran, S. Food Proteins and Their Applications; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Yagi, U.M.; Kato, K. Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Molecules 2022, 27, 4787. [Google Scholar] [CrossRef]
- Shutova, T.; Deikus, T.; Irrgang, K.D.; Klimov, V.V.; Renger, G. Origin and properties of fluorescence emission from the extrinsic 33kDa manganese stabilizing protein of higher plant water oxidizing complex. BBA-Bioenergetics 2001, 1504, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.L.; Fang, Y.Y.; Wei, Q.N.; Wang, J.K.; Si, Y.X.; Chen, Z.F.; Qian, G.Y.; Yin, S.J.; Wang, Q. A heat-resistant β-mannanase derived from the Thermothelomyces thermophilus. Acta Microbiol. Sin. 2021, 61, 2815–2828. [Google Scholar]
- Jia, X.; Li, L.C.; Teng, J.W.; Li, M.J.; Long, H.; Xia, N. Glycation of rice protein and d-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: Focus on the structural and functional properties. LWT 2022, 160, 113194. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Moreno, F.J.; Olano, A.; Villamiel, M. Structural characterization of bovine beta-lactoglobulin-galactose/tagatose Maillard complexes by electrophoretic, chromatographic, and spectroscopic methods. J. Agric. Food Chem. 2008, 56, 4244–4252. [Google Scholar] [CrossRef]
- Wu, W.; Hua, Y. Structural modification of soy protein by the lipid peroxidation product acrolein. LWT-Food Sci. Technol. 2010, 43, 133–140. [Google Scholar] [CrossRef]
- Sun, T.Y.; Cheng, H.; Chen, K.Y.; Ren, J. Effects of Heat on the Structural Properties of Sunflower Protein Isolate. Chin. Condiments 2021, 46, 69–71+76. [Google Scholar]
- Feng, H.Y.; Jin, H.; Gao, Y.; Yan, S.Q.; Zhang, Y.; Zhao, Q.S.; Xu, J. Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates. Food Chem. 2020, 330, 127215. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yang, Y.L.; Tang, X.Z.; Ni, W.X.; Zhou, L. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrason. Sonochem. 2017, 38, 225–233. [Google Scholar] [CrossRef]
- Sun, H.Y.; Deng, G.; Zhou, Y.; Wei, Z.W. Recent progress in protein and protein-related systems using DSC techniques. Chin. Sci. Bull. 2016, 61, 3091–3099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Li, Y.L.; Li, S.Y.; Zhang, H.; Ma, H.L. In Situ Monitoring of the Effect of Ultrasound on the Sulfhydryl Groups and Disulfide Bonds of Wheat Gluten. Molecules 2018, 23, 1376. [Google Scholar] [CrossRef] [Green Version]
- Mary, A.O.; Takafumi, I.; Roberta, N.; Nobuyuki, M.; Shigeru, U.; Evelyn, M. Introduction of sulfhydryl groups and disulfide linkage to mungbean 8Sα globulin and effects on physicochemical and functional properties. Food Res. Int. 2012, 45, 277–282. [Google Scholar]
- Shahabadi, N.; Ghaffari, L.; Mardani, Z.; Shiri, F. Multi-Spectroscopic and Theoretical Analyses of Human Serum Albumin Binding to a Water-Soluble Zinc(II) Complex including β-Amino Alcohol. Chem. Select 2022, 7, e202200645. [Google Scholar] [CrossRef]
- Larichev, Y.V. Extended Possibilities of Analysis for Supported Metal Catalysts and Nanocomposites by Dynamic Light Scattering. Kinet. Catal. 2022, 63, 299–605. [Google Scholar] [CrossRef]
Protein Sample | Starting Temperature To/°C | Peak Temperature Tp/°C | End Temperature Te/°C | Enthalpy ΔH (J/g) |
---|---|---|---|---|
RBPI | 77.8 | 114.2 | 179.2 | 356.3 |
RBPI-2.1-210 | 80.7 | 106.7 | 142.6 | 231.4 |
Elution Peak Area | RBPI | RBPI-0.9-210 | RBPI-2.1-90 | RBPI-2.1-210 |
---|---|---|---|---|
Fraction Ⅰ (>550 kDa) | 1.5 ± 0.08 | 6.7 ± 0.34 | 9.3 ± 0.16 | 13.8 ± 0.49 |
Fraction Ⅱ (550~80 kDa) | 58.1 ± 1.02 | 43.9 ± 0.51 | 44.5 ± 1.03 | 50.8 ± 0.83 |
Fraction Ⅲ (<80 kDa) | 40.4 ± 0.53 | 49.4 ± 0.24 | 46.2 ± 0.68 | 35.4 ± 0.15 |
Project | RBPI | RBPI-0.9-210 | RBPI-2.1-90 | RBPI-2.1-210 |
---|---|---|---|---|
SHF | 4.38 ± 0.15 | 5.54 ± 0.08 | 5.63 ± 0.14 | 5.15 ± 0.09 |
SS | 6.13 ± 0.16 | 8.88 ± 0.15 | 9.32 ± 0.09 | 7.46 ± 0.13 |
Sample | α-Helix | β-Corner | Random Coil | β-Fold |
---|---|---|---|---|
RBPI | 29.1 ± 0.25 | 34.1 ± 0.24 | 36.8 ± 0.36 | 0 |
RBPI-0.9-210 | 23.3 ± 0.18 | 33.2 ± 0.35 | 42.3 ± 0.14 | 1.2 ± 0.11 |
RBPI-2.1-90 | 21.5 ± 0.21 | 33.6 ± 0.17 | 43.6 ± 0.38 | 1.3 ± 0.09 |
RBPI-2.1-210 | 19.8 ± 0.09 | 32.4 ± 0.44 | 47.0 ± 0.23 | 0.8 ± 0.03 |
SFE Treatment Conditions | Purity of RBPI (%) |
---|---|
RBPI | 83.6 ± 0.86 |
RBPI-0.9-150 | 79.9 ± 0.56 |
RBPI-0.9-210 | 78.1 ± 0.64 |
RBPI-1.5-90 | 77.4 ± 0.72 |
RBPI-1.5-150 | 76.6 ± 0.66 |
RBPI-2.1-90 | 75.8 ± 0.44 |
RBPI-2.1-210 | 75.0 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, Z.; Bi, H.; Wang, Y.; Guo, Y.; Ma, Y. Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate. Molecules 2023, 28, 643. https://doi.org/10.3390/molecules28020643
Na Z, Bi H, Wang Y, Guo Y, Ma Y. Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate. Molecules. 2023; 28(2):643. https://doi.org/10.3390/molecules28020643
Chicago/Turabian StyleNa, Zhiguo, Haixin Bi, Yingbin Wang, Yujuan Guo, and Yongqiang Ma. 2023. "Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate" Molecules 28, no. 2: 643. https://doi.org/10.3390/molecules28020643
APA StyleNa, Z., Bi, H., Wang, Y., Guo, Y., & Ma, Y. (2023). Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate. Molecules, 28(2), 643. https://doi.org/10.3390/molecules28020643