Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’)
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-PDA Analysis of Triterpenoids
2.2. HPLC-PDA Analysis of Hydroxycinnamic Acids
2.3. Antioxidant Activity Assays
2.3.1. Folin–Ciocalteu Reagent Assay
2.3.2. ORAC Assay
2.4. Antimicrobial Activity
3. Materials and Methods
3.1. Chemical Reagents and Standards
3.2. Plant Material
3.3. Extraction by Hydroalcoholic Solvent
3.4. HPLC-PDA Analysis of Triterpenoids
3.5. HPLC-PDA Analysis of Hydroxycinnamic Acids
3.6. Antioxidant Activity Assays
3.6.1. Folin–Ciocalteu Reagent Assay
3.6.2. ORAC Assay
3.7. Antimicrobial Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 October 2022).
- ISTAT Database. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 10 October 2022).
- Özcan, M.M.; Ünver, A.; Erkan, E.; Arslan, D. Characteristics of some almond kernel and oils. Sci. Hortic. 2011, 127, 330–333. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, Y.; Deng, S.; Lin, X.; Huang, G.; Ruan, R. Utilization of almond residues. Int. J. Agric. Biol. Eng. 2010, 3, 1. [Google Scholar]
- Scerra, M.; Bognanno, M.; Foti, F.; Caparra, P.; Cilione, C.; Mangano, F.; Natalello, A.; Chies, L. Influence of almond hulls in lamb diets on animal performance and meat quality. Meat Sci. 2022, 192, 108903. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, C.; Kong, F.; Kim, W.K. Effect of almond hulls on the growth performance, body composition, digestive tract weight, and liver antioxidant capacity of broilers. J. Appl. Poult. Res. 2021, 30, 100149. [Google Scholar] [CrossRef]
- Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M.; DePeters, E.J. Feeding high amounts of almond hulls to lactating cows. J. Dairy Sci. 2021, 104, 8846–8856. [Google Scholar] [CrossRef]
- Wang, J.; Kong, F.; Kim, W.K. Effect of almond hulls on the performance, egg quality, nutrient digestibility, and body composition of laying hens. Poult. Sci. 2021, 100, 101286. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond hull biomass: Preliminary characterization and development of two alternative valorization routes by applying innovative and sustainable technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Remón, J.; Sevilla-Gasca, R.; Frecha, E.; Pinilla, J.L.; Suelves, I. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst. Sci. Total Environ. 2022, 825, 154044. [Google Scholar] [CrossRef]
- Remón, J.; Zapata, G.; Oriol, L.; Pinilla, J.L.; Suelves, I. A novel ‘sea-thermal’, synergistic co-valorisation approach for biofuels production from unavoidable food waste (almond hulls) and plastic residues (disposable face masks). J. Chem. Eng. 2022, 449, 137810. [Google Scholar] [CrossRef]
- Takeoka, G.; Dao, L.; Teranishi, R.; Wong, R.; Flessa, S.; Harden, L. Identification of three triterpenoids in almond hulls. J. Agricul Food Chem. 2000, 48, 3437–3439. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T. Antioxidant constituents of almond [Prunus dulcis (Mill.) D.A. Webb] hulls. J. Agricul Food Chem. 2003, 51, 496–501. [Google Scholar] [CrossRef]
- Sang, S.; Cheng, X.; Fu, H.Y.; Shieh, D.E.; Bai, N.; Lapsley, K. New type sesquiterpene lactone from almond hulls (Prunus amygdalus Batsch). Tetrahedron Lett. 2002, 43, 2547–2549. [Google Scholar] [CrossRef]
- Sang, S.; Lapsley, K.; Jeong, W.S.; Lachence, P.A.; Ho, C.T.; Rosen, R.T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J. Agricul Food Chem. 2002, 50, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Lapsley, K.; Rosen, R.T.; Ho, C.T. New prenylated benzoic acid and other constituents from almond hulls (Prunus amygdalus Batsch). J. Agricul Food Chem. 2002, 50, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Najari, Z.; Khodaiyan, F.; Yarmand, M.S.; Hosseini, S.S. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. J. Waste Manag. 2022, 141, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Kahlaoui, M.; Bertolino, M.; Barbosa-Pereira, L.; Ben Haj Kbaier, H.; Bouzouita, N.; Zeppa, G. Almond hull as a functional ingredient of bread: Effects on physico-chemical, nutritional, and consumer acceptability properties. Foods 2022, 11, 777. [Google Scholar] [CrossRef] [PubMed]
- Patočka, J. Biologically active pentacyclic triterpenes and their current medicine signification. J. Appl. Biomed. 2003, 1, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopunct. 2019, 2, 55–67. [Google Scholar] [CrossRef]
- Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [Green Version]
- Kessler, J.H.; Mallauer, F.B.; de Roo, G.M.; Medema, J.P. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett. 2007, 251, 132–145. [Google Scholar] [CrossRef]
- Rzeski, W.; Stepulak, A.; Szymański, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisińska, B.; Kandefer-Szerszen, M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn-Schmeiedeberg’s Acrh. Pharmacol. 2006, 374, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Ma, R.; Boyle, P.J.; Mikulla, B.; Bradley, M.; Smith, B.; Basu, M.; Banerjee, S. Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKB3 cells with: Cis-platin, tamoxifen, melphalan, betulic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj. J. 2004, 20, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Janicsák, G.; Veres, K.; Kakasy, A.Z.; Máthé, I. Study of the oleanolic and ursolic acid contents of some species of the Lamiaceae. Biochem. Syst. Ecol. 2006, 34, 392–396. [Google Scholar] [CrossRef]
- Fai, Y.M.; Tao, C.C. A review of presence of oleanolic acid in natural products. Nat. Prod. Med. 2009, 2, 77–290. [Google Scholar]
- Heinzen, H.; de Vries, J.X.; Moyna, P.; Remberg, G.; Martinez, R.; Tietze, L.F. Mass spectrometry of labelled triterpenoids: Thermospray and electron impact ionization analysis. Phytochem. Anal. 1996, 7, 237–244. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.L.; Liu, R.; Chen, H.L.; Bai, H.; Liang, X.; Zhang, X.D.; Wang, Z.; Li, W.L.; Hai, C.X. Antioxidant activities of oleanolic acid in vitro: Possible role of Nrf2 and MAP kinases. Chem. Biol. Interact. 2010, 184, 328–337. [Google Scholar] [CrossRef]
- Yoo, S.R.; Jeong, S.J.; Lee, N.R.; Shin, H.K.; Seo, C.S. Quantification analysis and In vitro anti-inflammatory effects of 20-hydroxyecdysone, momordin ic, and oleanolic acid from the fructus of Kochia scoparia. Pharmacogn. Mag. 2017, 13, 339–344. [Google Scholar]
- Liu, J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 1995, 49, 57–68. [Google Scholar] [CrossRef]
- Novotny, L.; Vachalkova, A.; Biggs, D. Ursolic acid: An antitumorigenic and chemopreventive activity. Minireview. Neoplasma 2001, 48, 241–246. [Google Scholar]
- Manez, S.; Recio, M.C.; Giner, R.M.; Rios, J.L. Effect of selected triterpenoids on chronic dermal inflammation. Eur. J. Pharmacol. 1997, 334, 103–105. [Google Scholar] [CrossRef]
- Verma, A.K.; Slaga, T.J.; Wertz, P.W.; Mueller, G.C.; Boutwell, R.K. Inhibition of skin tumor promotion by retinoic acid and its metabolite 5,6-epoxyretinoic acid. Cancer Res. 1980, 40, 2367–2371. [Google Scholar] [PubMed]
- Suh, N.; Honda, T.; Finlay, H.J.; Barchowsky, A. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res. 1998, 58, 717–723. [Google Scholar] [PubMed]
- Waladkhani, A.R.; Clemens, M.R. Effect of dietary phytochemicals on cancer development (review). Int. J. Mol. Med. 1998, 1, 747–753. [Google Scholar] [CrossRef]
- Kelloff, G.J. Perspectives on cancer chemoprevention research and drug development. Adv. Cancer Res. 2000, 78, 199–334. [Google Scholar] [PubMed]
- Wang, C.M.; Chen, H.T.; Wu, Z.Y.; Jhan, Y.L.; Shyu, C.L.; Chou, C.H. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules 2016, 21, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Leon, L.; Beltran, B.; Moujir, L. Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis. Planta Med. 2005, 71, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Katerere, D.R.; Gray, A.I.; Nash, R.J.; Waigh, R.D. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 2003, 63, 81–88. [Google Scholar] [CrossRef]
- Amico, V.; Barresi, V.; Condorelli, D.; Spatafora, C.; Tringali, C. Antiproliferative terpenoids from almond hulls (Prunus dulcis): Identification and structure−activity relationships. J. Agric. Food Chem. 2006, 54, 810–814. [Google Scholar] [CrossRef]
- Sfahlan, A.J.; Mahmoodzadeh, A.; Hasanzadeh, A.; Heidari, R.; Jamei, R. Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chem. 2009, 115, 529–533. [Google Scholar] [CrossRef]
- Wijeratne, S.S.K.; Amarowicz, R.; Shahidi, F. Antioxidant activity of almonds and their by-products in food model systems. J. Amer Oil Chem. Soc. 2006, 83, 223–230. [Google Scholar] [CrossRef]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Wijeratne, S.S.K.; Abou-zaid, M.M.; Shahidi, F. Antioxidant polyphenols in almond and its coproducts. J. Agricul Food Chem. 2006, 54, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Kahlaoui, M.; Borotto Dalla Vecchia, S.; Giovine, F.; Ben Haj Kbaier, H.; Bouzouita, N.; Barbosa Pereira, L.; Zeppa, G. Characterization of polyphenolic compounds extracted from different varieties of almond hulls (Prunus dulcis L.). Antioxidants 2019, 8, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siriwardhana, S.S.K.W.; Shahidi, F. Antiradical activity of extracts of almond and its by-products. J. Amer Oil Chem. Soc. 2002, 79, 903–908. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Numonov, S.; Aisa, H.A. Chemical and pharmacological evaluation of hulls of Prunus dulcis nuts. Int. J. Anal. Chem. 2019, 2019, 5861692. [Google Scholar] [CrossRef] [Green Version]
- Vedeanu, N.; Voica, C.; Magdas, D.A.; Kiss, B.; Stefan, M.G.; Simedrea, R.; Georgiu, C.; Berce, C.; Vostinaru, O.; Boros, R.; et al. Subacute co-exposure to low doses of ruthenium (III) changes the distribution, excretion and biological effects of silver ions in rats. Environ. Chem. 2020, 17, 163–172. [Google Scholar] [CrossRef]
- Spivak, A.Y.; Khalitova, R.R.; Nedopekina, D.A.; Gubaidullin, R.R. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids 2020, 154, 108530. [Google Scholar] [CrossRef]
- Wang, C.M.; Jhan, Y.L.; Tsai, S.J.; Chou, C.H. The pleiotropic antibacterial mechanisms of ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2016, 21, 884. [Google Scholar] [CrossRef] [Green Version]
- Chung, P.Y. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine 2020, 73, 152933. [Google Scholar] [CrossRef]
- Oloyede, H.O.B.; Ajiboye, H.O.; Salawu, M.O.; Ajiboye, T.O. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. Microb. Pathog. 2017, 111, 338–344. [Google Scholar] [CrossRef]
- Mandalari, G.; Tomaino, A.; Arcoraci, T.; Martorana, M.; LoTurco, V.; Cacciola, F.; Rich, G.T.; Bisignano, C.; Saija, A.; Dugo, P. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Comp. Anal. 2010, 23, 166–174. [Google Scholar] [CrossRef]
- Smeriglio, A.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Ind. Crops Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Prgomet, I.; Gonçalves, B.; Dominguez-Perles, R.; Santos, R.; Saavedra, M.J.; Aires, A.; Pascual-Seva, N.; Barros, A. Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Ind. Crops Prod. 2019, 132, 186–196. [Google Scholar] [CrossRef]
- Foti, P.; Occhipinti, P.S.; Romeo, F.V.; Timpanaro, N.; Musumeci, T.; Randazzo, C.L.; Randazzo, C.; Caggia, C. Phenols recovered from olive mill wastewater as natural booster to fortify blood orange juice. Food Chem. 2022, 393, 133428. [Google Scholar] [CrossRef] [PubMed]
- Diallinas, G.; Rafailidou, N.; Kalpaktsi, I.; Komianou, A.C.; Tsouvali, V.; Zantza, I.; Mikros, E.; Skaltsounis, A.L.; Kostakis, I.K. Hydroxytyrosol (HT) analogs act as potent antifungals by direct disruption of the fungal cell membrane. Front. Microbiol. 2018, 9, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-Y.; Xiao, K.; Zhang, J.-Q. Antibacterial and Antibiofilm Effects of Zanthoxylum bungeanum Leaves against Staphylococcus aureus. Nat. Prod. Commun. 2018, 13, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef] [PubMed]
- Taralkar, S.V.; Chattopadhyay, S. A HPLC method for determination of ursolic acid and betulinic acids from their methanolic extracts of Vitex negundo Linn. J. Anal. Bioanal. Tech. 2012, 3, 134. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Boxin, O.; Prior, R.L. The chemistry behind antioxidant capacity assay. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Amenta, M.; Ballistreri, G.; Fabroni, S.; Romeo, F.V.; Spina, A.; Rapisarda, P. Qualitative and nutraceutical aspects of lemon fruits grown on the mountainsides of the Mount Etna: A first step for a protected designation of origin or protected geographical indication application of the brand name ‘Limone dell’Etna’. Food Res. Int. 2015, 74, 250–259. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidant by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, B.; Hampsch-Woodill, M.; Prior, R. Developing and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agricul Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. In Clinical and Laboratory Standards Institute Document M7-A7, 7th ed.; CLSI: Wayne, PA, USA, 2006; ISBN 1-56238-587-9. [Google Scholar]
- CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard. In Clinical and Laboratory Standards Institute Document M27-A3, 3rd ed.; CLSI: Wayne, PA, USA, 2008; ISBN 1-56238-666-2. [Google Scholar]
Hull Raw Samples * | Extracts ** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Oleanolic Acid (mg/100 g DW) | Betulinic Acid (mg/100 g DW) | Ursolic Acid (mg/100 g DW) | Total Triterpenoids (mg/100 g DW) | Oleanolic Acid (mg/100 mL) | Betulinic Acid (mg/100 mL) | Ursolic Acid (mg/100 mL) | Total Triterpenoids (mg/100 mL) | Recovery (%) | |
‘Pizzuta’ | 133.82 ± 0.13 B | 160.94 ± 1.04 A | 162.83 ± 1.61 A | 457.59 ± 2.78 a | 60.26 ± 2.09 C | 75.29 ± 1.99 A | 75.41 ± 1.11 A | 210.96 ± 5.02 C | 46.11 |
‘Romana’ | 276.03 ± 5.67 A | 73.97 ± 1.78 B | 96.95 ± 3.44 B | 446.95 ± 10.88 ab | 204.88 ± 3.29 A | 50.27 ± 0.96 B | 71.72 ± 2.21 A | 326.86 ± 6.34 A | 73.13 |
‘Tuono’ | 285.71 ± 0.19 A | 57.98 ± 0.05 C | 68.97 ± 0.12 C | 412.67 ± 0.27 b | 178.28 ± 3.41 B | 38.39 ± 1.04 C | 41.69 ± 0.34 B | 258.37 ± 4.31 B | 62.61 |
Hull Raw Samples * | Extracts ** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Neochlorogenic Acid (mg/100 g DW) | Chlorogenic Acid (mg/100 g DW) | Cryptochlorogenic Acid (mg/100 g DW) | Total Hydroxycinnamic Acids (mg/100 g DW) | Neochlorogenic Acid (mg/100 mL) | Chlorogenic Acid (mg/100 mL) | Cryptochlorogenic Acid (mg/100 mL) | Total Hydroxycinnamic Acids (mg/100 mL) | Recovery (%) | |
‘Pizzuta’ | 1.85 ± 0.03 B | 122.03 ± 17.69 A | 6.56 ± 0.12 B | 303.22 ± 21.87 A | 1.57 ± 0.02 B | 111.05 ± 16.10 A | 5.71 ± 0.10 B | 254.70 ± 18.37 A | 84 |
‘Romana’ | 13.28 ± 0.15 A | 70.92 ± 0.66 AB | 10.34 ± 0.28 A | 180.96 ± 9.63 AB | 11.68 ± 0.13 A | 63.12 ± 0.59 AB | 9.36 ± 0.26 A | 161.05 ± 8.57 B | 89 |
‘Tuono’ | 1.75 ± 0.06 B | 12.51 ± 0.19 B | 5.85 ± 0.32 B | 138.39 ± 9.42 B | 1.61 ± 0.05 B | 11.64 ± 0.17 B | 5.15 ± 0.28 B | 121.78 ± 8.29 B | 88 |
TPC (mg GAE/100 mL) | ORAC Units (µmoles Trolox Equiv./100 mL) | |
---|---|---|
‘Pizzuta’ | 22,593.33 ± 187.53 A | 44,424 ± 1376.37 A |
‘Romana’ | 21,284.76 ± 195.24 A | 41,966 ± 1596.59 A |
‘Tuono’ | 18,307.26 ± 94.15 B | 29,250 ± 591.76 B |
Microorganism | Cultivar | RE | D1 | D2 | D3 | D4 | Control |
---|---|---|---|---|---|---|---|
P. aeruginosa | R | 11 | 10 | 8 | 7 | 0 | 0 |
P | 10 | 10 | 10 | 0 | 0 | 0 | |
T | 9 | 9 | 8 | 0 | 0 | 0 | |
S. aureus | R | 9 | 8 | 8 | 0 | 0 | 0 |
P | 10 | 7 | 0 | 0 | 0 | 0 | |
T | 8 | 0 | 0 | 0 | 0 | 0 | |
E. coli | R | 10 | 8 | 7 | 0 | 0 | 0 |
P | 8 | 8 | 7 | 0 | 0 | 0 | |
T | 7 | 7 | 0 | 0 | 0 | 0 | |
L. innocua | R | 9 | 9 | 7 | 0 | 0 | 0 |
P | 8 | 8 | 7 | 0 | 0 | 0 | |
T | 6 | 0 | 0 | 0 | 0 | 0 | |
C. albicans | R | 0 | 0 | 0 | 0 | 0 | 0 |
P | 0 | 0 | 0 | 0 | 0 | 0 | |
T | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabroni, S.; Trovato, A.; Ballistreri, G.; Tortorelli, S.A.; Foti, P.; Romeo, F.V.; Rapisarda, P. Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’). Molecules 2023, 28, 605. https://doi.org/10.3390/molecules28020605
Fabroni S, Trovato A, Ballistreri G, Tortorelli SA, Foti P, Romeo FV, Rapisarda P. Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’). Molecules. 2023; 28(2):605. https://doi.org/10.3390/molecules28020605
Chicago/Turabian StyleFabroni, Simona, Angela Trovato, Gabriele Ballistreri, Susanna Aurora Tortorelli, Paola Foti, Flora Valeria Romeo, and Paolo Rapisarda. 2023. "Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’)" Molecules 28, no. 2: 605. https://doi.org/10.3390/molecules28020605
APA StyleFabroni, S., Trovato, A., Ballistreri, G., Tortorelli, S. A., Foti, P., Romeo, F. V., & Rapisarda, P. (2023). Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’). Molecules, 28(2), 605. https://doi.org/10.3390/molecules28020605