Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of a Library of Marine Extracts from the Yucatan Peninsula for Antifungal Activity
2.2. Bioassay-Guided Fractionation of the M. arbuscula Extract
2.3. De-Replication Analysis of the Sub-Fractions from M. arbuscula
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Statistical Analyses
3.3. Animal Collection and Identification
3.4. Preparation of the Organic Extracts
3.5. Antifungal Assays
3.5.1. Screening of the Marine Extracts
3.5.2. Antifungal Susceptibility Testing
3.6. Bioassay-Guided Fractionation of the M. arbuscula Crude Extract
3.7. De-Replication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boddy, L. Fungi, Ecosystems, and Global Change, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P.B.T.-T.F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 361–400. ISBN 978-0-12-382034-1. [Google Scholar]
- Pérez, J.C. Fungi of the human gut microbiota: Roles and significance. Int. J. Med. Microbiol. 2021, 311, 151490. [Google Scholar] [CrossRef] [PubMed]
- Brunke, S.; Hube, B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell. Microbiol. 2013, 15, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 18026. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Arendrup, M.C. Invasive candidiasis. N, Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef] [Green Version]
- Lortholary, O.; Desnos-Ollivier, M.; Sitbon, K.; Fontanet, A.; Bretagne, S.; Dromer, F.; Bouges-Michel, C.; Poilane, I.; Dunan, J.; Galeazzi, G.; et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2441 patients. Antimicrob. Agents Chemother. 2011, 55, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Denning, D.W.; Bromley, M.J. How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef]
- Zhen, X.; Stålsby Lundborg, C.; Sun, X.; Zhu, N.; Gu, S.; Dong, H. Antibiotic Resistance Threats in the United States, 2019; US Department of Health and Human Services, Centres for Disease Control and Prevention: Atlanta, GA, USA, 2019; Volume 10. [Google Scholar]
- Jiménez, C. Marine Natural Products in Medicinal Chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorganic Med. Chem. 2021, 35, 116058. [Google Scholar] [CrossRef] [PubMed]
- Pech-Puch, D.; Pérez-Povedano, M.; Lenis-Rojas, O.A.; Rodríguez, J.; Jiménez, C. Marine natural products from the Yucatan peninsula. Mar. Drugs 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pech-Puch, D.; Pérez-Povedano, M.; Martinez-Guitian, M.; Lasarte-Monterrubio, C.; Vázquez-Ucha, J.C.; Bou, G.; Rodríguez, J.; Beceiro, A.; Jimenez, C. In vitro and in vivo assessment of the efficacy of bromoageliferin, an alkaloid isolated from the sponge Agelas dilatata, against Pseudomonas aeruginosa. Mar. Drugs 2020, 18, 326. [Google Scholar] [CrossRef]
- Pech-Puch, D.; Pérez-Povedano, M.; Gómez, P.; Martínez-Guitián, M.; Lasarte-Monterrubio, C.; Vázquez-Ucha, J.C.; Novoa-Olmedo, M.L.; Guillén-Hernández, S.; Villegas-Hernández, H.; Bou, G.; et al. Marine organisms from the Yucatan Peninsula (Mexico) as a potential natural source of antibacterial compounds. Mar. Drugs 2020, 18, 369. [Google Scholar] [CrossRef]
- Pech-Puch, D.; Berastegui-Cabrera, J.; Pérez-Povedano, M.; Villegas-Hernández, H.; Guillén-Hernández, S.; Cautain, B.; Reyes, F.; Pachón, J.; Gómez, P.; Rodríguez, J.; et al. Antiviral and Antiproliferative Potential of Marine Organisms from the Yucatan Peninsula, Mexico. Front. Mar. Sci. 2020, 7, 607. [Google Scholar] [CrossRef]
- Morales, J.L.; Cantillo-Ciau, Z.O.; Sánchez-Molina, I.; Mena-Rejón, G.J. Screening of antibacterial and antifungal activities of six marine macroalgae from coasts of Yucatán peninsula. Pharm. Biol. 2006, 44, 632–635. [Google Scholar] [CrossRef]
- Hernández, G. Mauricio Actividad Antifúngica de Extractos de Macroalgas Marinas de la Costa de Yucatán. Master’s Thesis, Centro de Investigación Científica de Yucatán, Yucatán, Mexico, 2018. [Google Scholar]
- Stout, E.P.; Yu, L.C.; Molinski, T.F. Antifungal diterpene alkaloids from the Caribbean sponge Agelas citrina: Unified configurational assignments of agelasidines and agelasines. Eur. J. Org. Chem. 2012, 2012, 5131–5135. [Google Scholar] [CrossRef] [Green Version]
- Aldholmi, M.; Marchand, P.; Ourliac-Garnier, I.; Le Pape, P.; Ganesan, A. A decade of antifungal leads from natural products: 2010–2019. Pharmaceuticals 2019, 12, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.J.; Sun, X.; Yan, X.J. A new cyclostellettamine from sponge Amphimedon compressa. Chin. Chem. Lett. 2007, 18, 947–950. [Google Scholar] [CrossRef]
- Shady, N.H.; Fouad, M.A.; Kamel, M.S.; Schirmeister, T.; Abdelmohsen, U.R. Natural product repertoire of the genus Amphimedon. Mar. Drugs 2019, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, R.P.; John Faulkner, D.; Van Engen, D.; Clardy, J. Sceptrin, an Antimicrobial Agent from the Sponge Agelas sceptrum. J. Am. Chem. Soc. 1981, 103, 6772–6773. [Google Scholar] [CrossRef]
- Galeano, E.; Martínez, A. Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. J. Mycol. Med. 2007, 17, 21–24. [Google Scholar] [CrossRef]
- Santos, M.F.C. Alcaloides Guanidínicos da Esponja Marinha Monanchora arbuscula: Isolamento, Identificação e Atividades Biológicas. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2014. [Google Scholar]
- Domingos, L.T.S.; Santos, M.F.C.; de Moraes, D.C.; de Sá, L.F.R.; da Silva, V.A.D.; Meuren, L.M.; Berlinck, R.G.S.; Ferreira-Pereira, A. Batzelladine D and norbatzelladine L purified from marine sponge Monanchora arbuscula induce the reversal of fluconazole. Bioorg. Chem. 2020, 105, 104402. [Google Scholar] [CrossRef] [PubMed]
- Dalisay, D.S.; Saludes, J.P.; Molinski, T.F. Ptilomycalin A inhibits laccase and melanization in Cryptococcus neoformans. Bioorganic Med. Chem. 2011, 19, 6654–6657. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.A.; Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 2014, 4, a019778. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, J.; Cheng, J.F.; Ishibashi, M.; Wälchli, M.R.; Yamamura, S.; Onizumi, Y. Penaresidin A and B, two novel azetidine alkaloids with potent actomyosin ATPase-activating activity from the Okinawan marine sponge Penares sp. J. Chem. Soc. Perkin Trans. 1 1991, 1135–1137. [Google Scholar] [CrossRef]
- Fujiwara, T.; Hashimoto, K.; Umeda, M.; Murayama, S.; Ohno, Y.; Liu, B.; Nambu, H.; Yakura, T. Divergent total synthesis of penaresidin B and its straight side chain analogue. Tetrahedron 2018, 74, 4578–4591. [Google Scholar] [CrossRef]
- Patil, A.D.; Freyer, A.J.; Offen, P.; Bean, M.F.; Johnson, R.K. Three new tricyclic guanidine alkaloids from the sponge Batzella sp. J. Nat. Prod. 1997, 60, 704–707. [Google Scholar] [CrossRef]
- Hua, H.M.; Peng, J.; Fronczek, F.R.; Kelly, M.; Hamann, M.T. Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorganic Med. Chem. 2004, 12, 6461–6464. [Google Scholar] [CrossRef]
- Ohshita, K.; Ishiyama, H.; Takahashi, Y.; Ito, J.; Mikami, Y.; Kobayashi, J. Synthesis of penaresidin derivatives and its biological activity. Bioorganic Med. Chem. 2007, 15, 4910–4916. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996; p. 662. [Google Scholar]
- Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.F.; Rocha, R.M.; Berlinck, R.G.S. (2S,3R)-2-aminododecan-3-ol, a new antifungal agent from the ascidian Clavelina oblonga. J. Nat. Prod. 2004, 67, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Raub, M.F.; Cardellina, J.H.; Spande, T.F. The piclavines, antimicrobial indolizidines from the tunicate Clavelina picta. Tetrahedron Lett. 1992, 33, 2257–2260. [Google Scholar] [CrossRef]
- Suzuki, K.; Nomura, I.; Ninomiya, M.; Tanaka, K.; Koketsu, M. Synthesis and antimicrobial activity of β-carboline derivatives with N 2 -alkyl modifications. Bioorganic Med. Chem. Lett. 2018, 28, 2976–2978. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, R.W.; Davidson, B.S. Didemnolines A-D, new N9-substituted β-carbolines from the marine ascidian Didemnum sp. Tetrahedron 1995, 51, 10125–10130. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T.A.; Ibrahim, S.R.M.; Mohamed, G.A.; Badr, J.M.; Risinger, A.L.; Mooberry, S.L. Didemnaketals F and G, new bioactive spiroketals from a Red Sea ascidian Didemnum species. Mar. Drugs 2014, 12, 5021–5034. [Google Scholar] [CrossRef] [Green Version]
- Cafieri, F.; Fattorusso, E.; Mangoni, A.; Taglialatela-Scafati, O. Clathramides, unique bromopyrrole alkaloids from the Caribbean sponge Agelas clathrodes. Tetrahedron 1996, 52, 13713–13720. [Google Scholar] [CrossRef]
- Ciminiello, P.; Fattorusso, E.; Magno, S.; Mangoni, A. Clathridine and its zinc complex, novel metabolites from the marine sponge Clathrina clathrus. Tetrahedron 1989, 45, 3873–3878. [Google Scholar] [CrossRef]
- Rodriguez, A.D.; Yoshida, W.Y.; Scheuer, P.J. Popolohuanone A and B. two new sesquiterpenoid aminoquinones from a pacific sponge Dysidea sp. Tetrahedron 1990, 46, 8025–8030. [Google Scholar] [CrossRef]
- Hirsch, S.; Rudi, A.; Kashman, Y.; Loya, Y. New avarone and avarol derivatives from the marine sponge Dysidea cinerea. J. Nat. Prod. 1991, 54, 92–97. [Google Scholar] [CrossRef]
- Jacob, M.R.; Hossain, C.F.; Mohammed, K.A.; Smillie, T.J.; Clark, A.M.; Walker, L.A.; Nagle, D.G. Reversal of Fluconazole Resistance in Multidrug Efflux-Resistant Fungi by the Dysidea arenaria Sponge Sterol 9α,11α-Epoxycholest-7-ene-3β,5α,6α,19-tetrol 6-Acetate. J. Nat. Prod. 2003, 66, 1618–1622. [Google Scholar] [CrossRef]
- Sionov, E.; Roth, D.; Sandovsky-Losica, H.; Kashman, Y.; Rudi, A.; Chill, L.; Berdicevsky, I.; Segal, E. Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J. Infect. 2005, 50, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, M.L.; Lopez Gresa, M.P.; Gavagnin, M.; Romero, V.; Melck, D.; Manzo, E.; Guo, Y.W.; van Soest, R.; Cimino, G. Studies on puupehenone-metabolites of a Dysidea sp.: Structure and biological activity. Tetrahedron 2007, 63, 1380–1384. [Google Scholar] [CrossRef]
- Lee, D.; Shin, J.; Yoon, K.M.; Kim, T.I.; Lee, S.H.; Lee, H.S.; Oh, K.B. Inhibition of Candida albicans isocitrate lyase activity by sesterterpene sulfates from the tropical sponge Dysidea sp. Bioorganic Med. Chem. Lett. 2008, 18, 5377–5380. [Google Scholar] [CrossRef]
- Pandeya, S.N.; Tripathi, K.; Kulshreshtha, S. Synthesis and antifungal activity of isatin-3-semicarbazone. Asian J. Chem. 2009, 21, 3367–3370. [Google Scholar]
- Nazemi, M.; Motallebi, A.A.; Savari, A.; Ghoroghi, A.; Safdari, R.; Ghasemi, S.; Sadrian, M.B. Biological activity (Antibacterial, Antifungal, Antiviral and Cytotoxic) of extract from Dysidea spp. Iran. Fish. Res. Organ. 2014. [Google Scholar]
- Skepper, C.K.; Dalisay, D.S.; Molinski, T.F. Synthesis and Antifungal Activity of (−)-(Z)-Dysidazirine. Org. Lett. 2008, 10, 5269–5271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejin, B.; Ciric, A.; Markovic, D.; Tommonaro, G.; Sokovic, M. In vitro avarol does affect the growth of Candida sp. Nat. Prod. Res. 2016, 30, 1956–1960. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, M.L. Análise Química Preliminar de Extratos de Caulerpa Mexicana, Bryopsis Pennata, Vryothamion Triquerum, Hypnea Musciformes e Ircina Felix e Avaliação das Atividades Antifúngica e Antibacteriana; Universidade Federal da Paraíba: João Pessoa, Brazil, 2014. [Google Scholar]
- Gharpure, S.; Akash, A.; Ankamwar, B. A Review on Antimicrobial Properties of. J. Nanosci. Nanotechnol. 2020, 20, 3303–3339. [Google Scholar] [CrossRef]
- Ayyad, S.E.N.; Katoua, D.F.; Alarif, W.M.; Sobahi, T.R.; Aly, M.M.; Shaala, L.A.; Ghandourah, M.A. Two new polyacetylene derivatives from the Red Sea sponge Xestospongia sp. Z. Für Nat. C 2015, 70, 297–303. [Google Scholar] [CrossRef]
- Singh, A.; Tilvi, S.; Singh, K.S. Quinolizidine Alkaloids from Marine Organisms: A Perspective on Chemical, Bioactivity and Synthesis. Front. Nat. Prod. Chem. 2021, 8, 45–98. [Google Scholar]
- Chen, Y.; Killday, K.B.; McCarthy, P.J.; Schimoler, R.; Chilson, K.; Selitrennikoff, C.; Pomponi, S.A.; Wright, A.E. Three new peroxides from the sponge Plakinastrella species. J. Nat. Prod. 2001, 64, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; McCarthy, P.J.; Harmody, D.K.; Schimoler-O’Rourke, R.; Chilson, K.; Selitrennikoff, C.; Pomponi, S.A.; Wright, A.E. New bioactive peroxides from marine sponges of the family Plakiniidae. J. Nat. Prod. 2002, 65, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Feng, Q.; Jacob, M.R.; Avula, B.; Mask, M.M.; Baerson, S.R.; Tripathi, S.K.; Mohammed, R.; Hamann, M.T.; Khan, I.A.; et al. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis. Antimicrob. Agents Chemother. 2011, 55, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; El-Sayed Hamed, A.N.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem. 2017, 126, 631. [Google Scholar] [CrossRef]
- Hua, H.M.; Peng, J.; Dunbar, D.C.; Schinazi, R.F.; de Castro Andrews, A.G.; Cuevas, C.; Garcia-Fernandez, L.F.; Kelly, M.; Hamann, M.T. Batzelladine alkaloids from the caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron 2007, 63, 11179–11188. [Google Scholar] [CrossRef]
- Oliveira, J.R. Contribuição ao Conhecimento Químico de Esponjas do Litoral Cearense: Monanchora arbuscula. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2008. [Google Scholar]
- Arevabini, C.; Crivelenti, Y.D.; De Abreu, M.H.; Bitencourt, T.A.; Santos, M.F.C.; Berlinck, R.G.S.; Hajdu, E.; Beleboni, R.O.; Fachin, A.L.; Marins, M. Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea). Nat. Prod. Commun. 2014, 9, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Fedorov, S.N.; Shubina, L.K.; Kuzmich, A.S.; Bokemeyer, C.; Keller-Von Amsberg, G.; Honecker, F. Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF- B-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. Biomed Res. Int. 2014, 2014, 469309. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.B.; Yang, F.; Sun, F.; Li, J.; Jiao, W.H.; Gan, J.H.; Hu, W.Z.; Lin, H.W. Aaptamine derivatives with antifungal and Anti-HIV-1 activities from the South China Sea sponge Aaptos aaptos. Mar. Drugs 2014, 12, 6003–6013. [Google Scholar] [CrossRef]
- He, Q.; Miao, S.; Ni, N.; Man, Y.; Gong, K. A Review of the Secondary Metabolites From the Marine Sponges of the Genus Aaptos. Nat. Prod. Commun. 2020, 15, 1934578X20951439. [Google Scholar] [CrossRef]
- Kazanjian, A.; Fariñas, M. Actividades biológicas del extracto acuoso de la esponja Aplysina lacunosa (Porifera: Aplysinidae). Rev. Biol. Trop. 2006, 54, 189–200. [Google Scholar]
- Palpandi, C.; Krishnan, S.; Ananthan, G. Antifungal activity of some species of marine sponges (class: Demospongiae ) of the palk bay, southeast coast of India. Int. J. Med. Med. Sci. 2013, 5, 409–413. [Google Scholar] [CrossRef]
- El-Bondkly, A.A.M.; El-Gendy, M.M.A.A.; El-Bondkly, A.M.A. Construction of Efficient Recombinant Strain Through Genome Shuffling in Marine Endophytic Fusarium sp. ALAA-20 for Improvement Lovastatin Production Using Agro-Industrial Wastes. Arab. J. Sci. Eng. 2021, 46, 175–190. [Google Scholar] [CrossRef]
- Rogers, E.W.; Molinski, T.F. Highly polar spiroisoxazolines from the sponge Aplysina fulva. J. Nat. Prod. 2007, 70, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Gomes Filho, S.M. Purificação, Caracterização e Atividades Biológicas de uma Lectina da Esponja Marinha Aplysina fulva (AFL); Universidade Federal de Paríba: João Pessoa, Brazil, 2014. [Google Scholar]
- Cedeño-Ramos, R.; D’Armas, H.; Amaro, M.; Martínez, R. Metabolitos secundarios, letalidad y actividad antimicrobiana de seis esponjas marinas de la Bahía de Mochima, Venezuela. Res. J. Costa Rican Distance Educ. Univ. 2015, 7, 225–232. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI standard M27; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
Code | Species | Yield (g) | Extract Concentration (mg/mL) | Concentration Used in the Screening (µg/mL) |
---|---|---|---|---|
E38 | Aaptos sp. | 4.9 | 1.66 | 41.5 |
CZE56 | Agelas citrina | 1.9 | 5 | 125 |
E27-2 | Agelas clathrodes | 11.2 | 1.66 | 41.5 |
MA18-10 | Agelas clathrodes | 7.2 | 2.5 | 62.5 |
E25-1 | Agelas dilatata | 21.3 | 1.66 | 41.5 |
E26-2 | Agelas sceptrum | 4.6 | 2.5 | 62.5 |
E50 | Aiolochroia crassa | 5.2 | 5 | 125 |
MA18-4 | Aiolochroia crassa | 8.7 | 1.43 | 35.75 |
E29 | Amphimedon compressa | 12.9 | 1.66 | 41.5 |
E36 | Aplysina cauliformis | 6.3 | 2.5 | 62.5 |
E46 | Aplysina fistularis | 2.7 | 2.5 | 62.5 |
E42 | Aplysina fulva | 1.8 | 5 | 125 |
EY18-5 | Aplysina fulva | 2.9 | 1 | 25 |
E47 | Aplysina muricyanna | 4.4 | 2.5 | 62.5 |
BA-3 | Briareum asbestinum | 3.9 | 5 | 125 |
E28 | Callyspongia longissima | 1.8 | 1.66 | 41.5 |
E31 | Callyspongia plicifera | 1.2 | 1 | 25 |
E16 | Callyspongia vaginalis | 0.9 | 1.66 | 41.5 |
MA18-6 | Chondrilla caribensis f. hermatypica | 2.1 | 2.5 | 62.5 |
RIO18-1 | Chondrilla sp. | 4.6 | 2.5 | 62.5 |
MA18-2 | Cinachyrella kuekenthali | 2.1 | 0.5 | 12.5 |
EY18-11 | Clathria gomezae | 1.8 | 5 | 125 |
E7-E34 | Clathria virgultosa | 5.5 | 1 | 25 |
EY18-10 | Clathrina sp. | 1.4 | 2 | 50 |
T18-M1 | Clavelina sp. | 5.0 | 1 | 25 |
EY18-1 | Cliona delitrix | 5.2 | 2 | 50 |
EY18-3 | Cliona varians | 1.8 | 1.66 | 41.5 |
E8-2 | Didemnum perlucidum | 1.8 | 2.5 | 62.5 |
E01 | Didemnum sp. | 3.7 | 2.5 | 62.5 |
T18-M4 | Didemnum sp. | 3.5 | 2.5 | 62.5 |
EY18-12 | Dysidea sp. | 3.3 | 5 | 125 |
T18-M2 | Ecteinascidia sp. | 9.0 | 2.5 | 62.5 |
MA18-9 | Ectyoplasia ferox | 5.9 | 1.66 | 41.5 |
MA18-13 | Ectyoplasia sp. | 2.2 | 5 | 125 |
RIO18-T1 | Eudistoma amanitum | 3.6 | 2.5 | 62.5 |
TY18-2 | Eudistoma sp. | 2.9 | 5 | 125 |
E18-M1 | Halichondria melanadocia | 14.1 | 1 | 25 |
EY18-4 | Haliclona (Rhizoniera) curacaoensis | 7.9 | 5 | 125 |
E9-2 | Ircinia felix | 43.5 | 1.66 | 41.5 |
MA18-11 | Ircinia felix | 1.7 | 2.5 | 62.5 |
E24-2 | Ircinia strobilina | 14.1 | 5 | 125 |
E52 | Ircinia strobilina | 4.9 | 2.5 | 62.5 |
E2-2 | Leucetta floridana | 1.3 | 1.25 | 31.25 |
E4 | Melophlus hajdui | 4.4 | 2.5 | 62.5 |
T18-M6 | Molgula sp. | 3.9 | 5 | 125 |
E35 | Monanchora arbuscula | 29.8 | 2.5 | 62.5 |
MA18-1 | Mycale laevis | 14.1 | 1 | 25 |
MA18-5 | Mycale laevis | 4.9 | 5 | 125 |
CZE18 | Myrmekioderma gyroderma | 7.5 | 2.5 | 62.5 |
E15 | Niphates digitalis | 2.5 | 1 | 25 |
E49 | Niphates erecta | 1.6 | 1 | 25 |
MA18-12 | Niphates erecta | 5.5 | 5 | 125 |
MA18-7 | Niphates erecta | 2.8 | 2.5 | 62.5 |
TY18-1 | Phallusia nigra | 5.5 | 2.5 | 62.5 |
E3 | Plakinastrella onkodes | 4.9 | 5 | 125 |
E41 | Polycarpa sp. | 2.4 | 2 | 50 |
T18-M5 | Polyclinum sp. | 1.8 | 5 | 125 |
EY18-8 | Polysyncraton sp. | 3.6 | 2.5 | 62.5 |
DNY | Scopalina ruetzleri | 29.8 | 1.66 | 41.5 |
E53 | Scopalina ruetzleri | 1.8 | 5 | 125 |
EY18-7 | Scopalina ruetzleri | 5.5 | 1.25 | 31.25 |
E11-2 | Spongia tubulifera | 29.8 | 2.5 | 62.5 |
E20 | Tethya sp. | 29.8 | 5 | 125 |
E7-2 | Trididemnum solidum | 3.4 | 2.5 | 62.5 |
EP | Xestospongia muta | 14.1 | 1 | 25 |
MIC (µg/mL) | |||||
---|---|---|---|---|---|
Code/ Reference | Species | C. glabrata | C. albicans | ||
24 h | 48 h | 24 h | 48 h | ||
MA18-4 | A. crassa | 4.47 | 17.88 | 35.78 | 35.78 |
E29 | A. compressa | 2.59 | 2.59 | 5.19 | 5.19 |
E35 | M. arbuscula | 3.91 | 3.91 | 3.91 | 3.91 |
CZE56 | A. citrina | 7.81 | 7.81 | 3.91 | 3.91 |
Fluconazole | - | 8 | 16 | 0.5 | 0.5 |
Fraction | Concentration (mg/mL) | Concentration Used in the Bioassay (µg/mL) |
---|---|---|
E35-WF | 4.8 | 120 |
E35-DF | 2.4 | 60 |
E35-HF | 2.5 | 62.5 |
E35-BF | 4.7 | 117.5 |
E35-WMF | 5.2 | 130 |
Sub-Fraction | Concentration (mg/mL) | Concentration Used in the Bioassay (µg/mL) |
---|---|---|
R1 | 5.4 | 135 |
R2 | 5.2 | 130 |
R3 | 3.6 | 90 |
R4 | 2.4 | 60 |
R5 | 4.6 | 115 |
R6 | 5.4 | 135 |
R7 | 5.4 | 135 |
MIC (µg/mL) | ||||
---|---|---|---|---|
(Sub-)Fraction/ Reference | C. glabrata | C. albicans | ||
24 h | 48 h | 24 h | 48 h | |
E35-DF | 3.75 | 3.75 | 7.50 | 15 |
R2 | 2.03 | 4.06 | 2.03 | 4.06 |
R3 | 2.81 | 5.63 | 2.81 | 5.63 |
R4 | 3.75 | 3.75 | 7.50 | 15 |
R5 | 1.08 | 3.59 | 1.80 | 3.59 |
Fluconazole | 8 | 16 | 0.5 | 0.5 |
MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|
Sub-Fraction | C. krusei | C. tropicalis | C. parapsilosis | |||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
R2 | 14.69 | 29.38 | 14.69 | 14.69 | 14.69 | 29.38 |
R3 | 31.25 | 125 | 15.63 | 31.25 | 15.63 | 15.63 |
R4 | 11.25 | 11.25 | 5.63 | 11.25 | 5.63 | 5.63 |
R5 | 7.19 | 28.75 | 3.59 | 7.19 | 3.59 | 7.19 |
MFC (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | |||||||
R2 | R3 | R4 | R5 | R2 | R3 | R4 | R5 | |
C. albicans | 14.69 | 31.25 | 11.25 | 14.38 | * | 31.25 | 5.63 | 7.19 |
C. glabrata | 58.75 | 125.00 | 11.25 | 3.59 | 58.75 | 125.00 | 22.50 | 3.59 |
C. krusei | 117.5 | * | 22.5 | 57.50 | 58.75 | * | 22.5 | 57.50 |
C. tropicalis | 14.69 | 15.63 | 11.25 | 7.19 | 14.69 | 15.63 | 11.25 | 7.19 |
C. parapsilosis | 29.38 | 7.81 | 11.25 | 7.19 | 29.38 | 31.25 | 45.00 | 57.50 |
Sub-Fractions | UHPLC (Retention Time in min) | [M + H]+ ion Adducts(m/z) | Possible Compound * |
---|---|---|---|
R2 | 9.56 | 256.8662 | - |
10.49 | 259.2150 | - | |
15.49 | 282.2792 | - | |
R3 | 12.00 | 330.3001 | Penaresidin B (m/z 330.3002) isolated from Penares sp. [31,32] |
12.21 | 404.3271 | - | |
R4 | 9.12 | 246.1965 | Mirabilin B (m/z 246.1964) isolated from Arennochalina mirabilis [33] |
9.98 | 248.2177 | - | |
10.25 | 346.2488 | - | |
10.75 | 348.2644 | - | |
11.00 | 376.2960 | - | |
11.25 | 318.3001 | - | |
11.00 | 330.3001 | Penaresidin B (m/z 330.3002) isolated from Penares sp. [31,32] | |
R5 | 10.87 | 325.2749 | - |
11.22 | 318.3006 | - | |
11.71 | 332.3156 | - | |
11.90 | 330.3001 | Penaresidin B (m/z 330.3002) isolated from Penares sp. [31,32] | |
12.14 | 404.3265 | - | |
12.42 | 344.3158 | - | |
15.49 | 282.2793 | - |
Post. | 1 | 2 | ||
---|---|---|---|---|
aδC, Type * | bδC, Type ** | aδC, Type * | bδC, Type ** | |
1 | 61.3, CH2 | 62.3, CH2 | ||
2 | 176.3, C | 176.2, C | 66.3, CH | 66.6, CH |
3 | 126.9, C | 126.8, C | 66.9, CH | 67.4, CH |
4 | 167.3, C | 167.3, C | 65.4, CH | 64.8, CH |
5 | 27.2, CH2 | 26.9, CH2 | ||
6 | 164.6, C | 164.6, C | 27.2, CH2 | 26.9, CH2 |
7 | 27.2, CH2 | 26.9, CH2 | ||
8 | 39.2, CH | 39.0, CH | 27.2, CH2 | 26.9, CH2 |
9 | 40.4, CH2 | 40.8, CH2 | 27.2, CH2 | 26.9, CH2 |
10 | 35.1, CH | 35.2, CH | 27.2, CH2 | 26.9, CH2 |
11 | 48.8, CH | 48.2, CH | 27.2, CH2 | 26.9, CH2 |
12 | 34.4, CH2 | 34.3, CH2 | 27.2, CH2 | 26.9, CH2 |
13 | 34.2, CH2 | 34.1, CH2 | 27.2, CH2 | 26.9, CH2 |
14 | 72.6, CH | 72.7, CH | ||
15 | 21.6, CH3 | 21.3, CH3 | 34.9, CH2 | 34.9, CH2 |
16 | 31.6, CH3 | 31.1, CH3 | 24.8, CH | 24.6, CH |
17 | 28.6, CH2 | 28.6, CH2 | 25.6, CH2 | 25.5, CH2 |
18 | 24.2, CH2 | 24.4, CH2 | 11.5, CH3 | 11.6, CH3 |
19 | 14.4, CH3 | 14.4, CH3 | 22.3, CH3 | 22.3, CH3 |
Order | Family | Species (Code Used in This Study) | Antifungal Activity Previously Reported | Reference |
---|---|---|---|---|
Aplousobranchia | Clavelinidae | Clavelina sp. (T18-M1) | (2S,3R)-2-aminododecan-3-ol isolated from Clavelina oblonga active against C. albicans and C. glabrata. Indolizines isolated from C. picta active against C. albicans. | [37,38] |
Didemnidae | Didemnum perlucidum (E8-2) | No | ||
Didemnum sp. (T18-M4) (E01) | Didemnoline B and C active on S. cerevisiae. Lepadin D and E active against Ustilago violacea (now Microbotryum violaceum) and Eurotium repens, respectively. Lepadin F active against E. repens. Didemnaketal F and G active against C. albicans. β-carboline active against C. albicans, C. intermedia and C. krusei. β-carboline dimer active against C. intermedia. β-carboline N-Me salts showed activity against C. intermedia and C. krusei. | [38,39,40,41] | ||
Trididemnum solidum (E7-2) | No | |||
Polycitoridae | Polysyncraton sp. (EY18-8) | No | ||
Eudistoma amanitum (RIO18-T1) | No | |||
Eudistoma sp. (TY18-2) | Eudistomin W and X active against C. albicans. | [27] | ||
Polyclinidae | Polyclinum sp. (T18-M5) | No | ||
Phlebobranchia | Ascidiidae | Phallusia nigra (TY18-1) | No | |
Perophoridae | Ecteinascidia sp. (T18-M2) | No | ||
Stolidobranchia | Molgulidae | Molgula sp. (T18-M6) | No | |
Styelidae | Polycarpa sp. (E41) | No | ||
Alcyonacea | Briareridae | Briareum asbestinum (BA-3) | No | |
Agelasida | Agelisidae | Agelas citrina (CZE56) | (–)-Agelasidine C, agelasidine E and F active against C. albicans. | [21,22] |
Agelas clathrodes (E27-2) (MA18-10) | Clathramides A and B showed activity against Aspergillus niger. | [42] | ||
Agelas dilatata (E25-1) | No | |||
Agelas sceptrum (E26-2) | Sceptrin is active against C. albicans, Alternaria sp. and Cladosporium cucumerinum. | [25] | ||
Axinelida | Heteroxyidae | Myrmekioderma gyroderma (CZE18) | No | |
Raspailiidae | Ectyoplasia ferox (MA18-9) | No | ||
Ectyoplasia sp. (MA18-13) | No | |||
Chondrilida | Chondrilidae | Chondrilla caribensis f. hermatypica (MA18-6) | No | |
Chondrilla sp. (RIO18-1) | No | |||
Clathrinida | Clathrinidae | Clathrina sp. (EY18-10) | Clathridine is active against C. albicans and S. cerevisiae. | [43] |
Leucittidae | Leucetta floridana (E2-2) | Extract showed activity against C. albicans. | [26] | |
Clionaida | Clionaidae | Cliona delitrix (EY18-1) | No | |
Cliona varians (EY18-3) | No | |||
Dictyoceratida | Dysideidae | Dysidea sp. (EY18-12) | 3′-hydroxyavarone, 3′,6′di-hydroxyavarone and 6′-acetoxyavarol are active against C. albicans. 9α,11α-epoxycholest-7-ene-3β,5α,6α,19-tetrol 6-acetate (ECTA) is active against C. albicans. 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy) phenol is active against C. albicans, C. glabrata, C. tropicalis, A. fumigatus, A. flavus and A. niger. Puupehenone is active against C. albicans. Synthetic (Z)-dysidazirine [(-)-1] is active against C. albicans, C. glabrata and C. krusei. Sesterterpenes sulphates showed inhibitory activity against C. albicans. Avarol is active against eight Candida spp. | [44,45,46,47,48,49,50,51,52,53] |
Irciniidae | Ircinia felix (E9-2) (MA18-11) | Extract showed activity against C. tropicalis. | [54] | |
Ircinia strobilina (E24-2) (E52) | No | |||
Spongiidae | Spongia tubulifera (E11-2) | No | ||
Haplosclerida | Callyspongiidae | Callyspongia longissima (E28) | No | |
Callyspongia plicifera (E31) | No | |||
Callyspongia vaginalis (E16) | No | |||
Chalinidae | Haliclona (Rhizoniera) curacaoensis (EY18-4) | No | ||
Niphatidae | Amphimedon compressa (E29) | 8,8′-dienecyclostellettamine is active against C. albicans and A. fumigatus. | [23,24] | |
Niphates digitalis (E15) | No | |||
Niphates erecta (E49) (MA18-7) (MA18-12) | No | |||
Petrosiidae | Xestospongia muta (EP) | Xestospongiamide is active against A. niger and C. albicans. Xestospongin C and D are active against fluconazole-resistant Candida spp. | [55,56,57] | |
Homosclerophorida | Plakinidae | Plakinastrella onkodes (E3) | Plakinic acid F is active against C. albicans and A. fumigatus. Epiplakinic acid F is active against C. albicans and A. fumigatus. 1,2-dioxane ring peroxide acid is active against C. albicans and A. fumigatus. Plakortide F is active against C. albicans. 1,2-dioxolane perocide acid is active against C. albicans. | [58,59,60,61] |
Poecilosclerida | Crambeidae | Monanchora arbuscula (E35) | Dehydrobatzelladine C is active against C. albicans and A. fumigatus. Batzelladine L shows activity against A. flavus. Mirabilin B is active against C. neoformans. | [61,62,63,64] |
Microcionidae | Clathria gomezae (EY18-11) | No | ||
Clathria (Thalysisas) virgultosa (E7-E34) | No | |||
Mycalidae | Mycale laevis (MA18-1) (MA18-5) | No | ||
Scopalinida | Scopalinidae | Scopalina ruetzleri (DNY) (E53) (EY18-7) | Extract showed activity against C. albicans. | [26] |
Suberitida | Halichondriidae | Halichondria melanadocia (E18-M1) | No | |
Subertidae | Aaptos sp. (E38) | 3-(phenethylamino)demethyl(oxy)aaptamine is active against C. albicans, C. parapsilosis, Trichophyton rubrum and Microsporum gypseum. | [65,66,67] | |
Tethyida | Tethyidae | Tethya sp. (E20) | Extract from species of this genus showed mild activity against C. albicans. | [68,69] |
Tetractinellida | Geodiidae | Melophlus hajdui (E4) | No | |
Tetillidae | Cinachyrella kuekenthali (MA18-2) | No | ||
Verongiida | Aplysinidae | Aiolochroia crassa (E50) (MA18-4) | No | |
Aplysina cauliformis (E36) | No | |||
Aplysina fistularis (E46) | Lovastatin is active against Candida, Aspergillus, Fusarium and Trichophyton species. | [70] | ||
Aplysina fulva (E42) (EY18-5) | Lectin is active against C. albicans and C. tropicalis. | [71,72,73] | ||
Aplysina muricyana (E47) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Puch, D.; Grilo, D.; Calva-Pérez, S.E.; Pedras, A.; Villegas-Hernández, H.; Guillén-Hernández, S.; Díaz-Gamboa, R.; Tunjano, M.F.; Rodríguez, J.; Lenis-Rojas, O.A.; et al. Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp. Molecules 2023, 28, 606. https://doi.org/10.3390/molecules28020606
Pech-Puch D, Grilo D, Calva-Pérez SE, Pedras A, Villegas-Hernández H, Guillén-Hernández S, Díaz-Gamboa R, Tunjano MF, Rodríguez J, Lenis-Rojas OA, et al. Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp. Molecules. 2023; 28(2):606. https://doi.org/10.3390/molecules28020606
Chicago/Turabian StylePech-Puch, Dawrin, Diana Grilo, Susana Eunice Calva-Pérez, Andreia Pedras, Harold Villegas-Hernández, Sergio Guillén-Hernández, Raúl Díaz-Gamboa, Mateo Forero Tunjano, Jaime Rodríguez, Oscar A. Lenis-Rojas, and et al. 2023. "Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp." Molecules 28, no. 2: 606. https://doi.org/10.3390/molecules28020606
APA StylePech-Puch, D., Grilo, D., Calva-Pérez, S. E., Pedras, A., Villegas-Hernández, H., Guillén-Hernández, S., Díaz-Gamboa, R., Tunjano, M. F., Rodríguez, J., Lenis-Rojas, O. A., Jiménez, C., & Pimentel, C. (2023). Antifungal Potential of Marine Organisms of the Yucatan Peninsula (Mexico) against Medically Important Candida spp. Molecules, 28(2), 606. https://doi.org/10.3390/molecules28020606