Comparative Study of Planar Octahedron Molecular Structure via Eccentric Invariants
Abstract
:1. Introduction and Preliminary Results
2. Planar Octahedron POH(m) Network Drawing Algorithm
- (Step 1:)
- Draw an m-dimensional silicate network [7].
- (Step 2:)
- Each triangle’s centroid should be fixed with new vertices, and those vertices should be connected to the vertices in the corresponding triangle face.
- (Step 3:)
- Connect all of the new centroid vertices on the same silicate sheet.
- (Step 4:)
- Eliminate all silicon vertices. The associated m-dimensional graph is known as the planar octahedron network as shown in Figure 1.
3. Main Results
Results for Planar Octahedron Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashrafi, A.R.; Ghorbani, M.; Jalali, M. The vertex PI and Szeged indices of an infinite family of fullerenes. J. Theor. Comput. Chem. 2008, 7, 221–231. [Google Scholar] [CrossRef]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin, Germany, 1986. [Google Scholar]
- Liu, J.B.; Bao, Y.; Zheng, W.T.; Hayat, S. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals 2021, 29, 1–15. [Google Scholar] [CrossRef]
- Liu, J.B.; Wang, C.; Wang, S.; Wei, B. Zagreb indices and multiplicative zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Deo, N. Graph Theory with Applications to Engineering and Computer Science; Prentice-Hall of India Private Limited M-97; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2017; pp. 24–25. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Manuel, P.; Rajasingh, I.; William, A.; Kishore, A. Computational aspect of Silicate networks. Int. J. Comput. Algorithm 2014, 3, 524–532. [Google Scholar]
- Diudea, M.V.; Gutman, I.; Lorentz, J. Molecular Topology; Babes-Bolyai University: Cluj-Napoca, Romania, 2001. [Google Scholar]
- Liu, J.B.; Zhao, J.; Cai, Z.Q. On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks. Physica A: Stat. Mech. Its Appl. 2020, 540, 123073. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpiński networks. J. Stat. Phys. 2019, 177, 1131–1147. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, T.; Wang, Y.; Lin, W. The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discret. Appl. Math. 2022, 307, 22–31. [Google Scholar] [CrossRef]
- Fathalikhani, K.; Faramarzi, H.; Yousefi-Azari, H. Total eccentricity of some graph operations. Electron. Notes Discret. Math. 2014, 45, 125–131. [Google Scholar] [CrossRef]
- Amić, D.; Bešlo, D.; Lucić, B.; Nikolić, S.; Trinajstić, N. The vertex-connectivity index revisited. J. Chem. Inf. Comput. Sci. 1998, 38, 819–822. [Google Scholar] [CrossRef]
- Ilic, A. A On the extremal properties of the average eccentricity. Comput. Math. Appl. 2012, 64, 2877–2885. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, B. On average eccentricity. MATCH Commun. Math. Comput. Chem. 2012, 67, 405–423. [Google Scholar]
- Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A. Computing fifth geometric-arithmetic index for nanostar dendrimers. J. Math. Nanosci. 2011, 1, 33–42. [Google Scholar]
- Vukicevic, D.; Furtula, B. Topological Index Based on the Ratios of Geometrical and Arithmetical Means of End-Vertex Degrees of Edges. J. Math. Chem. 2009, 46, 1369–1376. [Google Scholar] [CrossRef]
- Farahani, M.R.; Asadrour, J.; Kanna, M.R.R. Computing the Geometric-Arithmetic Eccentricity Index of an infinite family of Benzenoid. Asian Acad. Res. J. Multidiscip. 2016, 3, 23–29. [Google Scholar]
- Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: Anovel highly discriminating topological descriptor for structure property andstructure activity studies. J. Chem. Inf. Comput. Sci. 1997, 37, 273–282. [Google Scholar] [CrossRef]
- Gao, W.; Farahani, M.R.; Jamil, M.K. The eccentricity version of atom-bond connec-tivity index of linear polycene parallelogram benzoid ABC5(P(n,n)). Acta Chim. Slov. 2016, 63, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arezoomand, M.; Taeri, B. Zagreb indices of the generalized hierarchical product of graphs. MATCH Commun. Math. Comput. Chem. 2013, 69, 131–140. [Google Scholar]
- Shanmukha, M.C.; Basavarajappa, N.S.; Usha, A.; Shilpa, K.C. Novel neighbourhood redefined first and second Zagreb indices on carborundum structures. J. Appl. Math. Comput. 2021, 66, 263–276. [Google Scholar] [CrossRef]
- Jamil, M.K.; Farahani, M.R.; Kanna, M.R.R.; Hosamani, S.M. The Second Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons P AHk. J. Chem. Pharm. Res. 2016, 8, 41–45. [Google Scholar]
- Babar, U.; Ali, H.; Arshad, S.H.; Sheikh, U. Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Math. 2020, 5, 1562. [Google Scholar] [CrossRef]
- Simonraj, F.; George, A. Embedding of poly honeycomb networks and the metric dimension of star of david network. GRAPH-HOC 2012, 4, 11–28. [Google Scholar] [CrossRef]
Sets | Vertices | Range | |
---|---|---|---|
Sets | Edges | Range | |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Z.-Q.; Ali, H.; Ali, D.A.; Nadeem, M.; Kirmani, S.A.K.; Ali, P. Comparative Study of Planar Octahedron Molecular Structure via Eccentric Invariants. Molecules 2023, 28, 556. https://doi.org/10.3390/molecules28020556
Chu Z-Q, Ali H, Ali DA, Nadeem M, Kirmani SAK, Ali P. Comparative Study of Planar Octahedron Molecular Structure via Eccentric Invariants. Molecules. 2023; 28(2):556. https://doi.org/10.3390/molecules28020556
Chicago/Turabian StyleChu, Zheng-Qing, Haidar Ali, Didar Abdulkhaleq Ali, Muhammad Nadeem, Syed Ajaz K. Kirmani, and Parvez Ali. 2023. "Comparative Study of Planar Octahedron Molecular Structure via Eccentric Invariants" Molecules 28, no. 2: 556. https://doi.org/10.3390/molecules28020556
APA StyleChu, Z. -Q., Ali, H., Ali, D. A., Nadeem, M., Kirmani, S. A. K., & Ali, P. (2023). Comparative Study of Planar Octahedron Molecular Structure via Eccentric Invariants. Molecules, 28(2), 556. https://doi.org/10.3390/molecules28020556