Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity (DPPH Assay)
2.2. Total Phenolic and Total Flavonoid Content
2.3. HPLC Analysis
2.4. Antibacterial Study
2.5. In silico Molecular Docking Study
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material Collection
4.3. Extraction
4.4. Antioxidant Test—DPPH Assay Calorimetric Method
4.5. Total Phenolic Content (TPC) Determination: FC Method
4.6. Total Flavonoid Content (TFC): Aluminum Chloride Method
4.7. HPLC (UHPLC-DAD) Analysis
4.8. Antibacterial Tests
4.8.1. Test Organisms
4.8.2. Antibacterial Activity
4.9. In Silico Study
4.9.1. Physicochemical and Pharmacokinetic Properties
4.9.2. Molecular Docking: Interaction Study
4.9.3. Molecular Docking and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fichtl, R.; Adi, A. Honeybee Flora of Ethiopia; Edwards, S., Kelbessa, E., Eds.; Margraf Verlag: Weikersheim, Germany, 1994. [Google Scholar]
- Hedberg, I. Flora of Ethiopia and Eritrea. Vol. 5, Gentianaceae to Cyclocheilaceae; Hedberg, I., Kelbessa, E., Edwards, S., Demissew, S., Persson, E., Eds.; The National Herbarium, Biology Department, Science Faculty, Addis Ababa University: Addis Ababa, Ethiopia, 2006. [Google Scholar]
- Ullah, M.A.; Gul, F.Z.; Khan, T.; Bajwa, M.N.; Drouet, S.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Liu, C.; Hano, C.; Abbasi, B.H. Differential Induction of Antioxidant and Anti-Inflammatory Phytochemicals in Agitated Micro-Shoot Cultures of Ajuga Integrifolia Buch. Ham. Ex D.Don with Biotic Elicitors. AMB Express 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Alene, M.; Abdelwuhab, M.; Belay, A.; Yazie, T.S. Evaluation of Antidiabetic Activity of Ajuga Integrifolia (Lamiaceae) Root Extract and Solvent Fractions in Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.H. Review of the Active Principles of Medicinal and Aromatic Plants and Their Disease Fighting Properties. In Medicinal and Aromatic Plants: Expanding their Horizons through Omics; Aftab, T., Hakeem, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–36. ISBN 9780128195901. [Google Scholar]
- Ferrari, B.; Castilho, P.; Tomi, F.; Rodrigues, A.I.; Do Ceu Costa, M.; Casanova, J. Direct Identification and Quantitative Determination of Costunolide and Dehydrocostuslactone in the Fixed Oil of Laurus Novocanariensis By13C-NMR Spectroscopy. Phytochem. Anal. 2005, 16, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Magozwi, D.K.; Dinala, M.; Mokwana, N.; Siwe-Noundou, X.; Krause, R.W.M.; Sonopo, M.; McGaw, L.J.; Augustyn, W.A.; Tembu, V.J. Flavonoids from the Genus Euphorbia: Isolation, Structure, Pharmacological Activities and Structure–Activity Relationships. Pharmaceuticals 2021, 14, 428. [Google Scholar] [CrossRef]
- Mulatu, G.; Beyene, G.; Zeynudin, A. Prevalence of Shigella, Salmonella and Campylobacter Species and Their Susceptibility Patterns among under Five Children with Diarrhea in Hawassa Town, South Ethiopia. Ethiop. J. Health Sci. 2014, 24, 101–108. [Google Scholar] [CrossRef]
- Tosisa, W.; Mihret, A.; Ararsa, A.; Eguale, T.; Abebe, T. Prevalence and Antimicrobial Susceptibility of Salmonella and Shigella Species Isolated from Diarrheic Children in Ambo Town. BMC Pediatr. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Hunde, D.; Asfaw, Z.; Kelbessa, E. Use of Traditional Medicinal Plants by People of “Boosat” Sub District, Central Eastern Ethiopia. Ethiop. J. Health Sci. 2006, 16, 141–155. [Google Scholar]
- Clarkson, K.A.; Talaat, K.R.; Alaimo, C.; Martin, P.; Bourgeois, A.L.; Dreyer, A.; Porter, C.K.; Chakraborty, S.; Brubaker, J.; Elwood, D.; et al. Immune Response Characterization in a Human Challenge Study with a Shigella Flexneri 2a Bioconjugate Vaccine. EBioMedicine 2021, 66, 103308. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Furuta, K.; Shimomura, K.; Kasama, Y.; Shimamoto, T. Genetic Characterization of Multidrug Resistance in Shigella Spp. from Japan. J. Med. Microbiol. 2006, 55, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Ud-Din, A.; Wahid, S. Relationship among Shigella Spp. and Enteroinvasive Escherichia Coli (EIEC) and Their Differentiation. Braz. J. Microbiol. 2014, 45, 1131–1138. [Google Scholar] [CrossRef]
- Qasim, M.; Wrage, M.; Nüse, B.; Mattner, J. Shigella Outer Membrane Vesicles as Promising Targets for Vaccination. Int. J. Mol. Sci. 2022, 23, 994. [Google Scholar] [CrossRef] [PubMed]
- Hussen, S.; Mulatu, G.; Yohannes Kassa, Z. Prevalence of Shigella Species and Its Drug Resistance Pattern in Ethiopia: A Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Debas, G.; Kibret, M.; Biadglegne, F.; Abera, B. Prevalence and Antimicrobial Susceptibility Patterns of Shigella Species at Felege Hiwot Referral Hospital, Northwest Ethiopia. Ethiop. Med. J 2011, 49, 249–256. [Google Scholar] [PubMed]
- Mukhopadhyay, S.; Ganguli, S.; Chakrabarti, S. Shigella Pathogenesis: Molecular and Computational Insights. AIMS Mol. Sci. 2020, 7, 99–121. [Google Scholar] [CrossRef]
- Beyene, G.; Tasew, H. Prevalence of Intestinal Parasite, Shigella and Salmonella Species among Diarrheal Children in Jimma Health Center, Jimma Southwest Ethiopia: A Cross Sectional Study. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistu, G.; Mulugeta, G.; Lema, T.; Aseffa, A. Prevalence and Antimicrobial Susceptibility Patterns of Salmonella Serovars and Shigella Species. J. Microb. Biochem. Technol. 2014, 6, S2-006. [Google Scholar] [CrossRef]
- Lamboro, T.; Ketema, T.; Bacha, K. Prevalence and Antimicrobial Resistance in Salmonella and Shigella Species Isolated from Outpatients, Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 4210760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marami, D.; Hailu, K.; Tolera, M. Prevalence and Antimicrobial Susceptibility Pattern of Salmonella and Shigella Species among Asymptomatic Food Handlers Working in Haramaya University Cafeterias, Eastern Ethiopia. BMC Res. Notes 2018, 11, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Terfassa, A.; Jida, M. Prevalence and Antibiotics Susceptibility Pattern of Salmonella and Shigella Species among Diarrheal Patients Attending Nekemte Referral Hospital, Oromia, Ethiopia. Int. J. Microbiol. 2018, 2018, 9214689. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wang, L.; Wang, Y.; Li, P.; Zhu, J.; Qiu, S.; Hao, R.; Wu, Z.; Li, W.; Song, H. Hfq Regulates Acid Tolerance and Virulence by Responding to Acid Stress in Shigella Flexneri. Res. Microbiol. 2015, 166, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Lipowska, J.; Miks, C.D.; Kwon, K.; Shuvalova, L.; Zheng, H.; Lewiński, K.; Cooper, D.R.; Shabalin, I.G.; Minor, W. Pyrimidine Biosynthesis in Pathogens— Structures and Analysis of Dihydroorotases from Yersinia Pestis and Vibrio Cholerae. Int. J. Biol. Macromol. 2019, 136, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecouque, C.; Clercq, E. De Antiviral Activity against Human Immunodeficiency Virus Type 1 (HIV-1) and Type 2 (HIV-2) of Ethnobotanically Selected Ethiopian Medicinal Plants. Phytochem. Res. 2001, 15, 62–69. [Google Scholar]
- Fullas, F. Ethiopian Traditional Medicine: Common Medicinal Plants in Perspective, 1st ed.; F. Fullas: Sioux City, IA, USA, 2001. [Google Scholar]
- Suleman, S.; Alemu, T. A Survey on Utilization of Ethnomedicinal Plants in Nekemte Town, East Wellega (Oromia), Ethiopia. J. Herbs Spices Med. Plants 2012, 18, 37–41. [Google Scholar] [CrossRef]
- El-Hilaly, J.; Amarouch, M.Y.; Morel, N.; Lyoussi, B.; Quetin-Leclercq, J. Ajuga Iva Water Extract Antihypertensive Effect on Stroke-Prone Spontaneously Hypertensive Rats, Vasorelaxant Effects Ex Vivo and in Vitro Activity of Fractions. J. Ethnopharmacol. 2021, 270, 113791. [Google Scholar] [CrossRef] [PubMed]
- Bekele, D.; Asfaw, Z.; Petros, B.; Tekie, H. Ethnobotanical Study of Plants Used for Protection against Insect Bite and for the Treatment of Livestock Health Problems in Rural Areas of Akaki District, Eastern Shewa, Ethiopia. Topclass. J. Herb. Med. 2012, 1, 12–24. [Google Scholar]
- Meragiaw, M.; Asfaw, Z. Review of Antimalarial, Pesticidal and Repellent Plants in the Ethiopian Traditional Herbal Medicine. Res. Rev. J. Herb. Sci. 2014, 3, 21–25. [Google Scholar]
- Asnake, S.; Teklehaymanot, T.; Hymete, A.; Erko, B.; Giday, M. Survey of Medicinal Plants Used to Treat Malaria by Sidama People of Boricha District, Sidama Zone, South Region of Ethiopia. Evid.-Based Complement. Altern. Med. 2016, 2016, 9690164. [Google Scholar] [CrossRef] [Green Version]
- Hailu, W.; Engidawork, E. Evaluation of the Diuretic Activity of the Aqueous and 80 % Methanolic Extracts of the Leaves of Ajuga Remota B. (Lamiaceae) in Mice. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Chekole, G. Ethnobotanical Study of Medicinal Plants Used against Human Ailments in Gubalafto. J. Ethnobiol. Ethnomed. 2017, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Abera, B. Medicinal Plants Used in Traditional Medicine by Oromo People, Ghimbi District, Southwest Ethiopia. J. Ethnobiol. Ethnomed. 2014, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tuasha, N.; Petros, B.; Asfaw, Z. Plants Used as Anticancer Agents in the Ethiopian Traditional Medical Practices: A Systematic Review. Evid.-Based Complement. Altern. Med 2018, 2018, 6274021. [Google Scholar] [CrossRef]
- Gebrehiwot, M. An Ethnobotanical Study of Medicinal Plants in Seru Wereda, Arsi Zone of Oromia Region, Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Regassa, R. Assessment of Indigenous Knowledge of Medicinal Plant Practice and Mode of Service Delivery in Hawassa City, Southern Ethiopia. J. Med. Plants Res. 2013, 7, 517–535. [Google Scholar] [CrossRef]
- Teklay, A.; Abera, B.; Giday, M. An Ethnobotanical Study of Medicinal Plants Used in Kilte Awulaelo District, Tigray Region of Ethiopia. J. Ethnobiol. Ethnomed. 2013, 9, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maryo, M.; Nemomissa, S.; Bekele, T. An Ethnobotanical Study of Medicinal Plants of the Kembatta Ethnic Group in Enset-Based Agricultural Landscape of Kembatta Tembaro (KT) Zone, Southern Ethiopia. Pelagia Res. Libr. Asian J. Plant Sci. Res. 2015, 5, 42–61. [Google Scholar] [CrossRef]
- Gedif, T.; Hahn, H. The Use of Medicinal Plants in Self-Care in Rural Central Ethiopia. J. Ethnopharmacol. 2003, 87, 155–161. [Google Scholar] [CrossRef]
- Parvez, N.; Yadav, S. Ethnopharmacology of Single Herbal Preparations of Medicinal Plants in Asendabo District, Jimma, Ethiopia. Indian J. Tradit. Knowl. 2010, 9, 724–729. [Google Scholar]
- Gabriel, T.; Guji, T. Ethnopharmacological Survey of Medicinal Plants in Agaro District, Jimma Zone, South West Ethiopia. Int J. Pharm. Sci. Res. 2014, 5, 3551–3559. [Google Scholar] [CrossRef]
- Tafesse, T.B.; Hymete, A.; Mekonnen, Y.; Tadesse, M. Antidiabetic Activity and Phytochemical Screening of Extracts of the Leaves of Ajuga Remota Benth on Alloxan-Induced Diabetic Mice. BMC Complement. Altern. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rubnawaz, S.; Okla, M.K.; Akhtar, N.; Khan, I.U.; Bhatti, M.Z.; Duong, H.Q.; El-tayeb, M.A.; Elbadawi, Y.B.; Almaary, K.S.; Moussa, I.M.; et al. Antibacterial, Antihemolytic, Cytotoxic, Anticancer, and Antileishmanial Effects of Ajuga Bracteosa Transgenic Plants. Plants 2021, 10, 1894. [Google Scholar] [CrossRef]
- Meite, S.; N’Guessan, J.D.; Bahi, C.; Yapi, H.F.; Djaman, A.J.; Guede Guina, F. Antidiarrheal Activity of the Ethyl Acetate Extract of Morinda Morindoides in Rats. Trop. J. Pharm. Res. 2009, 8, 201–207. [Google Scholar] [CrossRef]
- Asrie, A.B.; Abdelwuhab, M.; Shewamene, Z.; Gelayee, D.A.; Adinew, G.M.; Birru, E.M. Antidiarrheal Activity of Methanolic Extract of the Root Bark of Cordia Africana. J. Exp. Pharm. 2016, 8, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.P.; Rath, S.; Swain, S.S.; Ghosh, G.; Das, D.; Padhy, R.N. In Vitro Antibacterial Activity of Crude Extracts of 9 Selected Medicinal Plants against UTI Causing MDR Bacteria. J. King Saud. Univ. Sci. 2017, 29, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents. 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and Synthetic Flavonoid Derivatives as New Potential Tyrosinase Inhibitors: A Systematic Review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef] [PubMed]
- Kranich, R.; Busemann, A.S.; Bock, D.; Schroeter-Maas, S.; Beyer, D.; Heinemann, B.; Meyer, M.; Schierhorn, K.; Zahlten, R.; Wolff, G.; et al. Rational Design of Novel, Potent Small Molecule Pan-Selectin Antagonists. J. Med. Chem. 2007, 50, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Mughal, E.U.; Zia, K.; Sadiq, A.; Naeem, N.; Javid, A.; Ul-Haq, Z.; Saeed, M. Synthetic Flavonoids as Potential Antiviral Agents against SARS-CoV-2 Main Protease. J. Biomol. Struct. Dyn. 2022, 40, 3777–3788. [Google Scholar] [CrossRef] [PubMed]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef]
- Lere Keshebo, D.; Washe, A.P.; Alemu, F. Determination of Antimicrobial and Antioxidant Activities of Extracts from Selected Medicinal Plants. Am Sci Res J Eng 2016, 16, 212–222. [Google Scholar]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2012; Volume 67, pp. 75–135. ISBN 9780123945983. [Google Scholar]
- Banothu, V.; Neelagiri, C.; Adepally, U.; Lingam, J.; Bommareddy, K. Phytochemical Screening and Evaluation of in Vitro Antioxidant and Antimicrobial Activities of the Indigenous Medicinal Plant Albizia Odoratissima. Pharm. Biol. 2017, 55, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, I.D.; Rawat, S.; Rawal, R.S. Antioxidants in Medicinal Plants. In Biotechnology for Medicinal Plants; Chandra, S., Lata, H., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642299742. [Google Scholar]
- Omosa, L.K.; Amugune, B.; Ndunda, B.; Milugo, T.K.; Heydenreich, M.; Yenesew, A.; Midiwo, J.O. Antimicrobial Flavonoids and Diterpenoids from Dodonaea Angustifolia. S. Afr. J. Bot. 2014, 91, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Israili, Z.H.; Lyoussi, B. Ethnopharmacology of the Plants of Genus Ajuga. Pak. J. Pharm. Sci. 2009, 22, 425–462. [Google Scholar] [PubMed]
- Alam, J.; Roy, T. In Silico Screening for Novel Inhibitors of Invasion Protein Antigen IpaD of Shigella Flexneri—An Agent of Shigellosis. Int. J. Comput. Bioinform. Silico Model 2015, 3, 497–501. [Google Scholar]
- Rabbi, M.F.; Akter, S.A.; Hasan, M.J.; Amin, A. In Silico Characterization of a Hypothetical Protein from Shigella Dysenteriae ATCC 12039 Reveals a Pathogenesis-Related Protein of the Type-VI Secretion System. Bioinform. Biol. Insights 2021, 15, 1–12. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2012, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.Y.; Li, Q.; Bi, K. shun Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Aderogba, M.A.; Ndhlala, A.R.; Rengasamy, K.R.R.; Staden, J. Van Antimicrobial and Selected In Vitro Enzyme Inhibitory Effects of Leaf Extracts, Flavonols and Indole Alkaloids Isolated from Croton Menyharthii. Molecules 2013, 18, 12633–12644. [Google Scholar] [CrossRef]
- Imoru, A.; Onibi, G.E.; Osho, I.B. Nutritional and Biochemical Compositions of Turmeric (Curcuma Longa Linn) Rhizome Powder—A Promising Animal Feed Additive. Int. J. Sci. Eng. Res. 2018, 9, 424–429. [Google Scholar]
- Zakaria, F.; Tan, J.-K.; Mohd Faudzi, S.M.; Rahman, M.; Ashari, E. Ultrasound-Assisted Extraction Condition Optimization Using Response Surface Methodology from Mitragyna Speciosa (Korth.) Havil Leaves. Ultrason. Sonochem. 2021, 81, 105851. [Google Scholar] [CrossRef]
- Mawela, K.G. The toxicity and repellent properties of plant extracts used in ethnoveterinary medicine to control ticks. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2008; pp. 72–82. Available online: https://repository.up.ac.za/handle/2263/29224 (accessed on 11 December 2022).
- Chen, Z.; Bertin, R.; Froldi, G. EC50 Estimation of Antioxidant Activity in DPPH Assay Using Several Statistical Programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic Content and Antioxidant Activity of Olive Extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Lulekal, E.; Rondevaldova, J.; Bernaskova, E.; Cepkova, J.; Asfaw, Z.; Kelbessa, E.; Kokoska, L.; Van Damme, P. Antimicrobial Activity of Traditional Medicinal Plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Pharm. Biol. 2014, 52, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, F.; Han, K.; Li, M.; Zhang, T.; Liu, D.; Yu, L.; Lv, H. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Species from the Genus Ajuga L.: A Systematic Review. Am. J. Chin. Med. 2019, 47, 959–1003. [Google Scholar] [CrossRef] [PubMed]
- Wambe, H.; Noubissi, P.A.; Fokam Tagne, M.A.; Foyet Fondjo, A.; Fankem, G.O.; Kamtchouing, I.; Ngakou Mukam, J.; Nguelefack, T.B.; Kamgang, R. Anti-Shigellosis Activity of Cola Anomala Water/Ethanol Pods Extract on Shigella Flexneri- Induced Diarrhea in Rats. Biomed. Res. Int. 2019, 2019, 6706230. [Google Scholar] [CrossRef] [Green Version]
- Fitriah, A.; Holil, K.; Syarifah, U.; Fitriyah; Utomo, D.H. In Silico Approach for Revealing the Anti-Breast Cancer and Estrogen Receptor Alpha Inhibitory Activity of Artocarpus Altilis. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; p. 070003. [Google Scholar]
- Utami, W.; Aziz, H.A.; Fitriani, I.N.; Zikri, A.T.; Mayasri, A.; Nasrudin, D. In Silico Anti-Inflammatory Activity Evaluation of Some Bioactive Compound from Ficus Religiosa through Molecular Docking Approach. J. Phys. Conf. Ser. 2020, 1563, 1–9. [Google Scholar] [CrossRef]
- Tanuja, J.; Priyanka, S.; Tushar, J.; Subhash, C. In Silico Screening of Anti-Inflammatory Compounds from Lichen by Targeting Cyclooxygenase-2. J. Biomol. Struct. Dyn. 2019. [Google Scholar] [CrossRef]
Sample | Log(inhibitor) vs. Normalized Response—Variable Slope | ||
---|---|---|---|
LogIC50 | IC50 (μg/mL) | R2 | |
AIA | −0.053 ± 0.01 | 0.885 ± 0.02 | 0.991 ± 0.001 |
AIR | 0.318 ± 0.004 | 2.080 ± 0.017 | 0.990 ± 0.002 |
Ascorbic acid | −0.908 ± 0.01 | 0.124 ± 0.01 | 0.991 ± 0.02 |
Sample | TPC—Total Phenolic Content (mg/100g) | TFC—Total Flavonoid Content (mg/100g) |
---|---|---|
AIA | 868.98 ± 9.98 | 742.44 ± 24.47 |
AIR | 475.79 ± 4.35 | 391.98 ± 6.44 |
Sample/Extracts | Mass | DF | Analytes | Ret. Time (min) | Amount (mg/L) AV ± SD | Concentration (mg/100 g) AV ± SD |
---|---|---|---|---|---|---|
AIA | 5.0026 | 1 | Chlorogenic Acid | 4.237 | 23.66 ± 1.6 | 23.65 ± 1.6 |
AIA | 5.0026 | 1 | Gallic Acid ** | 4.060 | 60.16 ± 0 | 60.13 ± 0 |
AIA | 5.0026 | 1 | Myricetin | 8.107 | 7.85 ± 1.07 | 7.84 ± 1.07 |
AIA | 5.0026 | 1 | Quercetin | 11.967 | 2.07 ± 0.55 | 2.07 ± 0.55 |
AIA | 5.0026 | 1 | Syringic Acid | 6.093 | 64.22 ± 5.48 | 64.18 ± 5.48 |
AIA | 5.0026 | 1 | Rutin | - | - | - |
AIA Ac * | 0.3 | 2 | Chlorogenic Acid | 4.287 | 6.61 ± 1.63 | 220.4 ± 54.25 |
AIA Ac * | 0.3 | 2 | Gallic Acid | - | - | - |
AIA Ac * | 0.3 | 2 | Myricetin ** | 7.723 | 3.31 ± 0 | 110.27 ± 0 |
AIA Ac * | 0.3 | 2 | Quercetin | - | - | - |
AIA Ac * | 0.3 | 2 | Syringic Acid | 5.997 | 4.94 ± 2.2 | 164.59 ± 73.36 |
AIA Ac * | 0.3 | 2 | Rutin | - | - | - |
AIA MeOH | 5.0026 | 3 | Chlorogenic Acid | 4.183 | 19.42 ± 1.24 | 58.23 ± 3.72 |
AIA MeOH | 5.0026 | 3 | Gallic Acid ** | 4.030 | 8.12 ± 0 | 24.34 ± 0 |
AIA MeOH | 5.0026 | 3 | Myricetin | 7.463 | 3.71 ± 0.72 | 11.12 ± 2.17 |
AIA MeOH | 5.0026 | 3 | Quercetin | 11.873 | 3.8 ± 1.95 | 11.4 ± 5.86 |
AIA MeOH | 5.0026 | 3 | Syringic Acid | 5.897 | 9.77 ± 1.97 | 29.3 ± 5.9 |
AIA MeOH | 5.0026 | 3 | Rutin | - | - | - |
AIR | 5.008 | 1 | Chlorogenic Acid | 4.31 | 7.98 ± 1.45 | 7.97 ± 1.45 |
AIR | 5.008 | 1 | Gallic Acid ** | 3.957 | 11.28 ± 0 | 11.26 ± 0 |
AIR | 5.008 | 1 | Myricetin | 7.437 | 2.51 ± 0.91 | 2.51 ± 0.9 |
AIR | 5.008 | 1 | Quercetin | 11.677 | 1.57 ± 0.56 | 1.56 ± 0.56 |
AIR | 5.008 | 1 | Syringic Acid | 5.997 | 3.54 ± 1.81 | 3.53 ± 1.81 |
AIR | 5.008 | 1 | Rutin | - | - | - |
S. No. | E. coli | P. aeruginosa | S. aureus | Shigella spp. |
---|---|---|---|---|
AIA | 3.33 ± 0.82 | 0 | 0 | 17.67 ± 1.47 |
AIR | 0 | 0 | 0 | 0 |
Chloramphenicol | - | - | - | 10.33 ± 0.82 |
Ciprofloxacin | - | - | - | 20.33 ± 1.08 |
Molecule | MW | # Rotatable Bonds | # H-bond Acceptors | # H-bond Donors | MR | TPSA | iLOGP | GI Absorption | BBB Permeant | Pgp Substrate | CYP3A4 Inhibitor | Lipinski # Violations | Bioavailability Score | PAINS # Alerts | Synthetic Accessibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | 170.12 | 1 | 5 | 4 | 39.47 | 97.99 | 0.21 | High | No | No | Yes | 0 | 0.56 | 1 | 1.22 |
Ciprofloxacin | 331.34 | 3 | 5 | 2 | 95.25 | 74.57 | 2.24 | High | No | Yes | No | 0 | 0.55 | 0 | 2.51 |
Syringic Acid | 198.17 | 3 | 5 | 2 | 48.41 | 75.99 | 1.54 | High | No | No | No | 0 | 0.56 | 0 | 1.7 |
Dihydromyricetin | 320.25 | 1 | 8 | 6 | 76.78 | 147.68 | 0.67 | Low | No | No | No | 1 | 0.55 | 1 | 3.55 |
Taxifolin | 304.25 | 1 | 7 | 5 | 74.76 | 127.45 | 0.71 | High | No | No | No | 0 | 0.55 | 1 | 3.51 |
Chlorogenic Acid | 354.31 | 5 | 9 | 6 | 83.5 | 164.75 | 0.87 | Low | No | No | No | 1 | 0.11 | 1 | 4.16 |
Quercetin | 302.24 | 1 | 7 | 5 | 78.04 | 131.36 | 1.63 | High | No | No | Yes | 0 | 0.55 | 1 | 3.23 |
Kaempferol | 286.24 | 1 | 6 | 4 | 76.01 | 111.13 | 1.7 | High | No | No | Yes | 0 | 0.55 | 0 | 3.14 |
Myricetin | 318.24 | 1 | 8 | 6 | 80.06 | 151.59 | 1.08 | Low | No | No | Yes | 1 | 0.55 | 1 | 3.27 |
Reptoside | 390.38 | 5 | 10 | 5 | 87.44 | 155.14 | 1.92 | Low | No | Yes | No | 0 | 0.55 | 0 | 5.6 |
8-O-acetylharpagide | 406.38 | 5 | 11 | 6 | 88.6 | 175.37 | 1.36 | Low | No | No | No | 2 | 0.17 | 0 | 5.75 |
Rutin | 610.52 | 6 | 16 | 10 | 141.38 | 269.43 | 0.46 | Low | No | Yes | No | 3 | 0.17 | 1 | 6.52 |
Ligand | Binding Energy (kcal/mol) | RMSD (Å) | KI (μM) | Interacting Residues | |
---|---|---|---|---|---|
H-Bonding | Others | ||||
Chlorogenic acid | −8.1 | 3.416 | 1.15 | His15, Arg17, Asp246, Pro101, Asn41, Ala262, Leu218, Glu137, His250 | Ala248, His135, Thr139, Tyr100, Gly263, |
Rutin | −8.1 | 2.264 | 1.15 | Arg17, His250, Leu218, Tyr75, Pro101, Asn41, Asp246 | His135, Tyr100, Ala262, Thr139, Ala248, Gly263 |
Taxifolin | −7.4 | 1.648 | 3.76 | Arg17, Asp246, Ala262,Tyr75, Leu218 | Asn41, His15, Ala248, Tyr100, His250 |
Dihydromyricetin | −7.3 | 0.546 | 4.45 | Arg17, Ala262, Asp246, Tyr75, His250, Leu218 | His15, Ala248, Asn41, Tyr100 |
Kaempferol | −7.2 | 1.491 | 5.27 | Leu218, Pro101, Asn41, Glu137 | His135, Tyr100, Thr139, Ala262 |
Reptoside | −7.1 | 1.852 | 6.24 | Asn41, His135, Tyr75, Ala262, Leu218, Asp246 | Tyr100, His15, His173 |
Ciprofloxacin | −7 | 2.267 | 7.39 | Arg17, His250, Ala262 | His15, Asn41, His135, Pro101, Glu137, Thr139, Asp246, Leu218, Tyr100, Ala248 |
Myricetin | −6.9 | 2.042 | 8.74 | Pro101, His250, Ala262, Glu137, Asp246 | Tyr100, His15, Thr139, Leu218, Ala248, His135 |
Quercetin | −6.6 | 1.977 | 14.51 | Pro101, His250, Ala262, Glu137, Asp246 | Tyr100, His135, His15, Thr139, Leu218, Ala248 |
8-O-Acetylharpagide | −6.3 | 1.121 | 24.07 | Asn41, Leu218, Arg17 | His15, Tyr100, His135, Ala262, Ala248, His250 |
Gallic acid | −6.2 | 0.509 | 28.5 | Asp246, Arg17, Leu218, Asn41, His135, His250, His173, Ala262 | His15, Tyr100, Ala248 |
Syringic acid | −5.4 | 0.146 | 109.99 | Asn41, Asp246, His250, Arg17, Ala262 | Tyr100, His135, Leu218, Ala248, Gly263, Cys217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, T.G.; Tadesse, M.G.; Bachheti, A.; Pandey, D.P.; Wabaidur, S.M.; Dahlous, K.A.; Širić, I.; et al. Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies. Molecules 2023, 28, 1111. https://doi.org/10.3390/molecules28031111
Tessema FB, Gonfa YH, Asfaw TB, Tadesse TG, Tadesse MG, Bachheti A, Pandey DP, Wabaidur SM, Dahlous KA, Širić I, et al. Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies. Molecules. 2023; 28(3):1111. https://doi.org/10.3390/molecules28031111
Chicago/Turabian StyleTessema, Fekade Beshah, Yilma Hunde Gonfa, Tilahun Belayneh Asfaw, Tigist Getachew Tadesse, Mesfin Getachew Tadesse, Archana Bachheti, Devi Prasad Pandey, Saikh M. Wabaidur, Kholood A. Dahlous, Ivan Širić, and et al. 2023. "Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies" Molecules 28, no. 3: 1111. https://doi.org/10.3390/molecules28031111
APA StyleTessema, F. B., Gonfa, Y. H., Asfaw, T. B., Tadesse, T. G., Tadesse, M. G., Bachheti, A., Pandey, D. P., Wabaidur, S. M., Dahlous, K. A., Širić, I., Kumar, P., Kumar, V., Abou Fayssal, S., & Bachheti, R. K. (2023). Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies. Molecules, 28(3), 1111. https://doi.org/10.3390/molecules28031111